summaryrefslogtreecommitdiff
path: root/src/Type1/arith.c
blob: f09c0d3599504e0d52a64fd60bf71d4c0eb0d9af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/* $Xorg: arith.c,v 1.3 2000/08/17 19:46:29 cpqbld Exp $ */
/* Copyright International Business Machines, Corp. 1991
 * All Rights Reserved
 * Copyright Lexmark International, Inc. 1991
 * All Rights Reserved
 *
 * License to use, copy, modify, and distribute this software and its
 * documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appear in all copies and that
 * both that copyright notice and this permission notice appear in
 * supporting documentation, and that the name of IBM or Lexmark not be
 * used in advertising or publicity pertaining to distribution of the
 * software without specific, written prior permission.
 *
 * IBM AND LEXMARK PROVIDE THIS SOFTWARE "AS IS", WITHOUT ANY WARRANTIES OF
 * ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY
 * IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
 * AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.  THE ENTIRE RISK AS TO THE
 * QUALITY AND PERFORMANCE OF THE SOFTWARE, INCLUDING ANY DUTY TO SUPPORT
 * OR MAINTAIN, BELONGS TO THE LICENSEE.  SHOULD ANY PORTION OF THE
 * SOFTWARE PROVE DEFECTIVE, THE LICENSEE (NOT IBM OR LEXMARK) ASSUMES THE
 * ENTIRE COST OF ALL SERVICING, REPAIR AND CORRECTION.  IN NO EVENT SHALL
 * IBM OR LEXMARK BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
 * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
 * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
 * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 * THIS SOFTWARE.
 */
/* $XFree86: xc/lib/font/Type1/arith.c,v 1.6tsi Exp $ */

 /* ARITH    CWEB         V0006 ********                             */
/*
:h1.ARITH Module - Portable Module for Multiple Precision Fixed Point Arithmetic
 
This module provides division and multiplication of 64-bit fixed point
numbers.  (To be more precise, the module works on numbers that take
two 'longs' to store.  That is almost always equivalent to saying 64-bit
numbers.)
 
Note: it is frequently easy and desirable to recode these functions in
assembly language for the particular processor being used, because
assembly language, unlike C, will have 64-bit multiply products and
64-bit dividends.  This module is offered as a portable version.
 
&author. Jeffrey B. Lotspiech (lotspiech@almaden.ibm.com) and Sten F. Andler
 
 
:h3.Include Files
 
The included files are:
*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "objects.h"
#include "spaces.h"
#include "arith.h"

 
/*
:h3.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
Reference for all algorithms:  Donald E. Knuth, "The Art of Computer
Programming, Volume 2, Semi-Numerical Algorithms," Addison-Wesley Co.,
Massachusetts, 1969, pp. 229-279.
 
Knuth talks about a 'digit' being an arbitrary sized unit and a number
being a sequence of digits.  We'll take a digit to be a 'short'.
The following assumption must be valid for these algorithms to work:
:ol.
:li.A 'long' is two 'short's.
:eol.
The following code is INDEPENDENT of:
:ol.
:li.The actual size of a short.
:li.Whether shorts and longs are stored most significant byte
first or least significant byte first.
:eol.
 
SHORTSIZE is the number of bits in a short; LONGSIZE is the number of
bits in a long; MAXSHORT is the maximum unsigned short:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
ASSEMBLE concatenates two shorts to form a long:
*/
#define     ASSEMBLE(hi,lo)   ((((unsigned long)hi)<<SHORTSIZE)+(lo))
/*
HIGHDIGIT extracts the most significant short from a long; LOWDIGIT
extracts the least significant short from a long:
*/
#define     HIGHDIGIT(u)      ((u)>>SHORTSIZE)
#define     LOWDIGIT(u)       ((u)&MAXSHORT)
 
/*
SIGNBITON tests the high order bit of a long 'w':
*/
#define    SIGNBITON(w)   (((long)w)<0)
 
/*SHARED LINE(S) ORIGINATED HERE*/
 
/*
:h2.Double Long Arithmetic
 
:h3.DLmult() - Multiply Two Longs to Yield a Double Long
 
The two multiplicands must be positive.
*/
 
static void 
DLmult(doublelong *product, unsigned long u, unsigned long v)
{
#ifdef LONG64
/* printf("DLmult(? ?, %lx, %lx)\n", u, v); */
    *product = u*v;
/* printf("DLmult returns %lx\n", *product); */
#else
  register unsigned long u1, u2; /* the digits of u */
  register unsigned long v1, v2; /* the digits of v */
  register unsigned int w1, w2, w3, w4; /* the digits of w */
  register unsigned long t; /* temporary variable */
/* printf("DLmult(? ?, %x, %x)\n", u, v); */
  u1 = HIGHDIGIT(u);
  u2 = LOWDIGIT(u);
  v1 = HIGHDIGIT(v);
  v2 = LOWDIGIT(v);
 
  if (v2 == 0) w4 = w3 = w2 = 0;
  else
    {
    t = u2 * v2;
    w4 = LOWDIGIT(t);
    t = u1 * v2 + HIGHDIGIT(t);
    w3 = LOWDIGIT(t);
    w2 = HIGHDIGIT(t);
    }
 
  if (v1 == 0) w1 = 0;
  else
    {
    t = u2 * v1 + w3;
    w3 = LOWDIGIT(t);
    t = u1 * v1 + w2 + HIGHDIGIT(t);
    w2 = LOWDIGIT(t);
    w1 = HIGHDIGIT(t);
    }
 
  product->high = ASSEMBLE(w1, w2);
  product->low  = ASSEMBLE(w3, w4);
#endif /* LONG64 else */
}
 
/*
:h3.DLrightshift() - Macro to Shift Double Long Right by N
*/
 
/*SHARED LINE(S) ORIGINATED HERE*/
 
/*
:h2.Fractional Pel Arithmetic
*/
/*
:h3.FPmult() - Multiply Two Fractional Pel Values
 
This funtion first calculates w = u * v to "doublelong" precision.
It then shifts w right by FRACTBITS bits, and checks that no
overflow will occur when the resulting value is passed back as
a fractpel.
*/
 
fractpel 
FPmult(fractpel u, fractpel v)
{
  doublelong w;
  register int negative = FALSE; /* sign flag */
#ifdef LONG64
  register fractpel ret;
#endif
 
  if ((u == 0) || (v == 0)) return (0);
 
 
  if (u < 0) {u = -u; negative = TRUE;}
  if (v < 0) {v = -v; negative = !negative;}
 
  if (u == TOFRACTPEL(1)) return ((negative) ? -v : v);
  if (v == TOFRACTPEL(1)) return ((negative) ? -u : u);
 
  DLmult(&w, u, v);
  DLrightshift(w, FRACTBITS);
#ifndef LONG64
  if (w.high != 0 || SIGNBITON(w.low)) {
        w.low = TOFRACTPEL(MAXSHORT);
  }
 
  return ((negative) ? -w.low : w.low);
#else
  if (w & 0xffffffff80000000L ) {
        ret = TOFRACTPEL(MAXSHORT);
  }
  else
        ret = (fractpel)w;
 
  return ((negative) ? -ret : ret);
#endif
}