1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
|
/*
* Copyright (c) 2002 by The XFree86 Project, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the XFree86 Project shall
* not be used in advertising or otherwise to promote the sale, use or other
* dealings in this Software without prior written authorization from the
* XFree86 Project.
*
* Author: Paulo César Pereira de Andrade
*/
/* $XFree86: xc/programs/xedit/lisp/mp/mp.c,v 1.2 2002/11/08 08:01:00 paulo Exp $ */
#include "mp.h"
/*
* TODO:
* o Optimize squaring
* o Write better division code and move from mpi.c to here
* o Make multiplication code don't required memory to be zeroed
* + The first step is easy, just multiply the low word,
* then the high word, that may overlap with the result
* of the first multiply (in case of carry), and then
* just make sure carry is properly propagated in the
* subsequent multiplications.
* + Some code needs also to be rewritten because some
* intermediate addition code in mp_mul, mp_karatsuba_mul,
* and mp_toom_mul is assuming the memory is zeroed.
*/
/*
* Prototypes
*/
/* out of memory handler */
static void mp_outmem(void);
/* memory allocation fallback functions */
static void *_mp_malloc(size_t);
static void *_mp_calloc(size_t, size_t);
static void *_mp_realloc(void*, size_t);
static void _mp_free(void*);
/*
* Initialization
*/
static mp_malloc_fun __mp_malloc = _mp_malloc;
static mp_calloc_fun __mp_calloc = _mp_calloc;
static mp_realloc_fun __mp_realloc = _mp_realloc;
static mp_free_fun __mp_free = _mp_free;
/*
* Implementation
*/
static void
mp_outmem(void)
{
fprintf(stderr, "out of memory in MP library.\n");
exit(1);
}
static void *
_mp_malloc(size_t size)
{
return (malloc(size));
}
void *
mp_malloc(size_t size)
{
void *pointer = (*__mp_malloc)(size);
if (pointer == NULL)
mp_outmem();
return (pointer);
}
mp_malloc_fun
mp_set_malloc(mp_malloc_fun fun)
{
mp_malloc_fun old = __mp_malloc;
__mp_malloc = fun;
return (old);
}
static void *
_mp_calloc(size_t nmemb, size_t size)
{
return (calloc(nmemb, size));
}
void *
mp_calloc(size_t nmemb, size_t size)
{
void *pointer = (*__mp_calloc)(nmemb, size);
if (pointer == NULL)
mp_outmem();
return (pointer);
}
mp_calloc_fun
mp_set_calloc(mp_calloc_fun fun)
{
mp_calloc_fun old = __mp_calloc;
__mp_calloc = fun;
return (old);
}
static void *
_mp_realloc(void *old, size_t size)
{
return (realloc(old, size));
}
void *
mp_realloc(void *old, size_t size)
{
void *pointer = (*__mp_realloc)(old, size);
if (pointer == NULL)
mp_outmem();
return (pointer);
}
mp_realloc_fun
mp_set_realloc(mp_realloc_fun fun)
{
mp_realloc_fun old = __mp_realloc;
__mp_realloc = fun;
return (old);
}
static void
_mp_free(void *pointer)
{
free(pointer);
}
void
mp_free(void *pointer)
{
(*__mp_free)(pointer);
}
mp_free_fun
mp_set_free(mp_free_fun fun)
{
mp_free_fun old = __mp_free;
__mp_free = fun;
return (old);
}
long
mp_add(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
BNI value; /* intermediate result */
BNS carry; /* carry flag */
long size; /* result size */
if (len1 < len2)
MP_SWAP(op1, op2, len1, len2);
/* unroll start of loop */
value = (BNI)op1[0] + op2[0];
rop[0] = value;
carry = value >> BNSBITS;
/* add op1 and op2 */
for (size = 1; size < len2; size++) {
value = (BNI)op1[size] + op2[size] + carry;
rop[size] = value;
carry = value >> BNSBITS;
}
if (rop != op1) {
for (; size < len1; size++) {
value = (BNI)op1[size] + carry;
rop[size] = value;
carry = value >> BNSBITS;
}
}
else {
/* if rop == op1, than just adjust carry */
for (; carry && size < len1; size++) {
value = (BNI)op1[size] + carry;
rop[size] = value;
carry = value >> BNSBITS;
}
size = len1;
}
if (carry)
rop[size++] = carry;
return (size);
}
long
mp_sub(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
long svalue; /* intermediate result */
BNS carry; /* carry flag */
long size; /* result size */
/* special case */
if (op1 == op2) {
rop[0] = 0;
return (1);
}
/* unroll start of loop */
svalue = (long)op1[0] - op2[0];
rop[0] = svalue;
carry = svalue < 0;
/* subtracts op2 from op1 */
for (size = 1; size < len2; size++) {
svalue = (long)(op1[size]) - op2[size] - carry;
rop[size] = svalue;
carry = svalue < 0;
}
if (rop != op1) {
for (; size < len1; size++) {
svalue = op1[size] - carry;
rop[size] = svalue;
carry = svalue < 0;
}
}
else {
/* if rop == op1, than just adjust carry */
for (; carry && size < len1; size++) {
svalue = (long)op1[size] - carry;
rop[size] = svalue;
carry = svalue < 0;
}
size = len1;
}
/* calculate result size */
while (size > 1 && rop[size - 1] == 0)
--size;
return (size);
}
long
mp_lshift(BNS *rop, BNS *op, BNI len, long shift)
{
long i, size;
BNI words, bits; /* how many word and bit shifts */
words = shift / BNSBITS;
bits = shift % BNSBITS;
size = len + words;
if (bits) {
BNS hi, lo;
BNI carry;
int adj;
for (i = 1, carry = CARRY >> 1; carry; i++, carry >>= 1)
if (op[len - 1] & carry)
break;
adj = (bits + (BNSBITS - i)) / BNSBITS;
size += adj;
lo = hi = op[0];
rop[words] = lo << bits;
for (i = 1; i < len; i++) {
hi = op[i];
rop[words + i] = hi << bits | (lo >> (BNSBITS - bits));
lo = hi;
}
if (adj)
rop[size - 1] = hi >> (BNSBITS - bits);
}
else
memmove(rop + size - len, op, sizeof(BNS) * len);
if (words)
memset(rop, '\0', sizeof(BNS) * words);
return (size);
}
long
mp_rshift(BNS *rop, BNS *op, BNI len, long shift)
{
int adj = 0;
long i, size;
BNI words, bits; /* how many word and bit shifts */
words = shift / BNSBITS;
bits = shift % BNSBITS;
size = len - words;
if (bits) {
BNS hi, lo;
BNI carry;
for (i = 0, carry = CARRY >> 1; carry; i++, carry >>= 1)
if (op[len - 1] & carry)
break;
adj = (bits + i) / BNSBITS;
if (size - adj == 0) {
rop[0] = 0;
return (1);
}
hi = lo = op[words + size - 1];
rop[size - 1] = hi >> bits;
for (i = size - 2; i >= 0; i--) {
lo = op[words + i];
rop[i] = (lo >> bits) | (hi << (BNSBITS - bits));
hi = lo;
}
if (adj)
rop[0] |= lo << (BNSBITS - bits);
}
else
memmove(rop, op + len - size, size * sizeof(BNS));
return (size - adj);
}
/* rop must be a pointer to len1 + len2 elements
* rop cannot be either op1 or op2
* rop must be all zeros */
long
mp_base_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
long i, j; /* counters */
BNI value; /* intermediate result */
BNS carry; /* carry value */
long size = len1 + len2;
/* simple optimization: first pass does not need to deference rop[i+j] */
if (op1[0]) {
value = (BNI)(op1[0]) * op2[0];
rop[0] = value;
carry = (BNS)(value >> BNSBITS);
for (j = 1; j < len2; j++) {
value = (BNI)(op1[0]) * op2[j] + carry;
rop[j] = value;
carry = (BNS)(value >> BNSBITS);
}
rop[j] = carry;
}
/* do the multiplication */
for (i = 1; i < len1; i++) {
if (op1[i]) {
/* unrool loop initialization */
value = (BNI)(op1[i]) * op2[0] + rop[i];
rop[i] = value;
carry = (BNS)(value >> BNSBITS);
/* multiply */
for (j = 1; j < len2; j++) {
value = (BNI)(op1[i]) * op2[j] + rop[i + j] + carry;
rop[i + j] = value;
carry = (BNS)(value >> BNSBITS);
}
rop[i + j] = carry;
}
}
if (size > 1 && rop[size - 1] == 0)
--size;
return (size);
}
/* Karatsuba method
* t + ((a0 + a1) (b0 + b1) - t - u) x + ux²
* where t = a0b0 and u = a1b1
*
* Karatsuba method reduces the number of multiplications. Example:
* Square a 40 length number
* instead of a plain 40*40 = 1600 multiplies/adds, it does:
* 20*20+20*20+20*20 = 1200
* but since it is recursive, every 20*20=400 is reduced to
* 10*10+10*10+10*10=300
* and so on.
* The multiplication by x and x² is a just a shift, as it is a
* power of two, and is implemented below by just writting at the
* correct offset */
long
mp_karatsuba_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
BNI x; /* shift count */
BNI la0, la1, lb0, lb1; /* length of a0, a1, b0, and b1 */
BNS *t; /* temporary memory for t product */
BNS *u; /* temporary memory for u product */
BNS *r; /* pointer to rop */
long xlen, tlen, ulen;
/* calculate value of x, that is 2^(BNSBITS*x) */
if (len1 >= len2)
x = (len1 + 1) >> 1;
else
x = (len2 + 1) >> 1;
/* calculate length of operands */
la0 = x;
la1 = len1 - x;
lb0 = x;
lb1 = len2 - x;
/* allocate buffer for t and (a0 + a1) */
tlen = la0 + lb0;
t = mp_malloc(sizeof(BNS) * tlen);
/* allocate buffer for u and (b0 + b1) */
if (la1 + lb1 < lb0 + lb1 + 1)
ulen = lb0 + lb1 + 1;
else
ulen = la1 + lb1;
u = mp_malloc(sizeof(BNS) * ulen);
/* calculate a0 + a1, store result in t */
tlen = mp_add(t, op1, op1 + x, la0, la1);
/* calculate b0 + b1, store result in u */
ulen = mp_add(u, op2, op2 + x, lb0, lb1);
/* store (a0 + a1) * (b0 + b1) in rop */
r = rop + x; /* multiplied by 2^(BNSBITS*x) */
xlen = mp_mul(r, t, u, tlen, ulen);
/* must zero t and u memory, this is required for mp_mul */
/* calculate t = a0 * b0 */
tlen = la0 + lb0;
memset(t, '\0', sizeof(BNS) * tlen);
tlen = mp_mul(t, op1, op2, la0, lb0);
/* calculate u = a1 * b1 */
ulen = la1 + lb1;
memset(u, '\0', sizeof(BNS) * ulen);
ulen = mp_mul(u, op1 + x, op2 + x, la1, lb1);
/* subtract t from partial result */
xlen = mp_sub(r, r, t, xlen, tlen);
/* subtract u form partial result */
xlen = mp_sub(r, r, u, xlen, ulen);
/* add ux^2 to partial result */
r = rop + (x << 1); /* multiplied by x^2 = 2^(BNSBITS*x*2) */
xlen = len1 + len2;
xlen = mp_add(r, r, u, xlen, ulen);
/* now add t to final result */
xlen = mp_add(rop, rop, t, xlen, tlen);
mp_free(t);
mp_free(u);
if (xlen > 1 && rop[xlen - 1] == 0)
--xlen;
return (xlen);
}
/* Toom method (partially based on GMP documentation)
* Evaluation at k = [ 0 1/2 1 2 oo ]
* U(x) = (U2k + U1)k + U0
* V(x) = (V2k + V1)k + V0
* W(x) = U(x)V(x)
*
* Sample:
* 123 * 456
*
* EVALUATION:
* U(0) = (1*0+2)*0+3 => 3
* U(1) = 1+(2+3*2)*2 => 17
* U(2) = 1+2+3 => 6
* U(3) = (1*2+2)*2+3 => 11
* U(4) = 1+(2+3*0)*0 => 1
*
* V(0) = (4*0+5)*0+6 => 6
* V(1) = 4+(5+6*2)*2 => 38
* V(2) = 4+5+6 => 15
* V(3) = (4*2+5)*2+6 => 32
* V(4) = 4+(5+6*0)*0 => 4
*
* U = [ 3 17 6 11 1 ]
* V = [ 6 38 15 32 4 ]
* W = [ 18 646 90 352 4 ]
*
* After that, we have:
* a = 18 (w0 already known)
* b = 16w0 + 8w1 + 4w2 + 2w3 + w4
* c = w0 + w1 + w2 + w3 + w4
* d = w0 + 2w1 + 4w2 + 8w3 + 16w4
* e = 4 (w4 already known)
*
* INTERPOLATION:
* b = b -16a - e (354)
* c = c - a - e (68)
* d = d - a - 16e (270)
*
* w = (b + d) - 8c = (10w1+8w2+10w3) - (8w1+8w2+8w3) = 2w1+2w3
* w = 2c - w (56)
* b = b/2 = 4w1+w+w3
* b = b-c = 4w1+w+w3 - w1+w2+w3 = 3w1+w2
* c = w/2 (w2 = 28)
* b = b-c = 3w1+c - c = 3w1
* b = b/3 (w1 = 27)
* d = d/2
* d = d-b-w = b+w+4w3 - b-w = 4w3
* d = d/4 (w3 = 13)
*
* RESULT:
* w4*10^4 + w3*10³ + w2*10² + w1*10 + w0
* 40000 + 13000 + 2800 + 270 + 18
* 10 is the base where the calculation was done
*
* This sample uses small numbers, so it does not show the
* advantage of the method. But for example (in base 10), when squaring
* 123456789012345678901234567890
* The normal method would do 30*30=900 multiplications
* Karatsuba method would do 15*15*3=675 multiplications
* Toom method would do 10*10*5=500 multiplications
* Toom method has a larger overhead if compared with Karatsuba method,
* due to evaluation and interpolation, so it should be used for larger
* numbers, so that the computation time of evaluation/interpolation
* would be smaller than the time spent using other methods.
*
* Note that Karatsuba method can be seen as a special case of
* Toom method, i.e:
* U1U0 * V1V0
* with k = [ 0 1 oo ]
* U = [ U0 U1+U0 U1 ]
* V = [ V0 V1+V0 V1 ]
* W = [ U0*V0 (U1+U0)*(V1+V0) (U1+V1) ]
*
* w0 = U0*V0
* w = (U1+U0)*(V1+V0)
* w2 = (U1*V1)
*
* w1 = w - w0 - w2
* w2x² + w1x + w0
*
* See Knuth's Seminumerical Algorithms for a sample implemention
* using 4 stacks and k = [ 0 1 2 3 ... ], based on the size of the
* input.
*/
long
mp_toom_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
long size, xsize, i;
BNI value; /* used in division */
BNS carry;
BNI x; /* shift count */
BNI l1, l2;
BNI al, bl, cl, dl, el, Ul[3], Vl[3];
BNS *a, *b, *c, *d, *e, *U[3], *V[3];
/* x is the base i.e. 2^(BNSBITS*x) */
x = (len1 + len2 + 4) / 6;
l1 = len1 - (x << 1); /* length of remaining piece of op1 */
l2 = len2 - (x << 1); /* length of remaining piece of op2 */
/* allocate memory for storing U and V */
U[0] = mp_malloc(sizeof(BNS) * (x + 2));
V[0] = mp_malloc(sizeof(BNS) * (x + 2));
U[1] = mp_malloc(sizeof(BNS) * (x + 1));
V[1] = mp_malloc(sizeof(BNS) * (x + 1));
U[2] = mp_malloc(sizeof(BNS) * (x + 2));
V[2] = mp_malloc(sizeof(BNS) * (x + 2));
/* EVALUATE U AND V */
/* Numbers are in the format U2x²+U1x+U0 and V2x²+V1x+V0 */
/* U[0] = U2+U1*2+U0*4 */
/* store U1*2 in U[1], this value is used twice */
Ul[1] = mp_lshift(U[1], op1 + x, x, 1);
/* store U0*4 in U[0] */
Ul[0] = mp_lshift(U[0], op1, x, 2);
/* add U1*2 to U[0] */
Ul[0] = mp_add(U[0], U[0], U[1], Ul[0], Ul[1]);
/* add U2 to U[0] */
Ul[0] = mp_add(U[0], U[0], op1 + x + x, Ul[0], l1);
/* U[2] = U2*4+U1*2+U0 */
/* store U2*4 in U[2] */
Ul[2] = mp_lshift(U[2], op1 + x + x, l1, 2);
/* add U1*2 to U[2] */
Ul[2] = mp_add(U[2], U[2], U[1], Ul[2], Ul[1]);
/* add U0 to U[2] */
Ul[2] = mp_add(U[2], U[2], op1, Ul[2], x);
/* U[1] = U2+U1+U0 */
Ul[1] = mp_add(U[1], op1, op1 + x, x, x);
Ul[1] = mp_add(U[1], U[1], op1 + x + x, Ul[1], l1);
/* Evaluate V[x], same code as U[x] */
Vl[1] = mp_lshift(V[1], op2 + x, x, 1);
Vl[0] = mp_lshift(V[0], op2, x, 2);
Vl[0] = mp_add(V[0], V[0], V[1], Vl[0], Vl[1]);
Vl[0] = mp_add(V[0], V[0], op2 + x + x, Vl[0], l2);
Vl[2] = mp_lshift(V[2], op2 + x + x, l2, 2);
Vl[2] = mp_add(V[2], V[2], V[1], Vl[2], Vl[1]);
Vl[2] = mp_add(V[2], V[2], op2, Vl[2], x);
Vl[1] = mp_add(V[1], op2, op2 + x, x, x);
Vl[1] = mp_add(V[1], V[1], op2 + x + x, Vl[1], l2);
/* MULTIPLY U[] AND V[] */
/* calculate (U2+U1*2+U0*4) * (V2+V1*2+V0*4) */
b = mp_calloc(1, sizeof(BNS) * (Ul[0] * Vl[0]));
bl = mp_mul(b, U[0], V[0], Ul[0], Vl[0]);
mp_free(U[0]);
mp_free(V[0]);
/* calculate (U2+U1+U0) * (V2+V1+V0) */
c = mp_calloc(1, sizeof(BNS) * (Ul[1] * Vl[1]));
cl = mp_mul(c, U[1], V[1], Ul[1], Vl[1]);
mp_free(U[1]);
mp_free(V[1]);
/* calculate (U2*4+U1*2+U0) * (V2*4+V1*2+V0) */
d = mp_calloc(1, sizeof(BNS) * (Ul[2] * Vl[2]));
dl = mp_mul(d, U[2], V[2], Ul[2], Vl[2]);
mp_free(U[2]);
mp_free(V[2]);
/* calculate U0 * V0 */
a = mp_calloc(1, sizeof(BNS) * (x + x));
al = mp_mul(a, op1, op2, x, x);
/* calculate U2 * V2 */
e = mp_calloc(1, sizeof(BNS) * (l1 + l2));
el = mp_mul(e, op1 + x + x, op2 + x + x, l1, l2);
/* INTERPOLATE COEFFICIENTS */
/* b = b - 16a - e */
size = mp_lshift(rop, a, al, 4);
bl = mp_sub(b, b, rop, bl, size);
bl = mp_sub(b, b, e, bl, el);
/* c = c - a - e*/
cl = mp_sub(c, c, a, cl, al);
cl = mp_sub(c, c, e, cl, el);
/* d = d - a - 16e */
dl = mp_sub(d, d, a, dl, al);
size = mp_lshift(rop, e, el, 4);
dl = mp_sub(d, d, rop, dl, size);
/* w = (b + d) - 8c */
size = mp_add(rop, b, d, bl, dl);
xsize = mp_lshift(rop + size, c, cl, 3); /* rop has enough storage */
size = mp_sub(rop, rop, rop + size, size, xsize);
/* w = 2c - w*/
xsize = mp_lshift(rop + size, c, cl, 1);
size = mp_sub(rop, rop + size, rop, xsize, size);
/* b = b/2 */
bl = mp_rshift(b, b, bl, 1);
/* b = b - c */
bl = mp_sub(b, b, c, bl, cl);
/* c = w / 2 */
cl = mp_rshift(c, rop, size, 1);
/* b = b - c */
bl = mp_sub(b, b, c, bl, cl);
/* b = b/3 */
/* maybe the most expensive calculation */
i = bl - 1;
value = b[i];
b[i] = value / 3;
for (--i; i >= 0; i--) {
carry = value % 3;
value = ((BNI)carry << BNSBITS) + b[i];
b[i] = (BNS)(value / 3);
}
/* d = d/2 */
dl = mp_rshift(d, d, dl, 1);
/* d = d - b - w */
dl = mp_sub(d, d, b, dl, bl);
dl = mp_sub(d, d, rop, dl, size);
/* d = d/4 */
dl = mp_rshift(d, d, dl, 2);
/* STORE RESULT IN ROP */
/* first clear memory used as temporary variable w and 8c */
memset(rop, '\0', sizeof(BNS) * (len1 + len2));
i = x * 4;
xsize = (len1 + len2) - i;
size = mp_add(rop + i, rop + i, e, xsize, el) + i;
i = x * 3;
xsize = size - i;
size = mp_add(rop + i, rop + i, d, xsize, dl) + i;
i = x * 2;
xsize = size - i;
size = mp_add(rop + i, rop + i, c, xsize, cl) + i;
i = x;
xsize = size - i;
size = mp_add(rop + i, rop + i, b, xsize, bl) + i;
size = mp_add(rop, rop, a, size, al);
mp_free(e);
mp_free(d);
mp_free(c);
mp_free(b);
mp_free(a);
if (size > 1 && rop[size - 1] == 0)
--size;
return (size);
}
long
mp_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
if (len1 < len2)
MP_SWAP(op1, op2, len1, len2);
if (len1 < KARATSUBA || len2 < KARATSUBA)
return (mp_base_mul(rop, op1, op2, len1, len2));
else if (len1 < TOOM && len2 < TOOM && len2 > ((len1 + 1) >> 1))
return (mp_karatsuba_mul(rop, op1, op2, len1, len2));
else if (len1 >= TOOM && len2 >= TOOM && (len2 + 2) / 3 == (len1 + 2) / 3)
return (mp_toom_mul(rop, op1, op2, len1, len2));
else {
long xsize, psize, isize;
BNS *ptr;
/* adjust index pointer and estimated size of result */
isize = 0;
xsize = len1 + len2;
mp_mul(rop, op1, op2, len2, len2);
/* adjust pointers */
len1 -= len2;
op1 += len2;
/* allocate buffer for intermediate multiplications */
if (len1 > len2)
ptr = mp_calloc(1, sizeof(BNS) * (len2 + len2));
else
ptr = mp_calloc(1, sizeof(BNS) * (len1 + len2));
/* loop multiplying len2 size operands at a time */
while (len1 >= len2) {
isize += len2;
psize = mp_mul(ptr, op1, op2, len2, len2);
mp_add(rop + isize, rop + isize, ptr, xsize - isize, psize);
len1 -= len2;
op1 += len2;
/* multiplication routines require zeroed memory */
memset(ptr, '\0', sizeof(BNS) * (MIN(len1, len2) + len2));
}
/* len1 was not a multiple of len2 */
if (len1) {
isize += len2;
psize = mp_mul(ptr, op2, op1, len2, len1);
mp_add(rop + isize, rop + isize, ptr, xsize, psize);
}
/* adjust result size */
if (rop[xsize - 1] == 0)
--xsize;
mp_free(ptr);
return (xsize);
}
}
|