diff options
author | Theo Buehler <tb@cvs.openbsd.org> | 2021-04-20 17:38:03 +0000 |
---|---|---|
committer | Theo Buehler <tb@cvs.openbsd.org> | 2021-04-20 17:38:03 +0000 |
commit | 35d10c1fd9772e9cb57842876e23f1b5aa6bb3b3 (patch) | |
tree | 537a3dbdf771ef9e9b91bcf65ae83e843b30b46c | |
parent | b865d25575023451abc9c66364356beeb597911c (diff) |
Fix indent of EC_METHODs as requested by jsing.
While there zap trailing whitespace from a KNF approximation gone wrong.
-rw-r--r-- | lib/libcrypto/ec/ecp_mont.c | 32 | ||||
-rw-r--r-- | lib/libcrypto/ec/ecp_nist.c | 20 | ||||
-rw-r--r-- | lib/libcrypto/ec/ecp_nistp224.c | 72 | ||||
-rw-r--r-- | lib/libcrypto/ec/ecp_nistp256.c | 110 | ||||
-rw-r--r-- | lib/libcrypto/ec/ecp_nistp521.c | 84 | ||||
-rw-r--r-- | lib/libcrypto/ec/ecp_smpl.c | 66 |
6 files changed, 192 insertions, 192 deletions
diff --git a/lib/libcrypto/ec/ecp_mont.c b/lib/libcrypto/ec/ecp_mont.c index 7160692e9e3..f371e3ec8f8 100644 --- a/lib/libcrypto/ec/ecp_mont.c +++ b/lib/libcrypto/ec/ecp_mont.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ecp_mont.c,v 1.18 2021/04/20 17:28:18 tb Exp $ */ +/* $OpenBSD: ecp_mont.c,v 1.19 2021/04/20 17:38:02 tb Exp $ */ /* * Originally written by Bodo Moeller for the OpenSSL project. */ @@ -80,20 +80,20 @@ EC_GFp_mont_method(void) .group_get_curve = ec_GFp_simple_group_get_curve, .group_get_degree = ec_GFp_simple_group_get_degree, .group_check_discriminant = - ec_GFp_simple_group_check_discriminant, + ec_GFp_simple_group_check_discriminant, .point_init = ec_GFp_simple_point_init, .point_finish = ec_GFp_simple_point_finish, .point_clear_finish = ec_GFp_simple_point_clear_finish, .point_copy = ec_GFp_simple_point_copy, .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, .point_set_Jprojective_coordinates = - ec_GFp_simple_set_Jprojective_coordinates, + ec_GFp_simple_set_Jprojective_coordinates, .point_get_Jprojective_coordinates = - ec_GFp_simple_get_Jprojective_coordinates, + ec_GFp_simple_get_Jprojective_coordinates, .point_set_affine_coordinates = - ec_GFp_simple_point_set_affine_coordinates, + ec_GFp_simple_point_set_affine_coordinates, .point_get_affine_coordinates = - ec_GFp_simple_point_get_affine_coordinates, + ec_GFp_simple_point_get_affine_coordinates, .add = ec_GFp_simple_add, .dbl = ec_GFp_simple_dbl, .invert = ec_GFp_simple_invert, @@ -117,7 +117,7 @@ EC_GFp_mont_method(void) } -int +int ec_GFp_mont_group_init(EC_GROUP * group) { int ok; @@ -129,7 +129,7 @@ ec_GFp_mont_group_init(EC_GROUP * group) } -void +void ec_GFp_mont_group_finish(EC_GROUP * group) { BN_MONT_CTX_free(group->field_data1); @@ -140,7 +140,7 @@ ec_GFp_mont_group_finish(EC_GROUP * group) } -void +void ec_GFp_mont_group_clear_finish(EC_GROUP * group) { BN_MONT_CTX_free(group->field_data1); @@ -151,7 +151,7 @@ ec_GFp_mont_group_clear_finish(EC_GROUP * group) } -int +int ec_GFp_mont_group_copy(EC_GROUP * dest, const EC_GROUP * src) { BN_MONT_CTX_free(dest->field_data1); @@ -185,7 +185,7 @@ ec_GFp_mont_group_copy(EC_GROUP * dest, const EC_GROUP * src) } -int +int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { @@ -237,7 +237,7 @@ ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, } -int +int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { @@ -249,7 +249,7 @@ ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, } -int +int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { @@ -261,7 +261,7 @@ ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, } -int +int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { @@ -273,7 +273,7 @@ ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, } -int +int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { @@ -285,7 +285,7 @@ ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, } -int +int ec_GFp_mont_field_set_to_one(const EC_GROUP *group, BIGNUM *r, BN_CTX *ctx) { if (group->field_data2 == NULL) { diff --git a/lib/libcrypto/ec/ecp_nist.c b/lib/libcrypto/ec/ecp_nist.c index c34c708025d..14ebe7d126e 100644 --- a/lib/libcrypto/ec/ecp_nist.c +++ b/lib/libcrypto/ec/ecp_nist.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ecp_nist.c,v 1.16 2021/04/20 17:28:18 tb Exp $ */ +/* $OpenBSD: ecp_nist.c,v 1.17 2021/04/20 17:38:02 tb Exp $ */ /* * Written by Nils Larsch for the OpenSSL project. */ @@ -81,20 +81,20 @@ EC_GFp_nist_method(void) .group_get_curve = ec_GFp_simple_group_get_curve, .group_get_degree = ec_GFp_simple_group_get_degree, .group_check_discriminant = - ec_GFp_simple_group_check_discriminant, + ec_GFp_simple_group_check_discriminant, .point_init = ec_GFp_simple_point_init, .point_finish = ec_GFp_simple_point_finish, .point_clear_finish = ec_GFp_simple_point_clear_finish, .point_copy = ec_GFp_simple_point_copy, .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, .point_set_Jprojective_coordinates = - ec_GFp_simple_set_Jprojective_coordinates, + ec_GFp_simple_set_Jprojective_coordinates, .point_get_Jprojective_coordinates = - ec_GFp_simple_get_Jprojective_coordinates, + ec_GFp_simple_get_Jprojective_coordinates, .point_set_affine_coordinates = - ec_GFp_simple_point_set_affine_coordinates, + ec_GFp_simple_point_set_affine_coordinates, .point_get_affine_coordinates = - ec_GFp_simple_point_get_affine_coordinates, + ec_GFp_simple_point_get_affine_coordinates, .add = ec_GFp_simple_add, .dbl = ec_GFp_simple_dbl, .invert = ec_GFp_simple_invert, @@ -114,7 +114,7 @@ EC_GFp_nist_method(void) return &ret; } -int +int ec_GFp_nist_group_copy(EC_GROUP * dest, const EC_GROUP * src) { dest->field_mod_func = src->field_mod_func; @@ -122,7 +122,7 @@ ec_GFp_nist_group_copy(EC_GROUP * dest, const EC_GROUP * src) return ec_GFp_simple_group_copy(dest, src); } -int +int ec_GFp_nist_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { @@ -162,7 +162,7 @@ ec_GFp_nist_group_set_curve(EC_GROUP *group, const BIGNUM *p, } -int +int ec_GFp_nist_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { @@ -189,7 +189,7 @@ ec_GFp_nist_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, } -int +int ec_GFp_nist_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN_CTX * ctx) { diff --git a/lib/libcrypto/ec/ecp_nistp224.c b/lib/libcrypto/ec/ecp_nistp224.c index 10ade9dbb53..4ed45df8962 100644 --- a/lib/libcrypto/ec/ecp_nistp224.c +++ b/lib/libcrypto/ec/ecp_nistp224.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ecp_nistp224.c,v 1.25 2021/04/20 17:28:18 tb Exp $ */ +/* $OpenBSD: ecp_nistp224.c,v 1.26 2021/04/20 17:38:02 tb Exp $ */ /* * Written by Emilia Kasper (Google) for the OpenSSL project. */ @@ -278,7 +278,7 @@ EC_GFp_nistp224_method(void) } /* Helper functions to convert field elements to/from internal representation */ -static void +static void bin28_to_felem(felem out, const u8 in[28]) { out[0] = *((const uint64_t *) (in)) & 0x00ffffffffffffff; @@ -287,7 +287,7 @@ bin28_to_felem(felem out, const u8 in[28]) out[3] = (*((const uint64_t *) (in + 21))) & 0x00ffffffffffffff; } -static void +static void felem_to_bin28(u8 out[28], const felem in) { unsigned i; @@ -300,7 +300,7 @@ felem_to_bin28(u8 out[28], const felem in) } /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ -static void +static void flip_endian(u8 * out, const u8 * in, unsigned len) { unsigned i; @@ -309,7 +309,7 @@ flip_endian(u8 * out, const u8 * in, unsigned len) } /* From OpenSSL BIGNUM to internal representation */ -static int +static int BN_to_felem(felem out, const BIGNUM * bn) { felem_bytearray b_in; @@ -353,7 +353,7 @@ felem_to_BN(BIGNUM * out, const felem in) * */ -static void +static void felem_one(felem out) { out[0] = 1; @@ -362,7 +362,7 @@ felem_one(felem out) out[3] = 0; } -static void +static void felem_assign(felem out, const felem in) { out[0] = in[0]; @@ -372,7 +372,7 @@ felem_assign(felem out, const felem in) } /* Sum two field elements: out += in */ -static void +static void felem_sum(felem out, const felem in) { out[0] += in[0]; @@ -383,7 +383,7 @@ felem_sum(felem out, const felem in) /* Get negative value: out = -in */ /* Assumes in[i] < 2^57 */ -static void +static void felem_neg(felem out, const felem in) { static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); @@ -400,7 +400,7 @@ felem_neg(felem out, const felem in) /* Subtract field elements: out -= in */ /* Assumes in[i] < 2^57 */ -static void +static void felem_diff(felem out, const felem in) { static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); @@ -422,7 +422,7 @@ felem_diff(felem out, const felem in) /* Subtract in unreduced 128-bit mode: out -= in */ /* Assumes in[i] < 2^119 */ -static void +static void widefelem_diff(widefelem out, const widefelem in) { static const widelimb two120 = ((widelimb) 1) << 120; @@ -451,7 +451,7 @@ widefelem_diff(widefelem out, const widefelem in) /* Subtract in mixed mode: out128 -= in64 */ /* in[i] < 2^63 */ -static void +static void felem_diff_128_64(widefelem out, const felem in) { static const widelimb two64p8 = (((widelimb) 1) << 64) + @@ -475,7 +475,7 @@ felem_diff_128_64(widefelem out, const felem in) /* Multiply a field element by a scalar: out = out * scalar * The scalars we actually use are small, so results fit without overflow */ -static void +static void felem_scalar(felem out, const limb scalar) { out[0] *= scalar; @@ -486,7 +486,7 @@ felem_scalar(felem out, const limb scalar) /* Multiply an unreduced field element by a scalar: out = out * scalar * The scalars we actually use are small, so results fit without overflow */ -static void +static void widefelem_scalar(widefelem out, const widelimb scalar) { out[0] *= scalar; @@ -499,7 +499,7 @@ widefelem_scalar(widefelem out, const widelimb scalar) } /* Square a field element: out = in^2 */ -static void +static void felem_square(widefelem out, const felem in) { limb tmp0, tmp1, tmp2; @@ -517,7 +517,7 @@ felem_square(widefelem out, const felem in) } /* Multiply two field elements: out = in1 * in2 */ -static void +static void felem_mul(widefelem out, const felem in1, const felem in2) { out[0] = ((widelimb) in1[0]) * in2[0]; @@ -535,7 +535,7 @@ felem_mul(widefelem out, const felem in1, const felem in2) /* Reduce seven 128-bit coefficients to four 64-bit coefficients. * Requires in[i] < 2^126, * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ -static void +static void felem_reduce(felem out, const widefelem in) { static const widelimb two127p15 = (((widelimb) 1) << 127) + @@ -599,7 +599,7 @@ felem_reduce(felem out, const widefelem in) out[3] = output[3]; } -static void +static void felem_square_reduce(felem out, const felem in) { widefelem tmp; @@ -607,7 +607,7 @@ felem_square_reduce(felem out, const felem in) felem_reduce(out, tmp); } -static void +static void felem_mul_reduce(felem out, const felem in1, const felem in2) { widefelem tmp; @@ -617,7 +617,7 @@ felem_mul_reduce(felem out, const felem in1, const felem in2) /* Reduce to unique minimal representation. * Requires 0 <= in < 2*p (always call felem_reduce first) */ -static void +static void felem_contract(felem out, const felem in) { static const int64_t two56 = ((limb) 1) << 56; @@ -674,7 +674,7 @@ felem_contract(felem out, const felem in) * We know that field elements are reduced to in < 2^225, * so we only need to check three cases: 0, 2^224 - 2^96 + 1, * and 2^225 - 2^97 + 2 */ -static limb +static limb felem_is_zero(const felem in) { limb zero, two224m96p1, two225m97p2; @@ -690,7 +690,7 @@ felem_is_zero(const felem in) return (zero | two224m96p1 | two225m97p2); } -static limb +static limb felem_is_zero_int(const felem in) { return (int) (felem_is_zero(in) & ((limb) 1)); @@ -698,7 +698,7 @@ felem_is_zero_int(const felem in) /* Invert a field element */ /* Computation chain copied from djb's code */ -static void +static void felem_inv(felem out, const felem in) { felem ftmp, ftmp2, ftmp3, ftmp4; @@ -897,7 +897,7 @@ point_double(felem x_out, felem y_out, felem z_out, * (while not equal to the point at infinity). * This case never happens during single point multiplication, * so there is no timing leak for ECDH or ECDSA signing. */ -static void +static void point_add(felem x3, felem y3, felem z3, const felem x1, const felem y1, const felem z1, const int mixed, const felem x2, const felem y2, const felem z2) @@ -1057,7 +1057,7 @@ point_add(felem x3, felem y3, felem z3, /* select_point selects the |idx|th point from a precomputation table and * copies it to out. */ -static void +static void select_point(const u64 idx, unsigned int size, const felem pre_comp[ /* size */ ][3], felem out[3]) { unsigned i, j; @@ -1078,7 +1078,7 @@ select_point(const u64 idx, unsigned int size, const felem pre_comp[ /* size */ } /* get_bit returns the |i|th bit in |in| */ -static char +static char get_bit(const felem_bytearray in, unsigned i) { if (i >= 224) @@ -1091,7 +1091,7 @@ get_bit(const felem_bytearray in, unsigned i) * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple * of the generator, using certain (large) precomputed multiples in g_pre_comp. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ -static void +static void batch_mul(felem x_out, felem y_out, felem z_out, const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3]) @@ -1211,7 +1211,7 @@ nistp224_pre_comp_dup(void *src_) return src_; } -static void +static void nistp224_pre_comp_free(void *pre_) { int i; @@ -1227,7 +1227,7 @@ nistp224_pre_comp_free(void *pre_) free(pre); } -static void +static void nistp224_pre_comp_clear_free(void *pre_) { int i; @@ -1247,7 +1247,7 @@ nistp224_pre_comp_clear_free(void *pre_) /* OPENSSL EC_METHOD FUNCTIONS */ -int +int ec_GFp_nistp224_group_init(EC_GROUP * group) { int ret; @@ -1256,7 +1256,7 @@ ec_GFp_nistp224_group_init(EC_GROUP * group) return ret; } -int +int ec_GFp_nistp224_group_set_curve(EC_GROUP * group, const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) { @@ -1290,7 +1290,7 @@ ec_GFp_nistp224_group_set_curve(EC_GROUP * group, const BIGNUM * p, /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns * (X', Y') = (X/Z^2, Y/Z^3) */ -int +int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) { @@ -1330,7 +1330,7 @@ ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP * group, return 1; } -static void +static void make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ /* num+1 */ ]) { /* @@ -1353,7 +1353,7 @@ make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ / /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values * Result is stored in r (r can equal one of the inputs). */ -int +int ec_GFp_nistp224_points_mul(const EC_GROUP * group, EC_POINT * r, const BIGNUM * scalar, size_t num, const EC_POINT * points[], const BIGNUM * scalars[], BN_CTX * ctx) @@ -1548,7 +1548,7 @@ ec_GFp_nistp224_points_mul(const EC_GROUP * group, EC_POINT * r, return ret; } -int +int ec_GFp_nistp224_precompute_mult(EC_GROUP * group, BN_CTX * ctx) { int ret = 0; @@ -1675,7 +1675,7 @@ ec_GFp_nistp224_precompute_mult(EC_GROUP * group, BN_CTX * ctx) return ret; } -int +int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP * group) { if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup, diff --git a/lib/libcrypto/ec/ecp_nistp256.c b/lib/libcrypto/ec/ecp_nistp256.c index 674143cc3ee..57b003aefa7 100644 --- a/lib/libcrypto/ec/ecp_nistp256.c +++ b/lib/libcrypto/ec/ecp_nistp256.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ecp_nistp256.c,v 1.24 2021/04/20 17:28:18 tb Exp $ */ +/* $OpenBSD: ecp_nistp256.c,v 1.25 2021/04/20 17:38:02 tb Exp $ */ /* * Written by Adam Langley (Google) for the OpenSSL project */ @@ -115,7 +115,7 @@ static const u64 bottom63bits = 0x7ffffffffffffffful; /* bin32_to_felem takes a little-endian byte array and converts it into felem * form. This assumes that the CPU is little-endian. */ -static void +static void bin32_to_felem(felem out, const u8 in[32]) { out[0] = *((u64 *) & in[0]); @@ -126,7 +126,7 @@ bin32_to_felem(felem out, const u8 in[32]) /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian, * 32 byte array. This assumes that the CPU is little-endian. */ -static void +static void smallfelem_to_bin32(u8 out[32], const smallfelem in) { *((u64 *) & out[0]) = in[0]; @@ -136,7 +136,7 @@ smallfelem_to_bin32(u8 out[32], const smallfelem in) } /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ -static void +static void flip_endian(u8 * out, const u8 * in, unsigned len) { unsigned i; @@ -145,7 +145,7 @@ flip_endian(u8 * out, const u8 * in, unsigned len) } /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ -static int +static int BN_to_felem(felem out, const BIGNUM * bn) { felem_bytearray b_in; @@ -183,7 +183,7 @@ smallfelem_to_BN(BIGNUM * out, const smallfelem in) /* Field operations * ---------------- */ -static void +static void smallfelem_one(smallfelem out) { out[0] = 1; @@ -192,7 +192,7 @@ smallfelem_one(smallfelem out) out[3] = 0; } -static void +static void smallfelem_assign(smallfelem out, const smallfelem in) { out[0] = in[0]; @@ -201,7 +201,7 @@ smallfelem_assign(smallfelem out, const smallfelem in) out[3] = in[3]; } -static void +static void felem_assign(felem out, const felem in) { out[0] = in[0]; @@ -211,7 +211,7 @@ felem_assign(felem out, const felem in) } /* felem_sum sets out = out + in. */ -static void +static void felem_sum(felem out, const felem in) { out[0] += in[0]; @@ -221,7 +221,7 @@ felem_sum(felem out, const felem in) } /* felem_small_sum sets out = out + in. */ -static void +static void felem_small_sum(felem out, const smallfelem in) { out[0] += in[0]; @@ -231,7 +231,7 @@ felem_small_sum(felem out, const smallfelem in) } /* felem_scalar sets out = out * scalar */ -static void +static void felem_scalar(felem out, const u64 scalar) { out[0] *= scalar; @@ -241,7 +241,7 @@ felem_scalar(felem out, const u64 scalar) } /* longfelem_scalar sets out = out * scalar */ -static void +static void longfelem_scalar(longfelem out, const u64 scalar) { out[0] *= scalar; @@ -265,7 +265,7 @@ static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9}; * On exit: * out[i] < out[i] + 2^105 */ -static void +static void smallfelem_neg(felem out, const smallfelem small) { /* In order to prevent underflow, we subtract from 0 mod p. */ @@ -281,7 +281,7 @@ smallfelem_neg(felem out, const smallfelem small) * On exit: * out[i] < out[i] + 2^105 */ -static void +static void felem_diff(felem out, const felem in) { /* In order to prevent underflow, we add 0 mod p before subtracting. */ @@ -310,7 +310,7 @@ static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11}; * On exit: * out[i] < out[i] + 2^107 */ -static void +static void felem_diff_zero107(felem out, const felem in) { /* In order to prevent underflow, we add 0 mod p before subtracting. */ @@ -331,7 +331,7 @@ felem_diff_zero107(felem out, const felem in) * On exit: * out[i] < out[i] + 2^70 + 2^40 */ -static void +static void longfelem_diff(longfelem out, const longfelem in) { static const limb two70m8p6 = (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6); @@ -377,7 +377,7 @@ static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32}; * On exit: * out[i] < 2^64 */ -static void +static void felem_shrink(smallfelem out, const felem in) { felem tmp; @@ -468,7 +468,7 @@ felem_shrink(smallfelem out, const felem in) } /* smallfelem_expand converts a smallfelem to an felem */ -static void +static void smallfelem_expand(felem out, const smallfelem in) { out[0] = in[0]; @@ -483,7 +483,7 @@ smallfelem_expand(felem out, const smallfelem in) * On exit: * out[i] < 7 * 2^64 < 2^67 */ -static void +static void smallfelem_square(longfelem out, const smallfelem small) { limb a; @@ -562,7 +562,7 @@ smallfelem_square(longfelem out, const smallfelem small) * On exit: * out[i] < 7 * 2^64 < 2^67 */ -static void +static void felem_square(longfelem out, const felem in) { u64 small[4]; @@ -577,7 +577,7 @@ felem_square(longfelem out, const felem in) * On exit: * out[i] < 7 * 2^64 < 2^67 */ -static void +static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2) { limb a; @@ -693,7 +693,7 @@ smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2) * On exit: * out[i] < 7 * 2^64 < 2^67 */ -static void +static void felem_mul(longfelem out, const felem in1, const felem in2) { smallfelem small1, small2; @@ -709,7 +709,7 @@ felem_mul(longfelem out, const felem in1, const felem in2) * On exit: * out[i] < 7 * 2^64 < 2^67 */ -static void +static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2) { smallfelem small2; @@ -736,7 +736,7 @@ static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4}; * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] * out[3] <= out[3] + 2^32*in[4] + 3*in[7] */ -static void +static void felem_reduce_(felem out, const longfelem in) { int128_t c; @@ -779,7 +779,7 @@ felem_reduce_(felem out, const longfelem in) * On exit: * out[i] < 2^101 */ -static void +static void felem_reduce(felem out, const longfelem in) { out[0] = zero100[0] + in[0]; @@ -794,7 +794,7 @@ felem_reduce(felem out, const longfelem in) * out[1] > 2^100 - 2^64 - 7*2^96 > 0 out[2] > 2^100 - 2^36 + 2^4 - * 5*2^64 - 5*2^96 > 0 out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 * - 3*2^96 > 0 - * + * * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 out[1] < 2^100 + * 3*2^64 + 5*2^64 + 3*2^97 < 2^101 out[2] < 2^100 + 5*2^64 + 2^64 + * 3*2^65 + 2^97 < 2^101 out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < @@ -808,7 +808,7 @@ felem_reduce(felem out, const longfelem in) * On exit: * out[i] < 2^106 */ -static void +static void felem_reduce_zero105(felem out, const longfelem in) { out[0] = zero105[0] + in[0]; @@ -823,7 +823,7 @@ felem_reduce_zero105(felem out, const longfelem in) * out[1] > 2^105 - 2^71 - 2^103 > 0 out[2] > 2^105 - 2^41 + 2^9 - * 2^71 - 2^103 > 0 out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - * 2^103 > 0 - * + * * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 out[1] < 2^105 + 2^71 + * 2^71 + 2^103 < 2^106 out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < * 2^106 out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 @@ -832,7 +832,7 @@ felem_reduce_zero105(felem out, const longfelem in) /* subtract_u64 sets *result = *result - v and *carry to one if the subtraction * underflowed. */ -static void +static void subtract_u64(u64 * result, u64 * carry, u64 v) { uint128_t r = *result; @@ -845,7 +845,7 @@ subtract_u64(u64 * result, u64 * carry, u64 v) * On entry: * in[i] < 2^109 */ -static void +static void felem_contract(smallfelem out, const felem in) { unsigned i; @@ -909,7 +909,7 @@ felem_contract(smallfelem out, const felem in) subtract_u64(&out[3], &carry, result & kPrime[3]); } -static void +static void smallfelem_square_contract(smallfelem out, const smallfelem in) { longfelem longtmp; @@ -920,7 +920,7 @@ smallfelem_square_contract(smallfelem out, const smallfelem in) felem_contract(out, tmp); } -static void +static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2) { longfelem longtmp; @@ -936,7 +936,7 @@ smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem i * On entry: * small[i] < 2^64 */ -static limb +static limb smallfelem_is_zero(const smallfelem small) { limb result; @@ -972,7 +972,7 @@ smallfelem_is_zero(const smallfelem small) return result; } -static int +static int smallfelem_is_zero_int(const smallfelem small) { return (int) (smallfelem_is_zero(small) & ((limb) 1)); @@ -985,7 +985,7 @@ smallfelem_is_zero_int(const smallfelem small) * a^{p-1} = 1 (mod p) * a^{p-2} = a^{-1} (mod p) */ -static void +static void felem_inv(felem out, const felem in) { felem ftmp, ftmp2; @@ -1080,7 +1080,7 @@ felem_inv(felem out, const felem in) felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ } -static void +static void smallfelem_inv_contract(smallfelem out, const smallfelem in) { felem tmp; @@ -1233,7 +1233,7 @@ copy_small_conditional(felem out, const smallfelem in, limb mask) * are equal, (while not equal to the point at infinity). This case never * happens during single point multiplication, so there is no timing leak for * ECDH or ECDSA signing. */ -static void +static void point_add(felem x3, felem y3, felem z3, const felem x1, const felem y1, const felem z1, const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2) @@ -1393,7 +1393,7 @@ point_add(felem x3, felem y3, felem z3, /* point_add_small is the same as point_add, except that it operates on * smallfelems */ -static void +static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, smallfelem x1, smallfelem y1, smallfelem z1, smallfelem x2, smallfelem y2, smallfelem z2) @@ -1545,7 +1545,7 @@ static const smallfelem gmul[2][16][3] = /* select_point selects the |idx|th point from a precomputation table and * copies it to out. */ -static void +static void select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3]) { unsigned i, j; @@ -1566,7 +1566,7 @@ select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], } /* get_bit returns the |i|th bit in |in| */ -static char +static char get_bit(const felem_bytearray in, int i) { if ((i < 0) || (i >= 256)) @@ -1579,7 +1579,7 @@ get_bit(const felem_bytearray in, int i) * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple * of the generator, using certain (large) precomputed multiples in g_pre_comp. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ -static void +static void batch_mul(felem x_out, felem y_out, felem z_out, const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3]) @@ -1698,20 +1698,20 @@ EC_GFp_nistp256_method(void) .group_get_curve = ec_GFp_simple_group_get_curve, .group_get_degree = ec_GFp_simple_group_get_degree, .group_check_discriminant = - ec_GFp_simple_group_check_discriminant, + ec_GFp_simple_group_check_discriminant, .point_init = ec_GFp_simple_point_init, .point_finish = ec_GFp_simple_point_finish, .point_clear_finish = ec_GFp_simple_point_clear_finish, .point_copy = ec_GFp_simple_point_copy, .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, .point_set_Jprojective_coordinates = - ec_GFp_simple_set_Jprojective_coordinates, + ec_GFp_simple_set_Jprojective_coordinates, .point_get_Jprojective_coordinates = - ec_GFp_simple_get_Jprojective_coordinates, + ec_GFp_simple_get_Jprojective_coordinates, .point_set_affine_coordinates = - ec_GFp_simple_point_set_affine_coordinates, + ec_GFp_simple_point_set_affine_coordinates, .point_get_affine_coordinates = - ec_GFp_nistp256_point_get_affine_coordinates, + ec_GFp_nistp256_point_get_affine_coordinates, .add = ec_GFp_simple_add, .dbl = ec_GFp_simple_dbl, .invert = ec_GFp_simple_invert, @@ -1760,7 +1760,7 @@ nistp256_pre_comp_dup(void *src_) return src_; } -static void +static void nistp256_pre_comp_free(void *pre_) { int i; @@ -1776,7 +1776,7 @@ nistp256_pre_comp_free(void *pre_) free(pre); } -static void +static void nistp256_pre_comp_clear_free(void *pre_) { int i; @@ -1796,7 +1796,7 @@ nistp256_pre_comp_clear_free(void *pre_) /* OPENSSL EC_METHOD FUNCTIONS */ -int +int ec_GFp_nistp256_group_init(EC_GROUP * group) { int ret; @@ -1805,7 +1805,7 @@ ec_GFp_nistp256_group_init(EC_GROUP * group) return ret; } -int +int ec_GFp_nistp256_group_set_curve(EC_GROUP * group, const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) { @@ -1839,7 +1839,7 @@ ec_GFp_nistp256_group_set_curve(EC_GROUP * group, const BIGNUM * p, /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns * (X', Y') = (X/Z^2, Y/Z^3) */ -int +int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) { @@ -1880,7 +1880,7 @@ ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP * group, return 1; } -static void +static void make_points_affine(size_t num, smallfelem points[ /* num */ ][3], smallfelem tmp_smallfelems[ /* num+1 */ ]) { /* @@ -1903,7 +1903,7 @@ make_points_affine(size_t num, smallfelem points[ /* num */ ][3], smallfelem tmp /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values * Result is stored in r (r can equal one of the inputs). */ -int +int ec_GFp_nistp256_points_mul(const EC_GROUP * group, EC_POINT * r, const BIGNUM * scalar, size_t num, const EC_POINT * points[], const BIGNUM * scalars[], BN_CTX * ctx) @@ -2101,7 +2101,7 @@ ec_GFp_nistp256_points_mul(const EC_GROUP * group, EC_POINT * r, return ret; } -int +int ec_GFp_nistp256_precompute_mult(EC_GROUP * group, BN_CTX * ctx) { int ret = 0; @@ -2222,7 +2222,7 @@ ec_GFp_nistp256_precompute_mult(EC_GROUP * group, BN_CTX * ctx) return ret; } -int +int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP * group) { if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup, diff --git a/lib/libcrypto/ec/ecp_nistp521.c b/lib/libcrypto/ec/ecp_nistp521.c index 3d38c723961..db2060668c2 100644 --- a/lib/libcrypto/ec/ecp_nistp521.c +++ b/lib/libcrypto/ec/ecp_nistp521.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ecp_nistp521.c,v 1.25 2021/04/20 17:28:18 tb Exp $ */ +/* $OpenBSD: ecp_nistp521.c,v 1.26 2021/04/20 17:38:02 tb Exp $ */ /* * Written by Adam Langley (Google) for the OpenSSL project */ @@ -130,7 +130,7 @@ static const limb bottom58bits = 0x3ffffffffffffff; /* bin66_to_felem takes a little-endian byte array and converts it into felem * form. This assumes that the CPU is little-endian. */ -static void +static void bin66_to_felem(felem out, const u8 in[66]) { out[0] = (*((limb *) & in[0])) & bottom58bits; @@ -146,7 +146,7 @@ bin66_to_felem(felem out, const u8 in[66]) /* felem_to_bin66 takes an felem and serialises into a little endian, 66 byte * array. This assumes that the CPU is little-endian. */ -static void +static void felem_to_bin66(u8 out[66], const felem in) { memset(out, 0, 66); @@ -162,7 +162,7 @@ felem_to_bin66(u8 out[66], const felem in) } /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ -static void +static void flip_endian(u8 * out, const u8 * in, unsigned len) { unsigned i; @@ -171,7 +171,7 @@ flip_endian(u8 * out, const u8 * in, unsigned len) } /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ -static int +static int BN_to_felem(felem out, const BIGNUM * bn) { felem_bytearray b_in; @@ -209,7 +209,7 @@ felem_to_BN(BIGNUM * out, const felem in) /* Field operations * ---------------- */ -static void +static void felem_one(felem out) { out[0] = 1; @@ -223,7 +223,7 @@ felem_one(felem out) out[8] = 0; } -static void +static void felem_assign(felem out, const felem in) { out[0] = in[0]; @@ -238,7 +238,7 @@ felem_assign(felem out, const felem in) } /* felem_sum64 sets out = out + in. */ -static void +static void felem_sum64(felem out, const felem in) { out[0] += in[0]; @@ -253,7 +253,7 @@ felem_sum64(felem out, const felem in) } /* felem_scalar sets out = in * scalar */ -static void +static void felem_scalar(felem out, const felem in, limb scalar) { out[0] = in[0] * scalar; @@ -268,7 +268,7 @@ felem_scalar(felem out, const felem in, limb scalar) } /* felem_scalar64 sets out = out * scalar */ -static void +static void felem_scalar64(felem out, limb scalar) { out[0] *= scalar; @@ -283,7 +283,7 @@ felem_scalar64(felem out, limb scalar) } /* felem_scalar128 sets out = out * scalar */ -static void +static void felem_scalar128(largefelem out, limb scalar) { out[0] *= scalar; @@ -303,7 +303,7 @@ felem_scalar128(largefelem out, limb scalar) * On exit: * out[i] < 2^62 */ -static void +static void felem_neg(felem out, const felem in) { /* In order to prevent underflow, we subtract from 0 mod p. */ @@ -327,7 +327,7 @@ felem_neg(felem out, const felem in) * On exit: * out[i] < out[i] + 2^62 */ -static void +static void felem_diff64(felem out, const felem in) { /* In order to prevent underflow, we add 0 mod p before subtracting. */ @@ -351,7 +351,7 @@ felem_diff64(felem out, const felem in) * On exit: * out[i] < out[i] + 2^63 */ -static void +static void felem_diff_128_64(largefelem out, const felem in) { /* In order to prevent underflow, we add 0 mod p before subtracting. */ @@ -375,7 +375,7 @@ felem_diff_128_64(largefelem out, const felem in) * On exit: * out[i] < out[i] + 2^127 - 2^69 */ -static void +static void felem_diff128(largefelem out, const largefelem in) { /* In order to prevent underflow, we add 0 mod p before subtracting. */ @@ -399,7 +399,7 @@ felem_diff128(largefelem out, const largefelem in) * On exit: * out[i] < 17 * max(in[i]) * max(in[i]) */ -static void +static void felem_square(largefelem out, const felem in) { felem inx2, inx4; @@ -493,7 +493,7 @@ felem_square(largefelem out, const felem in) * On exit: * out[i] < 17 * max(in1[i]) * max(in2[i]) */ -static void +static void felem_mul(largefelem out, const felem in1, const felem in2) { felem in2x2; @@ -608,7 +608,7 @@ static const limb bottom52bits = 0xfffffffffffff; * On exit: * out[i] < 2^59 + 2^14 */ -static void +static void felem_reduce(felem out, const largefelem in) { u64 overflow1, overflow2; @@ -680,7 +680,7 @@ felem_reduce(felem out, const largefelem in) */ } -static void +static void felem_square_reduce(felem out, const felem in) { largefelem tmp; @@ -688,7 +688,7 @@ felem_square_reduce(felem out, const felem in) felem_reduce(out, tmp); } -static void +static void felem_mul_reduce(felem out, const felem in1, const felem in2) { largefelem tmp; @@ -703,7 +703,7 @@ felem_mul_reduce(felem out, const felem in1, const felem in2) * a^{p-1} = 1 (mod p) * a^{p-2} = a^{-1} (mod p) */ -static void +static void felem_inv(felem out, const felem in) { felem ftmp, ftmp2, ftmp3, ftmp4; @@ -817,7 +817,7 @@ static const felem kPrime = * On entry: * in[i] < 2^59 + 2^14 */ -static limb +static limb felem_is_zero(const felem in) { felem ftmp; @@ -886,7 +886,7 @@ felem_is_zero(const felem in) return is_zero; } -static int +static int felem_is_zero_int(const felem in) { return (int) (felem_is_zero(in) & ((limb) 1)); @@ -896,7 +896,7 @@ felem_is_zero_int(const felem in) * On entry: * in[i] < 2^59 + 2^14 */ -static void +static void felem_contract(felem out, const felem in) { limb is_p, is_greater, sign; @@ -1153,7 +1153,7 @@ copy_conditional(felem out, const felem in, limb mask) * are equal (while not equal to the point at infinity). This case never * happens during single point multiplication, so there is no timing leak for * ECDH or ECDSA signing. */ -static void +static void point_add(felem x3, felem y3, felem z3, const felem x1, const felem y1, const felem z1, const int mixed, const felem x2, const felem y2, const felem z2) @@ -1450,7 +1450,7 @@ static const felem gmul[16][3] = /* select_point selects the |idx|th point from a precomputation table and * copies it to out. */ -static void +static void select_point(const limb idx, unsigned int size, const felem pre_comp[ /* size */ ][3], felem out[3]) { @@ -1472,7 +1472,7 @@ select_point(const limb idx, unsigned int size, const felem pre_comp[ /* size */ } /* get_bit returns the |i|th bit in |in| */ -static char +static char get_bit(const felem_bytearray in, int i) { if (i < 0) @@ -1485,7 +1485,7 @@ get_bit(const felem_bytearray in, int i) * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple * of the generator, using certain (large) precomputed multiples in g_pre_comp. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ -static void +static void batch_mul(felem x_out, felem y_out, felem z_out, const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[16][3]) @@ -1588,20 +1588,20 @@ EC_GFp_nistp521_method(void) .group_get_curve = ec_GFp_simple_group_get_curve, .group_get_degree = ec_GFp_simple_group_get_degree, .group_check_discriminant = - ec_GFp_simple_group_check_discriminant, + ec_GFp_simple_group_check_discriminant, .point_init = ec_GFp_simple_point_init, .point_finish = ec_GFp_simple_point_finish, .point_clear_finish = ec_GFp_simple_point_clear_finish, .point_copy = ec_GFp_simple_point_copy, .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, .point_set_Jprojective_coordinates = - ec_GFp_simple_set_Jprojective_coordinates, + ec_GFp_simple_set_Jprojective_coordinates, .point_get_Jprojective_coordinates = - ec_GFp_simple_get_Jprojective_coordinates, + ec_GFp_simple_get_Jprojective_coordinates, .point_set_affine_coordinates = - ec_GFp_simple_point_set_affine_coordinates, + ec_GFp_simple_point_set_affine_coordinates, .point_get_affine_coordinates = - ec_GFp_nistp521_point_get_affine_coordinates, + ec_GFp_nistp521_point_get_affine_coordinates, .add = ec_GFp_simple_add, .dbl = ec_GFp_simple_dbl, .invert = ec_GFp_simple_invert, @@ -1651,7 +1651,7 @@ nistp521_pre_comp_dup(void *src_) return src_; } -static void +static void nistp521_pre_comp_free(void *pre_) { int i; @@ -1667,7 +1667,7 @@ nistp521_pre_comp_free(void *pre_) free(pre); } -static void +static void nistp521_pre_comp_clear_free(void *pre_) { int i; @@ -1687,7 +1687,7 @@ nistp521_pre_comp_clear_free(void *pre_) /* OPENSSL EC_METHOD FUNCTIONS */ -int +int ec_GFp_nistp521_group_init(EC_GROUP * group) { int ret; @@ -1696,7 +1696,7 @@ ec_GFp_nistp521_group_init(EC_GROUP * group) return ret; } -int +int ec_GFp_nistp521_group_set_curve(EC_GROUP * group, const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) { @@ -1730,7 +1730,7 @@ ec_GFp_nistp521_group_set_curve(EC_GROUP * group, const BIGNUM * p, /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns * (X', Y') = (X/Z^2, Y/Z^3) */ -int +int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) { @@ -1770,7 +1770,7 @@ ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP * group, return 1; } -static void +static void make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ /* num+1 */ ]) { /* @@ -1793,7 +1793,7 @@ make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ / /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values * Result is stored in r (r can equal one of the inputs). */ -int +int ec_GFp_nistp521_points_mul(const EC_GROUP * group, EC_POINT * r, const BIGNUM * scalar, size_t num, const EC_POINT * points[], const BIGNUM * scalars[], BN_CTX * ctx) @@ -1990,7 +1990,7 @@ ec_GFp_nistp521_points_mul(const EC_GROUP * group, EC_POINT * r, return ret; } -int +int ec_GFp_nistp521_precompute_mult(EC_GROUP * group, BN_CTX * ctx) { int ret = 0; @@ -2097,7 +2097,7 @@ ec_GFp_nistp521_precompute_mult(EC_GROUP * group, BN_CTX * ctx) return ret; } -int +int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP * group) { if (EC_EX_DATA_get_data(group->extra_data, nistp521_pre_comp_dup, diff --git a/lib/libcrypto/ec/ecp_smpl.c b/lib/libcrypto/ec/ecp_smpl.c index 92234274594..96ab5bd44eb 100644 --- a/lib/libcrypto/ec/ecp_smpl.c +++ b/lib/libcrypto/ec/ecp_smpl.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ecp_smpl.c,v 1.31 2021/04/20 17:28:18 tb Exp $ */ +/* $OpenBSD: ecp_smpl.c,v 1.32 2021/04/20 17:38:02 tb Exp $ */ /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> * for the OpenSSL project. * Includes code written by Bodo Moeller for the OpenSSL project. @@ -81,20 +81,20 @@ EC_GFp_simple_method(void) .group_get_curve = ec_GFp_simple_group_get_curve, .group_get_degree = ec_GFp_simple_group_get_degree, .group_check_discriminant = - ec_GFp_simple_group_check_discriminant, + ec_GFp_simple_group_check_discriminant, .point_init = ec_GFp_simple_point_init, .point_finish = ec_GFp_simple_point_finish, .point_clear_finish = ec_GFp_simple_point_clear_finish, .point_copy = ec_GFp_simple_point_copy, .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, .point_set_Jprojective_coordinates = - ec_GFp_simple_set_Jprojective_coordinates, + ec_GFp_simple_set_Jprojective_coordinates, .point_get_Jprojective_coordinates = - ec_GFp_simple_get_Jprojective_coordinates, + ec_GFp_simple_get_Jprojective_coordinates, .point_set_affine_coordinates = - ec_GFp_simple_point_set_affine_coordinates, + ec_GFp_simple_point_set_affine_coordinates, .point_get_affine_coordinates = - ec_GFp_simple_point_get_affine_coordinates, + ec_GFp_simple_point_get_affine_coordinates, .add = ec_GFp_simple_add, .dbl = ec_GFp_simple_dbl, .invert = ec_GFp_simple_invert, @@ -129,7 +129,7 @@ EC_GFp_simple_method(void) */ -int +int ec_GFp_simple_group_init(EC_GROUP * group) { BN_init(&group->field); @@ -140,7 +140,7 @@ ec_GFp_simple_group_init(EC_GROUP * group) } -void +void ec_GFp_simple_group_finish(EC_GROUP * group) { BN_free(&group->field); @@ -149,7 +149,7 @@ ec_GFp_simple_group_finish(EC_GROUP * group) } -void +void ec_GFp_simple_group_clear_finish(EC_GROUP * group) { BN_clear_free(&group->field); @@ -158,7 +158,7 @@ ec_GFp_simple_group_clear_finish(EC_GROUP * group) } -int +int ec_GFp_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) { if (!BN_copy(&dest->field, &src->field)) @@ -174,7 +174,7 @@ ec_GFp_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) } -int +int ec_GFp_simple_group_set_curve(EC_GROUP * group, const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) { @@ -231,7 +231,7 @@ ec_GFp_simple_group_set_curve(EC_GROUP * group, } -int +int ec_GFp_simple_group_get_curve(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, BIGNUM * b, BN_CTX * ctx) { int ret = 0; @@ -275,14 +275,14 @@ ec_GFp_simple_group_get_curve(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, BI } -int +int ec_GFp_simple_group_get_degree(const EC_GROUP * group) { return BN_num_bits(&group->field); } -int +int ec_GFp_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) { int ret = 0; @@ -358,7 +358,7 @@ ec_GFp_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) } -int +int ec_GFp_simple_point_init(EC_POINT * point) { BN_init(&point->X); @@ -370,7 +370,7 @@ ec_GFp_simple_point_init(EC_POINT * point) } -void +void ec_GFp_simple_point_finish(EC_POINT * point) { BN_free(&point->X); @@ -379,7 +379,7 @@ ec_GFp_simple_point_finish(EC_POINT * point) } -void +void ec_GFp_simple_point_clear_finish(EC_POINT * point) { BN_clear_free(&point->X); @@ -389,7 +389,7 @@ ec_GFp_simple_point_clear_finish(EC_POINT * point) } -int +int ec_GFp_simple_point_copy(EC_POINT * dest, const EC_POINT * src) { if (!BN_copy(&dest->X, &src->X)) @@ -404,7 +404,7 @@ ec_GFp_simple_point_copy(EC_POINT * dest, const EC_POINT * src) } -int +int ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point) { point->Z_is_one = 0; @@ -633,7 +633,7 @@ ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group, const EC_POIN return ret; } -int +int ec_GFp_simple_add(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) { int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); @@ -822,7 +822,7 @@ ec_GFp_simple_add(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, cons } -int +int ec_GFp_simple_dbl(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, BN_CTX * ctx) { int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); @@ -964,7 +964,7 @@ ec_GFp_simple_dbl(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, BN_C } -int +int ec_GFp_simple_invert(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) { if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) @@ -975,14 +975,14 @@ ec_GFp_simple_invert(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) } -int +int ec_GFp_simple_is_at_infinity(const EC_GROUP * group, const EC_POINT * point) { return BN_is_zero(&point->Z); } -int +int ec_GFp_simple_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx) { int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); @@ -1085,7 +1085,7 @@ ec_GFp_simple_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX } -int +int ec_GFp_simple_cmp(const EC_GROUP * group, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) { /* @@ -1187,7 +1187,7 @@ ec_GFp_simple_cmp(const EC_GROUP * group, const EC_POINT * a, const EC_POINT * b } -int +int ec_GFp_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) { BN_CTX *new_ctx = NULL; @@ -1225,7 +1225,7 @@ ec_GFp_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx } -int +int ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * points[], BN_CTX * ctx) { BN_CTX *new_ctx = NULL; @@ -1271,11 +1271,11 @@ ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * /* * The array is used as a binary tree, exactly as in heapsort: - * + * * heap[1] heap[2] heap[3] heap[4] heap[5] * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] * heap[12]heap[13] heap[14] heap[15] - * + * * We put the Z's in the last line; then we set each other node to the * product of its two child-nodes (where empty or 0 entries are * treated as ones); then we invert heap[1]; then we invert each @@ -1400,13 +1400,13 @@ ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * } -int +int ec_GFp_simple_field_mul(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) { return BN_mod_mul(r, a, b, &group->field, ctx); } -int +int ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN_CTX * ctx) { return BN_mod_sqr(r, a, &group->field, ctx); @@ -1416,7 +1416,7 @@ ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN * Apply randomization of EC point projective coordinates: * * (X, Y, Z) = (lambda^2 * X, lambda^3 * Y, lambda * Z) - * + * * where lambda is in the interval [1, group->field). */ int @@ -1686,7 +1686,7 @@ ec_GFp_simple_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, } /* one final cswap to move the right value into r */ EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); - + ret = 1; err: |