summaryrefslogtreecommitdiff
path: root/lisp/mp/mp.c
diff options
context:
space:
mode:
Diffstat (limited to 'lisp/mp/mp.c')
-rw-r--r--lisp/mp/mp.c822
1 files changed, 822 insertions, 0 deletions
diff --git a/lisp/mp/mp.c b/lisp/mp/mp.c
new file mode 100644
index 0000000..78b7a0e
--- /dev/null
+++ b/lisp/mp/mp.c
@@ -0,0 +1,822 @@
+/*
+ * Copyright (c) 2002 by The XFree86 Project, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
+ * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ * Except as contained in this notice, the name of the XFree86 Project shall
+ * not be used in advertising or otherwise to promote the sale, use or other
+ * dealings in this Software without prior written authorization from the
+ * XFree86 Project.
+ *
+ * Author: Paulo César Pereira de Andrade
+ */
+
+/* $XFree86: xc/programs/xedit/lisp/mp/mp.c,v 1.3 2002/11/20 07:44:43 paulo Exp $ */
+
+#include "mp.h"
+
+/*
+ * TODO:
+ * o Optimize squaring
+ * o Write better division code and move from mpi.c to here
+ * o Make multiplication code don't required memory to be zeroed
+ * + The first step is easy, just multiply the low word,
+ * then the high word, that may overlap with the result
+ * of the first multiply (in case of carry), and then
+ * just make sure carry is properly propagated in the
+ * subsequent multiplications.
+ * + Some code needs also to be rewritten because some
+ * intermediate addition code in mp_mul, mp_karatsuba_mul,
+ * and mp_toom_mul is assuming the memory is zeroed.
+ */
+
+/*
+ * Prototypes
+ */
+ /* out of memory handler */
+static void mp_outmem(void);
+
+ /* memory allocation fallback functions */
+static void *_mp_malloc(size_t);
+static void *_mp_calloc(size_t, size_t);
+static void *_mp_realloc(void*, size_t);
+static void _mp_free(void*);
+
+/*
+ * Initialization
+ */
+static mp_malloc_fun __mp_malloc = _mp_malloc;
+static mp_calloc_fun __mp_calloc = _mp_calloc;
+static mp_realloc_fun __mp_realloc = _mp_realloc;
+static mp_free_fun __mp_free = _mp_free;
+
+/*
+ * Implementation
+ */
+static void
+mp_outmem(void)
+{
+ fprintf(stderr, "out of memory in MP library.\n");
+ exit(1);
+}
+
+static void *
+_mp_malloc(size_t size)
+{
+ return (malloc(size));
+}
+
+void *
+mp_malloc(size_t size)
+{
+ void *pointer = (*__mp_malloc)(size);
+
+ if (pointer == NULL)
+ mp_outmem();
+
+ return (pointer);
+}
+
+mp_malloc_fun
+mp_set_malloc(mp_malloc_fun fun)
+{
+ mp_malloc_fun old = __mp_malloc;
+
+ __mp_malloc = fun;
+
+ return (old);
+}
+
+static void *
+_mp_calloc(size_t nmemb, size_t size)
+{
+ return (calloc(nmemb, size));
+}
+
+void *
+mp_calloc(size_t nmemb, size_t size)
+{
+ void *pointer = (*__mp_calloc)(nmemb, size);
+
+ if (pointer == NULL)
+ mp_outmem();
+
+ return (pointer);
+}
+
+mp_calloc_fun
+mp_set_calloc(mp_calloc_fun fun)
+{
+ mp_calloc_fun old = __mp_calloc;
+
+ __mp_calloc = fun;
+
+ return (old);
+}
+
+static void *
+_mp_realloc(void *old, size_t size)
+{
+ return (realloc(old, size));
+}
+
+void *
+mp_realloc(void *old, size_t size)
+{
+ void *pointer = (*__mp_realloc)(old, size);
+
+ if (pointer == NULL)
+ mp_outmem();
+
+ return (pointer);
+}
+
+mp_realloc_fun
+mp_set_realloc(mp_realloc_fun fun)
+{
+ mp_realloc_fun old = __mp_realloc;
+
+ __mp_realloc = fun;
+
+ return (old);
+}
+
+static void
+_mp_free(void *pointer)
+{
+ free(pointer);
+}
+
+void
+mp_free(void *pointer)
+{
+ (*__mp_free)(pointer);
+}
+
+mp_free_fun
+mp_set_free(mp_free_fun fun)
+{
+ mp_free_fun old = __mp_free;
+
+ __mp_free = fun;
+
+ return (old);
+}
+
+long
+mp_add(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
+{
+ BNI value; /* intermediate result */
+ BNS carry; /* carry flag */
+ long size; /* result size */
+
+ if (len1 < len2)
+ MP_SWAP(op1, op2, len1, len2);
+
+ /* unroll start of loop */
+ value = op1[0] + op2[0];
+ rop[0] = value;
+ carry = value >> BNSBITS;
+
+ /* add op1 and op2 */
+ for (size = 1; size < len2; size++) {
+ value = op1[size] + op2[size] + carry;
+ rop[size] = value;
+ carry = value >> BNSBITS;
+ }
+ if (rop != op1) {
+ for (; size < len1; size++) {
+ value = op1[size] + carry;
+ rop[size] = value;
+ carry = value >> BNSBITS;
+ }
+ }
+ else {
+ /* if rop == op1, than just adjust carry */
+ for (; carry && size < len1; size++) {
+ value = op1[size] + carry;
+ rop[size] = value;
+ carry = value >> BNSBITS;
+ }
+ size = len1;
+ }
+ if (carry)
+ rop[size++] = carry;
+
+ return (size);
+}
+
+long
+mp_sub(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
+{
+ long svalue; /* intermediate result */
+ BNS carry; /* carry flag */
+ long size; /* result size */
+
+ /* special case */
+ if (op1 == op2) {
+ rop[0] = 0;
+
+ return (1);
+ }
+
+ /* unroll start of loop */
+ svalue = op1[0] - op2[0];
+ rop[0] = svalue;
+ carry = svalue < 0;
+
+ /* subtracts op2 from op1 */
+ for (size = 1; size < len2; size++) {
+ svalue = (long)(op1[size]) - op2[size] - carry;
+ rop[size] = svalue;
+ carry = svalue < 0;
+ }
+ if (rop != op1) {
+ for (; size < len1; size++) {
+ svalue = op1[size] - carry;
+ rop[size] = svalue;
+ carry = svalue < 0;
+ }
+ }
+ else {
+ /* if rop == op1, than just adjust carry */
+ for (; carry && size < len1; size++) {
+ svalue = op1[size] - carry;
+ rop[size] = svalue;
+ carry = svalue < 0;
+ }
+ size = len1;
+ }
+
+ /* calculate result size */
+ while (size > 1 && rop[size - 1] == 0)
+ --size;
+
+ return (size);
+}
+
+long
+mp_lshift(BNS *rop, BNS *op, BNI len, long shift)
+{
+ long i, size;
+ BNI words, bits; /* how many word and bit shifts */
+
+ words = shift / BNSBITS;
+ bits = shift % BNSBITS;
+ size = len + words;
+
+ if (bits) {
+ BNS hi, lo;
+ BNI carry;
+ int adj;
+
+ for (i = 1, carry = CARRY >> 1; carry; i++, carry >>= 1)
+ if (op[len - 1] & carry)
+ break;
+ adj = (bits + (BNSBITS - i)) / BNSBITS;
+ size += adj;
+
+ lo = hi = op[0];
+ rop[words] = lo << bits;
+ for (i = 1; i < len; i++) {
+ hi = op[i];
+ rop[words + i] = hi << bits | (lo >> (BNSBITS - bits));
+ lo = hi;
+ }
+ if (adj)
+ rop[size - 1] = hi >> (BNSBITS - bits);
+ }
+ else
+ memmove(rop + size - len, op, sizeof(BNS) * len);
+
+ if (words)
+ memset(rop, '\0', sizeof(BNS) * words);
+
+ return (size);
+}
+
+long
+mp_rshift(BNS *rop, BNS *op, BNI len, long shift)
+{
+ int adj = 0;
+ long i, size;
+ BNI words, bits; /* how many word and bit shifts */
+
+ words = shift / BNSBITS;
+ bits = shift % BNSBITS;
+ size = len - words;
+
+ if (bits) {
+ BNS hi, lo;
+ BNI carry;
+
+ for (i = 0, carry = CARRY >> 1; carry; i++, carry >>= 1)
+ if (op[len - 1] & carry)
+ break;
+ adj = (bits + i) / BNSBITS;
+ if (size - adj == 0) {
+ rop[0] = 0;
+
+ return (1);
+ }
+
+ hi = lo = op[words + size - 1];
+ rop[size - 1] = hi >> bits;
+ for (i = size - 2; i >= 0; i--) {
+ lo = op[words + i];
+ rop[i] = (lo >> bits) | (hi << (BNSBITS - bits));
+ hi = lo;
+ }
+ if (adj)
+ rop[0] |= lo << (BNSBITS - bits);
+ }
+ else
+ memmove(rop, op + len - size, size * sizeof(BNS));
+
+ return (size - adj);
+}
+
+ /* rop must be a pointer to len1 + len2 elements
+ * rop cannot be either op1 or op2
+ * rop must be all zeros */
+long
+mp_base_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
+{
+ long i, j; /* counters */
+ BNI value; /* intermediate result */
+ BNS carry; /* carry value */
+ long size = len1 + len2;
+
+ /* simple optimization: first pass does not need to deference rop[i+j] */
+ if (op1[0]) {
+ value = (BNI)(op1[0]) * op2[0];
+ rop[0] = value;
+ carry = (BNS)(value >> BNSBITS);
+ for (j = 1; j < len2; j++) {
+ value = (BNI)(op1[0]) * op2[j] + carry;
+ rop[j] = value;
+ carry = (BNS)(value >> BNSBITS);
+ }
+ rop[j] = carry;
+ }
+
+ /* do the multiplication */
+ for (i = 1; i < len1; i++) {
+ if (op1[i]) {
+ /* unrool loop initialization */
+ value = (BNI)(op1[i]) * op2[0] + rop[i];
+ rop[i] = value;
+ carry = (BNS)(value >> BNSBITS);
+ /* multiply */
+ for (j = 1; j < len2; j++) {
+ value = (BNI)(op1[i]) * op2[j] + rop[i + j] + carry;
+ rop[i + j] = value;
+ carry = (BNS)(value >> BNSBITS);
+ }
+ rop[i + j] = carry;
+ }
+ }
+
+ if (size > 1 && rop[size - 1] == 0)
+ --size;
+
+ return (size);
+}
+
+ /* Karatsuba method
+ * t + ((a0 + a1) (b0 + b1) - t - u) x + ux²
+ * where t = a0b0 and u = a1b1
+ *
+ * Karatsuba method reduces the number of multiplications. Example:
+ * Square a 40 length number
+ * instead of a plain 40*40 = 1600 multiplies/adds, it does:
+ * 20*20+20*20+20*20 = 1200
+ * but since it is recursive, every 20*20=400 is reduced to
+ * 10*10+10*10+10*10=300
+ * and so on.
+ * The multiplication by x and x² is a just a shift, as it is a
+ * power of two, and is implemented below by just writting at the
+ * correct offset */
+long
+mp_karatsuba_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
+{
+ BNI x; /* shift count */
+ BNI la0, la1, lb0, lb1; /* length of a0, a1, b0, and b1 */
+ BNS *t; /* temporary memory for t product */
+ BNS *u; /* temporary memory for u product */
+ BNS *r; /* pointer to rop */
+ long xlen, tlen, ulen;
+
+ /* calculate value of x, that is 2^(BNSBITS*x) */
+ if (len1 >= len2)
+ x = (len1 + 1) >> 1;
+ else
+ x = (len2 + 1) >> 1;
+
+ /* calculate length of operands */
+ la0 = x;
+ la1 = len1 - x;
+ lb0 = x;
+ lb1 = len2 - x;
+
+ /* allocate buffer for t and (a0 + a1) */
+ tlen = la0 + lb0;
+ t = mp_malloc(sizeof(BNS) * tlen);
+
+ /* allocate buffer for u and (b0 + b1) */
+ if (la1 + lb1 < lb0 + lb1 + 1)
+ ulen = lb0 + lb1 + 1;
+ else
+ ulen = la1 + lb1;
+ u = mp_malloc(sizeof(BNS) * ulen);
+
+ /* calculate a0 + a1, store result in t */
+ tlen = mp_add(t, op1, op1 + x, la0, la1);
+
+ /* calculate b0 + b1, store result in u */
+ ulen = mp_add(u, op2, op2 + x, lb0, lb1);
+
+ /* store (a0 + a1) * (b0 + b1) in rop */
+
+ r = rop + x; /* multiplied by 2^(BNSBITS*x) */
+ xlen = mp_mul(r, t, u, tlen, ulen);
+
+ /* must zero t and u memory, this is required for mp_mul */
+
+ /* calculate t = a0 * b0 */
+ tlen = la0 + lb0;
+ memset(t, '\0', sizeof(BNS) * tlen);
+ tlen = mp_mul(t, op1, op2, la0, lb0);
+
+ /* calculate u = a1 * b1 */
+ ulen = la1 + lb1;
+ memset(u, '\0', sizeof(BNS) * ulen);
+ ulen = mp_mul(u, op1 + x, op2 + x, la1, lb1);
+
+ /* subtract t from partial result */
+ xlen = mp_sub(r, r, t, xlen, tlen);
+
+ /* subtract u form partial result */
+ xlen = mp_sub(r, r, u, xlen, ulen);
+
+ /* add ux^2 to partial result */
+
+ r = rop + (x << 1); /* multiplied by x^2 = 2^(BNSBITS*x*2) */
+ xlen = len1 + len2;
+ xlen = mp_add(r, r, u, xlen, ulen);
+
+ /* now add t to final result */
+ xlen = mp_add(rop, rop, t, xlen, tlen);
+
+ mp_free(t);
+ mp_free(u);
+
+ if (xlen > 1 && rop[xlen - 1] == 0)
+ --xlen;
+
+ return (xlen);
+}
+
+ /* Toom method (partially based on GMP documentation)
+ * Evaluation at k = [ 0 1/2 1 2 oo ]
+ * U(x) = (U2k + U1)k + U0
+ * V(x) = (V2k + V1)k + V0
+ * W(x) = U(x)V(x)
+ *
+ * Sample:
+ * 123 * 456
+ *
+ * EVALUATION:
+ * U(0) = (1*0+2)*0+3 => 3
+ * U(1) = 1+(2+3*2)*2 => 17
+ * U(2) = 1+2+3 => 6
+ * U(3) = (1*2+2)*2+3 => 11
+ * U(4) = 1+(2+3*0)*0 => 1
+ *
+ * V(0) = (4*0+5)*0+6 => 6
+ * V(1) = 4+(5+6*2)*2 => 38
+ * V(2) = 4+5+6 => 15
+ * V(3) = (4*2+5)*2+6 => 32
+ * V(4) = 4+(5+6*0)*0 => 4
+ *
+ * U = [ 3 17 6 11 1 ]
+ * V = [ 6 38 15 32 4 ]
+ * W = [ 18 646 90 352 4 ]
+ *
+ * After that, we have:
+ * a = 18 (w0 already known)
+ * b = 16w0 + 8w1 + 4w2 + 2w3 + w4
+ * c = w0 + w1 + w2 + w3 + w4
+ * d = w0 + 2w1 + 4w2 + 8w3 + 16w4
+ * e = 4 (w4 already known)
+ *
+ * INTERPOLATION:
+ * b = b -16a - e (354)
+ * c = c - a - e (68)
+ * d = d - a - 16e (270)
+ *
+ * w = (b + d) - 8c = (10w1+8w2+10w3) - (8w1+8w2+8w3) = 2w1+2w3
+ * w = 2c - w (56)
+ * b = b/2 = 4w1+w+w3
+ * b = b-c = 4w1+w+w3 - w1+w2+w3 = 3w1+w2
+ * c = w/2 (w2 = 28)
+ * b = b-c = 3w1+c - c = 3w1
+ * b = b/3 (w1 = 27)
+ * d = d/2
+ * d = d-b-w = b+w+4w3 - b-w = 4w3
+ * d = d/4 (w3 = 13)
+ *
+ * RESULT:
+ * w4*10^4 + w3*10³ + w2*10² + w1*10 + w0
+ * 40000 + 13000 + 2800 + 270 + 18
+ * 10 is the base where the calculation was done
+ *
+ * This sample uses small numbers, so it does not show the
+ * advantage of the method. But for example (in base 10), when squaring
+ * 123456789012345678901234567890
+ * The normal method would do 30*30=900 multiplications
+ * Karatsuba method would do 15*15*3=675 multiplications
+ * Toom method would do 10*10*5=500 multiplications
+ * Toom method has a larger overhead if compared with Karatsuba method,
+ * due to evaluation and interpolation, so it should be used for larger
+ * numbers, so that the computation time of evaluation/interpolation
+ * would be smaller than the time spent using other methods.
+ *
+ * Note that Karatsuba method can be seen as a special case of
+ * Toom method, i.e:
+ * U1U0 * V1V0
+ * with k = [ 0 1 oo ]
+ * U = [ U0 U1+U0 U1 ]
+ * V = [ V0 V1+V0 V1 ]
+ * W = [ U0*V0 (U1+U0)*(V1+V0) (U1+V1) ]
+ *
+ * w0 = U0*V0
+ * w = (U1+U0)*(V1+V0)
+ * w2 = (U1*V1)
+ *
+ * w1 = w - w0 - w2
+ * w2x² + w1x + w0
+ *
+ * See Knuth's Seminumerical Algorithms for a sample implemention
+ * using 4 stacks and k = [ 0 1 2 3 ... ], based on the size of the
+ * input.
+ */
+long
+mp_toom_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
+{
+ long size, xsize, i;
+ BNI value; /* used in division */
+ BNS carry;
+ BNI x; /* shift count */
+ BNI l1, l2;
+ BNI al, bl, cl, dl, el, Ul[3], Vl[3];
+ BNS *a, *b, *c, *d, *e, *U[3], *V[3];
+
+ /* x is the base i.e. 2^(BNSBITS*x) */
+ x = (len1 + len2 + 4) / 6;
+ l1 = len1 - (x << 1); /* length of remaining piece of op1 */
+ l2 = len2 - (x << 1); /* length of remaining piece of op2 */
+
+ /* allocate memory for storing U and V */
+ U[0] = mp_malloc(sizeof(BNS) * (x + 2));
+ V[0] = mp_malloc(sizeof(BNS) * (x + 2));
+ U[1] = mp_malloc(sizeof(BNS) * (x + 1));
+ V[1] = mp_malloc(sizeof(BNS) * (x + 1));
+ U[2] = mp_malloc(sizeof(BNS) * (x + 2));
+ V[2] = mp_malloc(sizeof(BNS) * (x + 2));
+
+ /* EVALUATE U AND V */
+
+ /* Numbers are in the format U2x²+U1x+U0 and V2x²+V1x+V0 */
+
+ /* U[0] = U2+U1*2+U0*4 */
+
+ /* store U1*2 in U[1], this value is used twice */
+ Ul[1] = mp_lshift(U[1], op1 + x, x, 1);
+
+ /* store U0*4 in U[0] */
+ Ul[0] = mp_lshift(U[0], op1, x, 2);
+ /* add U1*2 to U[0] */
+ Ul[0] = mp_add(U[0], U[0], U[1], Ul[0], Ul[1]);
+ /* add U2 to U[0] */
+ Ul[0] = mp_add(U[0], U[0], op1 + x + x, Ul[0], l1);
+
+ /* U[2] = U2*4+U1*2+U0 */
+
+ /* store U2*4 in U[2] */
+ Ul[2] = mp_lshift(U[2], op1 + x + x, l1, 2);
+ /* add U1*2 to U[2] */
+ Ul[2] = mp_add(U[2], U[2], U[1], Ul[2], Ul[1]);
+ /* add U0 to U[2] */
+ Ul[2] = mp_add(U[2], U[2], op1, Ul[2], x);
+
+ /* U[1] = U2+U1+U0 */
+
+ Ul[1] = mp_add(U[1], op1, op1 + x, x, x);
+ Ul[1] = mp_add(U[1], U[1], op1 + x + x, Ul[1], l1);
+
+
+ /* Evaluate V[x], same code as U[x] */
+ Vl[1] = mp_lshift(V[1], op2 + x, x, 1);
+ Vl[0] = mp_lshift(V[0], op2, x, 2);
+ Vl[0] = mp_add(V[0], V[0], V[1], Vl[0], Vl[1]);
+ Vl[0] = mp_add(V[0], V[0], op2 + x + x, Vl[0], l2);
+ Vl[2] = mp_lshift(V[2], op2 + x + x, l2, 2);
+ Vl[2] = mp_add(V[2], V[2], V[1], Vl[2], Vl[1]);
+ Vl[2] = mp_add(V[2], V[2], op2, Vl[2], x);
+ Vl[1] = mp_add(V[1], op2, op2 + x, x, x);
+ Vl[1] = mp_add(V[1], V[1], op2 + x + x, Vl[1], l2);
+
+
+ /* MULTIPLY U[] AND V[] */
+
+ /* calculate (U2+U1*2+U0*4) * (V2+V1*2+V0*4) */
+ b = mp_calloc(1, sizeof(BNS) * (Ul[0] * Vl[0]));
+ bl = mp_mul(b, U[0], V[0], Ul[0], Vl[0]);
+ mp_free(U[0]);
+ mp_free(V[0]);
+
+ /* calculate (U2+U1+U0) * (V2+V1+V0) */
+ c = mp_calloc(1, sizeof(BNS) * (Ul[1] * Vl[1]));
+ cl = mp_mul(c, U[1], V[1], Ul[1], Vl[1]);
+ mp_free(U[1]);
+ mp_free(V[1]);
+
+ /* calculate (U2*4+U1*2+U0) * (V2*4+V1*2+V0) */
+ d = mp_calloc(1, sizeof(BNS) * (Ul[2] * Vl[2]));
+ dl = mp_mul(d, U[2], V[2], Ul[2], Vl[2]);
+ mp_free(U[2]);
+ mp_free(V[2]);
+
+ /* calculate U0 * V0 */
+ a = mp_calloc(1, sizeof(BNS) * (x + x));
+ al = mp_mul(a, op1, op2, x, x);
+
+ /* calculate U2 * V2 */
+ e = mp_calloc(1, sizeof(BNS) * (l1 + l2));
+ el = mp_mul(e, op1 + x + x, op2 + x + x, l1, l2);
+
+
+ /* INTERPOLATE COEFFICIENTS */
+
+ /* b = b - 16a - e */
+ size = mp_lshift(rop, a, al, 4);
+ bl = mp_sub(b, b, rop, bl, size);
+ bl = mp_sub(b, b, e, bl, el);
+
+ /* c = c - a - e*/
+ cl = mp_sub(c, c, a, cl, al);
+ cl = mp_sub(c, c, e, cl, el);
+
+ /* d = d - a - 16e */
+ dl = mp_sub(d, d, a, dl, al);
+ size = mp_lshift(rop, e, el, 4);
+ dl = mp_sub(d, d, rop, dl, size);
+
+ /* w = (b + d) - 8c */
+ size = mp_add(rop, b, d, bl, dl);
+ xsize = mp_lshift(rop + size, c, cl, 3); /* rop has enough storage */
+ size = mp_sub(rop, rop, rop + size, size, xsize);
+
+ /* w = 2c - w*/
+ xsize = mp_lshift(rop + size, c, cl, 1);
+ size = mp_sub(rop, rop + size, rop, xsize, size);
+
+ /* b = b/2 */
+ bl = mp_rshift(b, b, bl, 1);
+
+ /* b = b - c */
+ bl = mp_sub(b, b, c, bl, cl);
+
+ /* c = w / 2 */
+ cl = mp_rshift(c, rop, size, 1);
+
+ /* b = b - c */
+ bl = mp_sub(b, b, c, bl, cl);
+
+ /* b = b/3 */
+ /* maybe the most expensive calculation */
+ i = bl - 1;
+ value = b[i];
+ b[i] = value / 3;
+ for (--i; i >= 0; i--) {
+ carry = value % 3;
+ value = ((BNI)carry << BNSBITS) + b[i];
+ b[i] = (BNS)(value / 3);
+ }
+
+ /* d = d/2 */
+ dl = mp_rshift(d, d, dl, 1);
+
+ /* d = d - b - w */
+ dl = mp_sub(d, d, b, dl, bl);
+ dl = mp_sub(d, d, rop, dl, size);
+
+ /* d = d/4 */
+ dl = mp_rshift(d, d, dl, 2);
+
+
+ /* STORE RESULT IN ROP */
+ /* first clear memory used as temporary variable w and 8c */
+ memset(rop, '\0', sizeof(BNS) * (len1 + len2));
+
+ i = x * 4;
+ xsize = (len1 + len2) - i;
+ size = mp_add(rop + i, rop + i, e, xsize, el) + i;
+ i = x * 3;
+ xsize = size - i;
+ size = mp_add(rop + i, rop + i, d, xsize, dl) + i;
+ i = x * 2;
+ xsize = size - i;
+ size = mp_add(rop + i, rop + i, c, xsize, cl) + i;
+ i = x;
+ xsize = size - i;
+ size = mp_add(rop + i, rop + i, b, xsize, bl) + i;
+ size = mp_add(rop, rop, a, size, al);
+
+ mp_free(e);
+ mp_free(d);
+ mp_free(c);
+ mp_free(b);
+ mp_free(a);
+
+ if (size > 1 && rop[size - 1] == 0)
+ --size;
+
+ return (size);
+}
+
+long
+mp_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
+{
+ if (len1 < len2)
+ MP_SWAP(op1, op2, len1, len2);
+
+ if (len1 < KARATSUBA || len2 < KARATSUBA)
+ return (mp_base_mul(rop, op1, op2, len1, len2));
+ else if (len1 < TOOM && len2 < TOOM && len2 > ((len1 + 1) >> 1))
+ return (mp_karatsuba_mul(rop, op1, op2, len1, len2));
+ else if (len1 >= TOOM && len2 >= TOOM && (len2 + 2) / 3 == (len1 + 2) / 3)
+ return (mp_toom_mul(rop, op1, op2, len1, len2));
+ else {
+ long xsize, psize, isize;
+ BNS *ptr;
+
+ /* adjust index pointer and estimated size of result */
+ isize = 0;
+ xsize = len1 + len2;
+ mp_mul(rop, op1, op2, len2, len2);
+ /* adjust pointers */
+ len1 -= len2;
+ op1 += len2;
+
+ /* allocate buffer for intermediate multiplications */
+ if (len1 > len2)
+ ptr = mp_calloc(1, sizeof(BNS) * (len2 + len2));
+ else
+ ptr = mp_calloc(1, sizeof(BNS) * (len1 + len2));
+
+ /* loop multiplying len2 size operands at a time */
+ while (len1 >= len2) {
+ isize += len2;
+ psize = mp_mul(ptr, op1, op2, len2, len2);
+ mp_add(rop + isize, rop + isize, ptr, xsize - isize, psize);
+ len1 -= len2;
+ op1 += len2;
+
+ /* multiplication routines require zeroed memory */
+ memset(ptr, '\0', sizeof(BNS) * (MIN(len1, len2) + len2));
+ }
+
+ /* len1 was not a multiple of len2 */
+ if (len1) {
+ isize += len2;
+ psize = mp_mul(ptr, op2, op1, len2, len1);
+ mp_add(rop + isize, rop + isize, ptr, xsize, psize);
+ }
+
+ /* adjust result size */
+ if (rop[xsize - 1] == 0)
+ --xsize;
+
+ mp_free(ptr);
+
+ return (xsize);
+ }
+}