summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/loop.c
diff options
context:
space:
mode:
authorMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
committerMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
commit0126e157b87f137fc08dc7f46f6c291b9d06ac5d (patch)
treef8555e3e504eb82b4cd3cba5cec20ae4ce8124ff /gnu/egcs/gcc/loop.c
parentff8e9a4356e55ed142306c3a375fa280800abc86 (diff)
egcs projects compiler system
Exact copy of the snapshot, except for the removal of texinfo/ gcc/ch/ libchill/
Diffstat (limited to 'gnu/egcs/gcc/loop.c')
-rw-r--r--gnu/egcs/gcc/loop.c9658
1 files changed, 9658 insertions, 0 deletions
diff --git a/gnu/egcs/gcc/loop.c b/gnu/egcs/gcc/loop.c
new file mode 100644
index 00000000000..192461a934c
--- /dev/null
+++ b/gnu/egcs/gcc/loop.c
@@ -0,0 +1,9658 @@
+/* Perform various loop optimizations, including strength reduction.
+ Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* This is the loop optimization pass of the compiler.
+ It finds invariant computations within loops and moves them
+ to the beginning of the loop. Then it identifies basic and
+ general induction variables. Strength reduction is applied to the general
+ induction variables, and induction variable elimination is applied to
+ the basic induction variables.
+
+ It also finds cases where
+ a register is set within the loop by zero-extending a narrower value
+ and changes these to zero the entire register once before the loop
+ and merely copy the low part within the loop.
+
+ Most of the complexity is in heuristics to decide when it is worth
+ while to do these things. */
+
+#include "config.h"
+#include "system.h"
+#include "rtl.h"
+#include "obstack.h"
+#include "expr.h"
+#include "insn-config.h"
+#include "insn-flags.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "recog.h"
+#include "flags.h"
+#include "real.h"
+#include "loop.h"
+#include "except.h"
+#include "toplev.h"
+
+/* Vector mapping INSN_UIDs to luids.
+ The luids are like uids but increase monotonically always.
+ We use them to see whether a jump comes from outside a given loop. */
+
+int *uid_luid;
+
+/* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
+ number the insn is contained in. */
+
+int *uid_loop_num;
+
+/* 1 + largest uid of any insn. */
+
+int max_uid_for_loop;
+
+/* 1 + luid of last insn. */
+
+static int max_luid;
+
+/* Number of loops detected in current function. Used as index to the
+ next few tables. */
+
+static int max_loop_num;
+
+/* Indexed by loop number, contains the first and last insn of each loop. */
+
+static rtx *loop_number_loop_starts, *loop_number_loop_ends;
+
+/* Likewise for the continue insn */
+static rtx *loop_number_loop_cont;
+
+/* The first code_label that is reached in every loop iteration.
+ 0 when not computed yet, initially const0_rtx if a jump couldn't be
+ followed.
+ Also set to 0 when there is no such label before the NOTE_INSN_LOOP_CONT
+ of this loop, or in verify_dominator, if a jump couldn't be followed. */
+static rtx *loop_number_cont_dominator;
+
+/* For each loop, gives the containing loop number, -1 if none. */
+
+int *loop_outer_loop;
+
+#ifdef HAVE_decrement_and_branch_on_count
+/* Records whether resource in use by inner loop. */
+
+int *loop_used_count_register;
+#endif /* HAVE_decrement_and_branch_on_count */
+
+/* Indexed by loop number, contains a nonzero value if the "loop" isn't
+ really a loop (an insn outside the loop branches into it). */
+
+static char *loop_invalid;
+
+/* Indexed by loop number, links together all LABEL_REFs which refer to
+ code labels outside the loop. Used by routines that need to know all
+ loop exits, such as final_biv_value and final_giv_value.
+
+ This does not include loop exits due to return instructions. This is
+ because all bivs and givs are pseudos, and hence must be dead after a
+ return, so the presense of a return does not affect any of the
+ optimizations that use this info. It is simpler to just not include return
+ instructions on this list. */
+
+rtx *loop_number_exit_labels;
+
+/* Indexed by loop number, counts the number of LABEL_REFs on
+ loop_number_exit_labels for this loop and all loops nested inside it. */
+
+int *loop_number_exit_count;
+
+/* Nonzero if there is a subroutine call in the current loop. */
+
+static int loop_has_call;
+
+/* Nonzero if there is a volatile memory reference in the current
+ loop. */
+
+static int loop_has_volatile;
+
+/* Nonzero if there is a tablejump in the current loop. */
+
+static int loop_has_tablejump;
+
+/* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
+ current loop. A continue statement will generate a branch to
+ NEXT_INSN (loop_continue). */
+
+static rtx loop_continue;
+
+/* Indexed by register number, contains the number of times the reg
+ is set during the loop being scanned.
+ During code motion, a negative value indicates a reg that has been
+ made a candidate; in particular -2 means that it is an candidate that
+ we know is equal to a constant and -1 means that it is an candidate
+ not known equal to a constant.
+ After code motion, regs moved have 0 (which is accurate now)
+ while the failed candidates have the original number of times set.
+
+ Therefore, at all times, == 0 indicates an invariant register;
+ < 0 a conditionally invariant one. */
+
+static varray_type set_in_loop;
+
+/* Original value of set_in_loop; same except that this value
+ is not set negative for a reg whose sets have been made candidates
+ and not set to 0 for a reg that is moved. */
+
+static varray_type n_times_set;
+
+/* Index by register number, 1 indicates that the register
+ cannot be moved or strength reduced. */
+
+static varray_type may_not_optimize;
+
+/* Contains the insn in which a register was used if it was used
+ exactly once; contains const0_rtx if it was used more than once. */
+
+static varray_type reg_single_usage;
+
+/* Nonzero means reg N has already been moved out of one loop.
+ This reduces the desire to move it out of another. */
+
+static char *moved_once;
+
+/* List of MEMs that are stored in this loop. */
+
+static rtx loop_store_mems;
+
+/* The insn where the first of these was found. */
+static rtx first_loop_store_insn;
+
+typedef struct loop_mem_info {
+ rtx mem; /* The MEM itself. */
+ rtx reg; /* Corresponding pseudo, if any. */
+ int optimize; /* Nonzero if we can optimize access to this MEM. */
+} loop_mem_info;
+
+/* Array of MEMs that are used (read or written) in this loop, but
+ cannot be aliased by anything in this loop, except perhaps
+ themselves. In other words, if loop_mems[i] is altered during the
+ loop, it is altered by an expression that is rtx_equal_p to it. */
+
+static loop_mem_info *loop_mems;
+
+/* The index of the next available slot in LOOP_MEMS. */
+
+static int loop_mems_idx;
+
+/* The number of elements allocated in LOOP_MEMs. */
+
+static int loop_mems_allocated;
+
+/* Nonzero if we don't know what MEMs were changed in the current loop.
+ This happens if the loop contains a call (in which case `loop_has_call'
+ will also be set) or if we store into more than NUM_STORES MEMs. */
+
+static int unknown_address_altered;
+
+/* Count of movable (i.e. invariant) instructions discovered in the loop. */
+static int num_movables;
+
+/* Count of memory write instructions discovered in the loop. */
+static int num_mem_sets;
+
+/* Number of loops contained within the current one, including itself. */
+static int loops_enclosed;
+
+/* Bound on pseudo register number before loop optimization.
+ A pseudo has valid regscan info if its number is < max_reg_before_loop. */
+int max_reg_before_loop;
+
+/* This obstack is used in product_cheap_p to allocate its rtl. It
+ may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
+ If we used the same obstack that it did, we would be deallocating
+ that array. */
+
+static struct obstack temp_obstack;
+
+/* This is where the pointer to the obstack being used for RTL is stored. */
+
+extern struct obstack *rtl_obstack;
+
+#define obstack_chunk_alloc xmalloc
+#define obstack_chunk_free free
+
+/* During the analysis of a loop, a chain of `struct movable's
+ is made to record all the movable insns found.
+ Then the entire chain can be scanned to decide which to move. */
+
+struct movable
+{
+ rtx insn; /* A movable insn */
+ rtx set_src; /* The expression this reg is set from. */
+ rtx set_dest; /* The destination of this SET. */
+ rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
+ of any registers used within the LIBCALL. */
+ int consec; /* Number of consecutive following insns
+ that must be moved with this one. */
+ int regno; /* The register it sets */
+ short lifetime; /* lifetime of that register;
+ may be adjusted when matching movables
+ that load the same value are found. */
+ short savings; /* Number of insns we can move for this reg,
+ including other movables that force this
+ or match this one. */
+ unsigned int cond : 1; /* 1 if only conditionally movable */
+ unsigned int force : 1; /* 1 means MUST move this insn */
+ unsigned int global : 1; /* 1 means reg is live outside this loop */
+ /* If PARTIAL is 1, GLOBAL means something different:
+ that the reg is live outside the range from where it is set
+ to the following label. */
+ unsigned int done : 1; /* 1 inhibits further processing of this */
+
+ unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
+ In particular, moving it does not make it
+ invariant. */
+ unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
+ load SRC, rather than copying INSN. */
+ unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
+ first insn of a consecutive sets group. */
+ unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
+ enum machine_mode savemode; /* Nonzero means it is a mode for a low part
+ that we should avoid changing when clearing
+ the rest of the reg. */
+ struct movable *match; /* First entry for same value */
+ struct movable *forces; /* An insn that must be moved if this is */
+ struct movable *next;
+};
+
+static struct movable *the_movables;
+
+FILE *loop_dump_stream;
+
+/* Forward declarations. */
+
+static void verify_dominator PROTO((int));
+static void find_and_verify_loops PROTO((rtx));
+static void mark_loop_jump PROTO((rtx, int));
+static void prescan_loop PROTO((rtx, rtx));
+static int reg_in_basic_block_p PROTO((rtx, rtx));
+static int consec_sets_invariant_p PROTO((rtx, int, rtx));
+static int labels_in_range_p PROTO((rtx, int));
+static void count_one_set PROTO((rtx, rtx, varray_type, rtx *));
+
+static void count_loop_regs_set PROTO((rtx, rtx, varray_type, varray_type,
+ int *, int));
+static void note_addr_stored PROTO((rtx, rtx));
+static int loop_reg_used_before_p PROTO((rtx, rtx, rtx, rtx, rtx));
+static void scan_loop PROTO((rtx, rtx, rtx, int, int));
+#if 0
+static void replace_call_address PROTO((rtx, rtx, rtx));
+#endif
+static rtx skip_consec_insns PROTO((rtx, int));
+static int libcall_benefit PROTO((rtx));
+static void ignore_some_movables PROTO((struct movable *));
+static void force_movables PROTO((struct movable *));
+static void combine_movables PROTO((struct movable *, int));
+static int regs_match_p PROTO((rtx, rtx, struct movable *));
+static int rtx_equal_for_loop_p PROTO((rtx, rtx, struct movable *));
+static void add_label_notes PROTO((rtx, rtx));
+static void move_movables PROTO((struct movable *, int, int, rtx, rtx, int));
+static int count_nonfixed_reads PROTO((rtx));
+static void strength_reduce PROTO((rtx, rtx, rtx, int, rtx, rtx, rtx, int, int));
+static void find_single_use_in_loop PROTO((rtx, rtx, varray_type));
+static int valid_initial_value_p PROTO((rtx, rtx, int, rtx));
+static void find_mem_givs PROTO((rtx, rtx, int, rtx, rtx));
+static void record_biv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx *, int, int));
+static void check_final_value PROTO((struct induction *, rtx, rtx,
+ unsigned HOST_WIDE_INT));
+static void record_giv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx, int, enum g_types, int, rtx *, rtx, rtx));
+static void update_giv_derive PROTO((rtx));
+static int basic_induction_var PROTO((rtx, enum machine_mode, rtx, rtx, rtx *, rtx *, rtx **));
+static rtx simplify_giv_expr PROTO((rtx, int *));
+static int general_induction_var PROTO((rtx, rtx *, rtx *, rtx *, int, int *));
+static int consec_sets_giv PROTO((int, rtx, rtx, rtx, rtx *, rtx *, rtx *));
+static int check_dbra_loop PROTO((rtx, int, rtx, struct loop_info *));
+static rtx express_from_1 PROTO((rtx, rtx, rtx));
+static rtx combine_givs_p PROTO((struct induction *, struct induction *));
+static void combine_givs PROTO((struct iv_class *));
+struct recombine_givs_stats;
+static int find_life_end PROTO((rtx, struct recombine_givs_stats *, rtx, rtx));
+static void recombine_givs PROTO((struct iv_class *, rtx, rtx, int));
+static int product_cheap_p PROTO((rtx, rtx));
+static int maybe_eliminate_biv PROTO((struct iv_class *, rtx, rtx, int, int, int));
+static int maybe_eliminate_biv_1 PROTO((rtx, rtx, struct iv_class *, int, rtx));
+static int last_use_this_basic_block PROTO((rtx, rtx));
+static void record_initial PROTO((rtx, rtx));
+static void update_reg_last_use PROTO((rtx, rtx));
+static rtx next_insn_in_loop PROTO((rtx, rtx, rtx, rtx));
+static void load_mems_and_recount_loop_regs_set PROTO((rtx, rtx, rtx,
+ rtx, int *));
+static void load_mems PROTO((rtx, rtx, rtx, rtx));
+static int insert_loop_mem PROTO((rtx *, void *));
+static int replace_loop_mem PROTO((rtx *, void *));
+static int replace_label PROTO((rtx *, void *));
+
+typedef struct rtx_and_int {
+ rtx r;
+ int i;
+} rtx_and_int;
+
+typedef struct rtx_pair {
+ rtx r1;
+ rtx r2;
+} rtx_pair;
+
+/* Nonzero iff INSN is between START and END, inclusive. */
+#define INSN_IN_RANGE_P(INSN, START, END) \
+ (INSN_UID (INSN) < max_uid_for_loop \
+ && INSN_LUID (INSN) >= INSN_LUID (START) \
+ && INSN_LUID (INSN) <= INSN_LUID (END))
+
+#ifdef HAVE_decrement_and_branch_on_count
+/* Test whether BCT applicable and safe. */
+static void insert_bct PROTO((rtx, rtx, struct loop_info *));
+
+/* Auxiliary function that inserts the BCT pattern into the loop. */
+static void instrument_loop_bct PROTO((rtx, rtx, rtx));
+#endif /* HAVE_decrement_and_branch_on_count */
+
+/* Indirect_jump_in_function is computed once per function. */
+int indirect_jump_in_function = 0;
+static int indirect_jump_in_function_p PROTO((rtx));
+
+static int compute_luids PROTO((rtx, rtx, int));
+
+static int biv_elimination_giv_has_0_offset PROTO((struct induction *,
+ struct induction *, rtx));
+
+/* Relative gain of eliminating various kinds of operations. */
+static int add_cost;
+#if 0
+static int shift_cost;
+static int mult_cost;
+#endif
+
+/* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
+ copy the value of the strength reduced giv to its original register. */
+static int copy_cost;
+
+/* Cost of using a register, to normalize the benefits of a giv. */
+static int reg_address_cost;
+
+
+void
+init_loop ()
+{
+ char *free_point = (char *) oballoc (1);
+ rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
+
+ add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
+
+#ifdef ADDRESS_COST
+ reg_address_cost = ADDRESS_COST (reg);
+#else
+ reg_address_cost = rtx_cost (reg, MEM);
+#endif
+
+ /* We multiply by 2 to reconcile the difference in scale between
+ these two ways of computing costs. Otherwise the cost of a copy
+ will be far less than the cost of an add. */
+
+ copy_cost = 2 * 2;
+
+ /* Free the objects we just allocated. */
+ obfree (free_point);
+
+ /* Initialize the obstack used for rtl in product_cheap_p. */
+ gcc_obstack_init (&temp_obstack);
+}
+
+/* Compute the mapping from uids to luids.
+ LUIDs are numbers assigned to insns, like uids,
+ except that luids increase monotonically through the code.
+ Start at insn START and stop just before END. Assign LUIDs
+ starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
+static int
+compute_luids (start, end, prev_luid)
+ rtx start, end;
+ int prev_luid;
+{
+ int i;
+ rtx insn;
+
+ for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
+ {
+ if (INSN_UID (insn) >= max_uid_for_loop)
+ continue;
+ /* Don't assign luids to line-number NOTEs, so that the distance in
+ luids between two insns is not affected by -g. */
+ if (GET_CODE (insn) != NOTE
+ || NOTE_LINE_NUMBER (insn) <= 0)
+ uid_luid[INSN_UID (insn)] = ++i;
+ else
+ /* Give a line number note the same luid as preceding insn. */
+ uid_luid[INSN_UID (insn)] = i;
+ }
+ return i + 1;
+}
+
+/* Entry point of this file. Perform loop optimization
+ on the current function. F is the first insn of the function
+ and DUMPFILE is a stream for output of a trace of actions taken
+ (or 0 if none should be output). */
+
+void
+loop_optimize (f, dumpfile, unroll_p, bct_p)
+ /* f is the first instruction of a chain of insns for one function */
+ rtx f;
+ FILE *dumpfile;
+ int unroll_p, bct_p;
+{
+ register rtx insn;
+ register int i;
+
+ loop_dump_stream = dumpfile;
+
+ init_recog_no_volatile ();
+
+ max_reg_before_loop = max_reg_num ();
+
+ moved_once = (char *) alloca (max_reg_before_loop);
+ bzero (moved_once, max_reg_before_loop);
+
+ regs_may_share = 0;
+
+ /* Count the number of loops. */
+
+ max_loop_num = 0;
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ {
+ if (GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
+ max_loop_num++;
+ }
+
+ /* Don't waste time if no loops. */
+ if (max_loop_num == 0)
+ return;
+
+ /* Get size to use for tables indexed by uids.
+ Leave some space for labels allocated by find_and_verify_loops. */
+ max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
+
+ uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
+ uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
+
+ bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
+ bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
+
+ /* Allocate tables for recording each loop. We set each entry, so they need
+ not be zeroed. */
+ loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
+ loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
+ loop_number_loop_cont = (rtx *) alloca (max_loop_num * sizeof (rtx));
+ loop_number_cont_dominator = (rtx *) alloca (max_loop_num * sizeof (rtx));
+ loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
+ loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
+ loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
+ loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
+
+#ifdef HAVE_decrement_and_branch_on_count
+ /* Allocate for BCT optimization */
+ loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
+ bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
+#endif /* HAVE_decrement_and_branch_on_count */
+
+ /* Find and process each loop.
+ First, find them, and record them in order of their beginnings. */
+ find_and_verify_loops (f);
+
+ /* Now find all register lifetimes. This must be done after
+ find_and_verify_loops, because it might reorder the insns in the
+ function. */
+ reg_scan (f, max_reg_num (), 1);
+
+ /* This must occur after reg_scan so that registers created by gcse
+ will have entries in the register tables.
+
+ We could have added a call to reg_scan after gcse_main in toplev.c,
+ but moving this call to init_alias_analysis is more efficient. */
+ init_alias_analysis ();
+
+ /* See if we went too far. Note that get_max_uid already returns
+ one more that the maximum uid of all insn. */
+ if (get_max_uid () > max_uid_for_loop)
+ abort ();
+ /* Now reset it to the actual size we need. See above. */
+ max_uid_for_loop = get_max_uid ();
+
+ /* find_and_verify_loops has already called compute_luids, but it might
+ have rearranged code afterwards, so we need to recompute the luids now. */
+ max_luid = compute_luids (f, NULL_RTX, 0);
+
+ /* Don't leave gaps in uid_luid for insns that have been
+ deleted. It is possible that the first or last insn
+ using some register has been deleted by cross-jumping.
+ Make sure that uid_luid for that former insn's uid
+ points to the general area where that insn used to be. */
+ for (i = 0; i < max_uid_for_loop; i++)
+ {
+ uid_luid[0] = uid_luid[i];
+ if (uid_luid[0] != 0)
+ break;
+ }
+ for (i = 0; i < max_uid_for_loop; i++)
+ if (uid_luid[i] == 0)
+ uid_luid[i] = uid_luid[i - 1];
+
+ /* Create a mapping from loops to BLOCK tree nodes. */
+ if (unroll_p && write_symbols != NO_DEBUG)
+ find_loop_tree_blocks ();
+
+ /* Determine if the function has indirect jump. On some systems
+ this prevents low overhead loop instructions from being used. */
+ indirect_jump_in_function = indirect_jump_in_function_p (f);
+
+ /* Now scan the loops, last ones first, since this means inner ones are done
+ before outer ones. */
+ for (i = max_loop_num-1; i >= 0; i--)
+ if (! loop_invalid[i] && loop_number_loop_ends[i])
+ scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
+ loop_number_loop_cont[i], unroll_p, bct_p);
+
+ /* If debugging and unrolling loops, we must replicate the tree nodes
+ corresponding to the blocks inside the loop, so that the original one
+ to one mapping will remain. */
+ if (unroll_p && write_symbols != NO_DEBUG)
+ unroll_block_trees ();
+
+ end_alias_analysis ();
+}
+
+/* Returns the next insn, in execution order, after INSN. START and
+ END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
+ respectively. LOOP_TOP, if non-NULL, is the top of the loop in the
+ insn-stream; it is used with loops that are entered near the
+ bottom. */
+
+static rtx
+next_insn_in_loop (insn, start, end, loop_top)
+ rtx insn;
+ rtx start;
+ rtx end;
+ rtx loop_top;
+{
+ insn = NEXT_INSN (insn);
+
+ if (insn == end)
+ {
+ if (loop_top)
+ /* Go to the top of the loop, and continue there. */
+ insn = loop_top;
+ else
+ /* We're done. */
+ insn = NULL_RTX;
+ }
+
+ if (insn == start)
+ /* We're done. */
+ insn = NULL_RTX;
+
+ return insn;
+}
+
+/* Optimize one loop whose start is LOOP_START and end is END.
+ LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
+ NOTE_INSN_LOOP_END.
+ LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
+
+/* ??? Could also move memory writes out of loops if the destination address
+ is invariant, the source is invariant, the memory write is not volatile,
+ and if we can prove that no read inside the loop can read this address
+ before the write occurs. If there is a read of this address after the
+ write, then we can also mark the memory read as invariant. */
+
+static void
+scan_loop (loop_start, end, loop_cont, unroll_p, bct_p)
+ rtx loop_start, end, loop_cont;
+ int unroll_p, bct_p;
+{
+ register int i;
+ rtx p;
+ /* 1 if we are scanning insns that could be executed zero times. */
+ int maybe_never = 0;
+ /* 1 if we are scanning insns that might never be executed
+ due to a subroutine call which might exit before they are reached. */
+ int call_passed = 0;
+ /* For a rotated loop that is entered near the bottom,
+ this is the label at the top. Otherwise it is zero. */
+ rtx loop_top = 0;
+ /* Jump insn that enters the loop, or 0 if control drops in. */
+ rtx loop_entry_jump = 0;
+ /* Place in the loop where control enters. */
+ rtx scan_start;
+ /* Number of insns in the loop. */
+ int insn_count;
+ int in_libcall = 0;
+ int tem;
+ rtx temp;
+ /* The SET from an insn, if it is the only SET in the insn. */
+ rtx set, set1;
+ /* Chain describing insns movable in current loop. */
+ struct movable *movables = 0;
+ /* Last element in `movables' -- so we can add elements at the end. */
+ struct movable *last_movable = 0;
+ /* Ratio of extra register life span we can justify
+ for saving an instruction. More if loop doesn't call subroutines
+ since in that case saving an insn makes more difference
+ and more registers are available. */
+ int threshold;
+ /* Nonzero if we are scanning instructions in a sub-loop. */
+ int loop_depth = 0;
+ int nregs;
+
+ /* Determine whether this loop starts with a jump down to a test at
+ the end. This will occur for a small number of loops with a test
+ that is too complex to duplicate in front of the loop.
+
+ We search for the first insn or label in the loop, skipping NOTEs.
+ However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
+ (because we might have a loop executed only once that contains a
+ loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
+ (in case we have a degenerate loop).
+
+ Note that if we mistakenly think that a loop is entered at the top
+ when, in fact, it is entered at the exit test, the only effect will be
+ slightly poorer optimization. Making the opposite error can generate
+ incorrect code. Since very few loops now start with a jump to the
+ exit test, the code here to detect that case is very conservative. */
+
+ for (p = NEXT_INSN (loop_start);
+ p != end
+ && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
+ && (GET_CODE (p) != NOTE
+ || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
+ && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
+ p = NEXT_INSN (p))
+ ;
+
+ scan_start = p;
+
+ /* Set up variables describing this loop. */
+ prescan_loop (loop_start, end);
+ threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
+
+ /* If loop has a jump before the first label,
+ the true entry is the target of that jump.
+ Start scan from there.
+ But record in LOOP_TOP the place where the end-test jumps
+ back to so we can scan that after the end of the loop. */
+ if (GET_CODE (p) == JUMP_INSN)
+ {
+ loop_entry_jump = p;
+
+ /* Loop entry must be unconditional jump (and not a RETURN) */
+ if (simplejump_p (p)
+ && JUMP_LABEL (p) != 0
+ /* Check to see whether the jump actually
+ jumps out of the loop (meaning it's no loop).
+ This case can happen for things like
+ do {..} while (0). If this label was generated previously
+ by loop, we can't tell anything about it and have to reject
+ the loop. */
+ && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, end))
+ {
+ loop_top = next_label (scan_start);
+ scan_start = JUMP_LABEL (p);
+ }
+ }
+
+ /* If SCAN_START was an insn created by loop, we don't know its luid
+ as required by loop_reg_used_before_p. So skip such loops. (This
+ test may never be true, but it's best to play it safe.)
+
+ Also, skip loops where we do not start scanning at a label. This
+ test also rejects loops starting with a JUMP_INSN that failed the
+ test above. */
+
+ if (INSN_UID (scan_start) >= max_uid_for_loop
+ || GET_CODE (scan_start) != CODE_LABEL)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
+ INSN_UID (loop_start), INSN_UID (end));
+ return;
+ }
+
+ /* Count number of times each reg is set during this loop.
+ Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
+ the setting of register I. Set VARRAY_RTX (reg_single_usage, I). */
+
+ /* Allocate extra space for REGS that might be created by
+ load_mems. We allocate a little extra slop as well, in the hopes
+ that even after the moving of movables creates some new registers
+ we won't have to reallocate these arrays. However, we do grow
+ the arrays, if necessary, in load_mems_recount_loop_regs_set. */
+ nregs = max_reg_num () + loop_mems_idx + 16;
+ VARRAY_INT_INIT (set_in_loop, nregs, "set_in_loop");
+ VARRAY_INT_INIT (n_times_set, nregs, "n_times_set");
+ VARRAY_CHAR_INIT (may_not_optimize, nregs, "may_not_optimize");
+ VARRAY_RTX_INIT (reg_single_usage, nregs, "reg_single_usage");
+
+ count_loop_regs_set (loop_top ? loop_top : loop_start, end,
+ may_not_optimize, reg_single_usage, &insn_count, nregs);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ VARRAY_CHAR (may_not_optimize, i) = 1;
+ VARRAY_INT (set_in_loop, i) = 1;
+ }
+
+#ifdef AVOID_CCMODE_COPIES
+ /* Don't try to move insns which set CC registers if we should not
+ create CCmode register copies. */
+ for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
+ if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
+ VARRAY_CHAR (may_not_optimize, i) = 1;
+#endif
+
+ bcopy ((char *) &set_in_loop->data,
+ (char *) &n_times_set->data, nregs * sizeof (int));
+
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
+ INSN_UID (loop_start), INSN_UID (end), insn_count);
+ if (loop_continue)
+ fprintf (loop_dump_stream, "Continue at insn %d.\n",
+ INSN_UID (loop_continue));
+ }
+
+ /* Scan through the loop finding insns that are safe to move.
+ Set set_in_loop negative for the reg being set, so that
+ this reg will be considered invariant for subsequent insns.
+ We consider whether subsequent insns use the reg
+ in deciding whether it is worth actually moving.
+
+ MAYBE_NEVER is nonzero if we have passed a conditional jump insn
+ and therefore it is possible that the insns we are scanning
+ would never be executed. At such times, we must make sure
+ that it is safe to execute the insn once instead of zero times.
+ When MAYBE_NEVER is 0, all insns will be executed at least once
+ so that is not a problem. */
+
+ for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
+ p != NULL_RTX;
+ p = next_insn_in_loop (p, scan_start, end, loop_top))
+ {
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
+ && find_reg_note (p, REG_LIBCALL, NULL_RTX))
+ in_libcall = 1;
+ else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
+ && find_reg_note (p, REG_RETVAL, NULL_RTX))
+ in_libcall = 0;
+
+ if (GET_CODE (p) == INSN
+ && (set = single_set (p))
+ && GET_CODE (SET_DEST (set)) == REG
+ && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
+ {
+ int tem1 = 0;
+ int tem2 = 0;
+ int move_insn = 0;
+ rtx src = SET_SRC (set);
+ rtx dependencies = 0;
+
+ /* Figure out what to use as a source of this insn. If a REG_EQUIV
+ note is given or if a REG_EQUAL note with a constant operand is
+ specified, use it as the source and mark that we should move
+ this insn by calling emit_move_insn rather that duplicating the
+ insn.
+
+ Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
+ is present. */
+ temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
+ if (temp)
+ src = XEXP (temp, 0), move_insn = 1;
+ else
+ {
+ temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
+ if (temp && CONSTANT_P (XEXP (temp, 0)))
+ src = XEXP (temp, 0), move_insn = 1;
+ if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
+ {
+ src = XEXP (temp, 0);
+ /* A libcall block can use regs that don't appear in
+ the equivalent expression. To move the libcall,
+ we must move those regs too. */
+ dependencies = libcall_other_reg (p, src);
+ }
+ }
+
+ /* Don't try to optimize a register that was made
+ by loop-optimization for an inner loop.
+ We don't know its life-span, so we can't compute the benefit. */
+ if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
+ ;
+ else if (/* The register is used in basic blocks other
+ than the one where it is set (meaning that
+ something after this point in the loop might
+ depend on its value before the set). */
+ ! reg_in_basic_block_p (p, SET_DEST (set))
+ /* And the set is not guaranteed to be executed one
+ the loop starts, or the value before the set is
+ needed before the set occurs...
+
+ ??? Note we have quadratic behaviour here, mitigated
+ by the fact that the previous test will often fail for
+ large loops. Rather than re-scanning the entire loop
+ each time for register usage, we should build tables
+ of the register usage and use them here instead. */
+ && (maybe_never
+ || loop_reg_used_before_p (set, p, loop_start,
+ scan_start, end)))
+ /* It is unsafe to move the set.
+
+ This code used to consider it OK to move a set of a variable
+ which was not created by the user and not used in an exit test.
+ That behavior is incorrect and was removed. */
+ ;
+ else if ((tem = invariant_p (src))
+ && (dependencies == 0
+ || (tem2 = invariant_p (dependencies)) != 0)
+ && (VARRAY_INT (set_in_loop,
+ REGNO (SET_DEST (set))) == 1
+ || (tem1
+ = consec_sets_invariant_p
+ (SET_DEST (set),
+ VARRAY_INT (set_in_loop, REGNO (SET_DEST (set))),
+ p)))
+ /* If the insn can cause a trap (such as divide by zero),
+ can't move it unless it's guaranteed to be executed
+ once loop is entered. Even a function call might
+ prevent the trap insn from being reached
+ (since it might exit!) */
+ && ! ((maybe_never || call_passed)
+ && may_trap_p (src)))
+ {
+ register struct movable *m;
+ register int regno = REGNO (SET_DEST (set));
+
+ /* A potential lossage is where we have a case where two insns
+ can be combined as long as they are both in the loop, but
+ we move one of them outside the loop. For large loops,
+ this can lose. The most common case of this is the address
+ of a function being called.
+
+ Therefore, if this register is marked as being used exactly
+ once if we are in a loop with calls (a "large loop"), see if
+ we can replace the usage of this register with the source
+ of this SET. If we can, delete this insn.
+
+ Don't do this if P has a REG_RETVAL note or if we have
+ SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
+
+ if (loop_has_call
+ && VARRAY_RTX (reg_single_usage, regno) != 0
+ && VARRAY_RTX (reg_single_usage, regno) != const0_rtx
+ && REGNO_FIRST_UID (regno) == INSN_UID (p)
+ && (REGNO_LAST_UID (regno)
+ == INSN_UID (VARRAY_RTX (reg_single_usage, regno)))
+ && VARRAY_INT (set_in_loop, regno) == 1
+ && ! side_effects_p (SET_SRC (set))
+ && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
+ && (! SMALL_REGISTER_CLASSES
+ || (! (GET_CODE (SET_SRC (set)) == REG
+ && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
+ /* This test is not redundant; SET_SRC (set) might be
+ a call-clobbered register and the life of REGNO
+ might span a call. */
+ && ! modified_between_p (SET_SRC (set), p,
+ VARRAY_RTX
+ (reg_single_usage, regno))
+ && no_labels_between_p (p, VARRAY_RTX (reg_single_usage, regno))
+ && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
+ VARRAY_RTX
+ (reg_single_usage, regno)))
+ {
+ /* Replace any usage in a REG_EQUAL note. Must copy the
+ new source, so that we don't get rtx sharing between the
+ SET_SOURCE and REG_NOTES of insn p. */
+ REG_NOTES (VARRAY_RTX (reg_single_usage, regno))
+ = replace_rtx (REG_NOTES (VARRAY_RTX
+ (reg_single_usage, regno)),
+ SET_DEST (set), copy_rtx (SET_SRC (set)));
+
+ PUT_CODE (p, NOTE);
+ NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (p) = 0;
+ VARRAY_INT (set_in_loop, regno) = 0;
+ continue;
+ }
+
+ m = (struct movable *) alloca (sizeof (struct movable));
+ m->next = 0;
+ m->insn = p;
+ m->set_src = src;
+ m->dependencies = dependencies;
+ m->set_dest = SET_DEST (set);
+ m->force = 0;
+ m->consec = VARRAY_INT (set_in_loop,
+ REGNO (SET_DEST (set))) - 1;
+ m->done = 0;
+ m->forces = 0;
+ m->partial = 0;
+ m->move_insn = move_insn;
+ m->move_insn_first = 0;
+ m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
+ m->savemode = VOIDmode;
+ m->regno = regno;
+ /* Set M->cond if either invariant_p or consec_sets_invariant_p
+ returned 2 (only conditionally invariant). */
+ m->cond = ((tem | tem1 | tem2) > 1);
+ m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
+ || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
+ m->match = 0;
+ m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
+ - uid_luid[REGNO_FIRST_UID (regno)]);
+ m->savings = VARRAY_INT (n_times_set, regno);
+ if (find_reg_note (p, REG_RETVAL, NULL_RTX))
+ m->savings += libcall_benefit (p);
+ VARRAY_INT (set_in_loop, regno) = move_insn ? -2 : -1;
+ /* Add M to the end of the chain MOVABLES. */
+ if (movables == 0)
+ movables = m;
+ else
+ last_movable->next = m;
+ last_movable = m;
+
+ if (m->consec > 0)
+ {
+ /* It is possible for the first instruction to have a
+ REG_EQUAL note but a non-invariant SET_SRC, so we must
+ remember the status of the first instruction in case
+ the last instruction doesn't have a REG_EQUAL note. */
+ m->move_insn_first = m->move_insn;
+
+ /* Skip this insn, not checking REG_LIBCALL notes. */
+ p = next_nonnote_insn (p);
+ /* Skip the consecutive insns, if there are any. */
+ p = skip_consec_insns (p, m->consec);
+ /* Back up to the last insn of the consecutive group. */
+ p = prev_nonnote_insn (p);
+
+ /* We must now reset m->move_insn, m->is_equiv, and possibly
+ m->set_src to correspond to the effects of all the
+ insns. */
+ temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
+ if (temp)
+ m->set_src = XEXP (temp, 0), m->move_insn = 1;
+ else
+ {
+ temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
+ if (temp && CONSTANT_P (XEXP (temp, 0)))
+ m->set_src = XEXP (temp, 0), m->move_insn = 1;
+ else
+ m->move_insn = 0;
+
+ }
+ m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
+ }
+ }
+ /* If this register is always set within a STRICT_LOW_PART
+ or set to zero, then its high bytes are constant.
+ So clear them outside the loop and within the loop
+ just load the low bytes.
+ We must check that the machine has an instruction to do so.
+ Also, if the value loaded into the register
+ depends on the same register, this cannot be done. */
+ else if (SET_SRC (set) == const0_rtx
+ && GET_CODE (NEXT_INSN (p)) == INSN
+ && (set1 = single_set (NEXT_INSN (p)))
+ && GET_CODE (set1) == SET
+ && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
+ && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
+ && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
+ == SET_DEST (set))
+ && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
+ {
+ register int regno = REGNO (SET_DEST (set));
+ if (VARRAY_INT (set_in_loop, regno) == 2)
+ {
+ register struct movable *m;
+ m = (struct movable *) alloca (sizeof (struct movable));
+ m->next = 0;
+ m->insn = p;
+ m->set_dest = SET_DEST (set);
+ m->dependencies = 0;
+ m->force = 0;
+ m->consec = 0;
+ m->done = 0;
+ m->forces = 0;
+ m->move_insn = 0;
+ m->move_insn_first = 0;
+ m->partial = 1;
+ /* If the insn may not be executed on some cycles,
+ we can't clear the whole reg; clear just high part.
+ Not even if the reg is used only within this loop.
+ Consider this:
+ while (1)
+ while (s != t) {
+ if (foo ()) x = *s;
+ use (x);
+ }
+ Clearing x before the inner loop could clobber a value
+ being saved from the last time around the outer loop.
+ However, if the reg is not used outside this loop
+ and all uses of the register are in the same
+ basic block as the store, there is no problem.
+
+ If this insn was made by loop, we don't know its
+ INSN_LUID and hence must make a conservative
+ assumption. */
+ m->global = (INSN_UID (p) >= max_uid_for_loop
+ || (uid_luid[REGNO_LAST_UID (regno)]
+ > INSN_LUID (end))
+ || (uid_luid[REGNO_FIRST_UID (regno)]
+ < INSN_LUID (p))
+ || (labels_in_range_p
+ (p, uid_luid[REGNO_FIRST_UID (regno)])));
+ if (maybe_never && m->global)
+ m->savemode = GET_MODE (SET_SRC (set1));
+ else
+ m->savemode = VOIDmode;
+ m->regno = regno;
+ m->cond = 0;
+ m->match = 0;
+ m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
+ - uid_luid[REGNO_FIRST_UID (regno)]);
+ m->savings = 1;
+ VARRAY_INT (set_in_loop, regno) = -1;
+ /* Add M to the end of the chain MOVABLES. */
+ if (movables == 0)
+ movables = m;
+ else
+ last_movable->next = m;
+ last_movable = m;
+ }
+ }
+ }
+ /* Past a call insn, we get to insns which might not be executed
+ because the call might exit. This matters for insns that trap.
+ Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
+ so they don't count. */
+ else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
+ call_passed = 1;
+ /* Past a label or a jump, we get to insns for which we
+ can't count on whether or how many times they will be
+ executed during each iteration. Therefore, we can
+ only move out sets of trivial variables
+ (those not used after the loop). */
+ /* Similar code appears twice in strength_reduce. */
+ else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
+ /* If we enter the loop in the middle, and scan around to the
+ beginning, don't set maybe_never for that. This must be an
+ unconditional jump, otherwise the code at the top of the
+ loop might never be executed. Unconditional jumps are
+ followed a by barrier then loop end. */
+ && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
+ && NEXT_INSN (NEXT_INSN (p)) == end
+ && simplejump_p (p)))
+ maybe_never = 1;
+ else if (GET_CODE (p) == NOTE)
+ {
+ /* At the virtual top of a converted loop, insns are again known to
+ be executed: logically, the loop begins here even though the exit
+ code has been duplicated. */
+ if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
+ maybe_never = call_passed = 0;
+ else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
+ loop_depth++;
+ else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
+ loop_depth--;
+ }
+ }
+
+ /* If one movable subsumes another, ignore that other. */
+
+ ignore_some_movables (movables);
+
+ /* For each movable insn, see if the reg that it loads
+ leads when it dies right into another conditionally movable insn.
+ If so, record that the second insn "forces" the first one,
+ since the second can be moved only if the first is. */
+
+ force_movables (movables);
+
+ /* See if there are multiple movable insns that load the same value.
+ If there are, make all but the first point at the first one
+ through the `match' field, and add the priorities of them
+ all together as the priority of the first. */
+
+ combine_movables (movables, nregs);
+
+ /* Now consider each movable insn to decide whether it is worth moving.
+ Store 0 in set_in_loop for each reg that is moved.
+
+ Generally this increases code size, so do not move moveables when
+ optimizing for code size. */
+
+ if (! optimize_size)
+ move_movables (movables, threshold,
+ insn_count, loop_start, end, nregs);
+
+ /* Now candidates that still are negative are those not moved.
+ Change set_in_loop to indicate that those are not actually invariant. */
+ for (i = 0; i < nregs; i++)
+ if (VARRAY_INT (set_in_loop, i) < 0)
+ VARRAY_INT (set_in_loop, i) = VARRAY_INT (n_times_set, i);
+
+ /* Now that we've moved some things out of the loop, we might be able to
+ hoist even more memory references. */
+ load_mems_and_recount_loop_regs_set (scan_start, end, loop_top,
+ loop_start, &insn_count);
+
+ if (flag_strength_reduce)
+ {
+ the_movables = movables;
+ strength_reduce (scan_start, end, loop_top,
+ insn_count, loop_start, end, loop_cont, unroll_p, bct_p);
+ }
+
+ VARRAY_FREE (reg_single_usage);
+ VARRAY_FREE (set_in_loop);
+ VARRAY_FREE (n_times_set);
+ VARRAY_FREE (may_not_optimize);
+}
+
+/* Add elements to *OUTPUT to record all the pseudo-regs
+ mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
+
+void
+record_excess_regs (in_this, not_in_this, output)
+ rtx in_this, not_in_this;
+ rtx *output;
+{
+ enum rtx_code code;
+ char *fmt;
+ int i;
+
+ code = GET_CODE (in_this);
+
+ switch (code)
+ {
+ case PC:
+ case CC0:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CONST:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ return;
+
+ case REG:
+ if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
+ && ! reg_mentioned_p (in_this, not_in_this))
+ *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
+ return;
+
+ default:
+ break;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ int j;
+
+ switch (fmt[i])
+ {
+ case 'E':
+ for (j = 0; j < XVECLEN (in_this, i); j++)
+ record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
+ break;
+
+ case 'e':
+ record_excess_regs (XEXP (in_this, i), not_in_this, output);
+ break;
+ }
+ }
+}
+
+/* Check what regs are referred to in the libcall block ending with INSN,
+ aside from those mentioned in the equivalent value.
+ If there are none, return 0.
+ If there are one or more, return an EXPR_LIST containing all of them. */
+
+rtx
+libcall_other_reg (insn, equiv)
+ rtx insn, equiv;
+{
+ rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
+ rtx p = XEXP (note, 0);
+ rtx output = 0;
+
+ /* First, find all the regs used in the libcall block
+ that are not mentioned as inputs to the result. */
+
+ while (p != insn)
+ {
+ if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
+ || GET_CODE (p) == CALL_INSN)
+ record_excess_regs (PATTERN (p), equiv, &output);
+ p = NEXT_INSN (p);
+ }
+
+ return output;
+}
+
+/* Return 1 if all uses of REG
+ are between INSN and the end of the basic block. */
+
+static int
+reg_in_basic_block_p (insn, reg)
+ rtx insn, reg;
+{
+ int regno = REGNO (reg);
+ rtx p;
+
+ if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
+ return 0;
+
+ /* Search this basic block for the already recorded last use of the reg. */
+ for (p = insn; p; p = NEXT_INSN (p))
+ {
+ switch (GET_CODE (p))
+ {
+ case NOTE:
+ break;
+
+ case INSN:
+ case CALL_INSN:
+ /* Ordinary insn: if this is the last use, we win. */
+ if (REGNO_LAST_UID (regno) == INSN_UID (p))
+ return 1;
+ break;
+
+ case JUMP_INSN:
+ /* Jump insn: if this is the last use, we win. */
+ if (REGNO_LAST_UID (regno) == INSN_UID (p))
+ return 1;
+ /* Otherwise, it's the end of the basic block, so we lose. */
+ return 0;
+
+ case CODE_LABEL:
+ case BARRIER:
+ /* It's the end of the basic block, so we lose. */
+ return 0;
+
+ default:
+ break;
+ }
+ }
+
+ /* The "last use" doesn't follow the "first use"?? */
+ abort ();
+}
+
+/* Compute the benefit of eliminating the insns in the block whose
+ last insn is LAST. This may be a group of insns used to compute a
+ value directly or can contain a library call. */
+
+static int
+libcall_benefit (last)
+ rtx last;
+{
+ rtx insn;
+ int benefit = 0;
+
+ for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
+ insn != last; insn = NEXT_INSN (insn))
+ {
+ if (GET_CODE (insn) == CALL_INSN)
+ benefit += 10; /* Assume at least this many insns in a library
+ routine. */
+ else if (GET_CODE (insn) == INSN
+ && GET_CODE (PATTERN (insn)) != USE
+ && GET_CODE (PATTERN (insn)) != CLOBBER)
+ benefit++;
+ }
+
+ return benefit;
+}
+
+/* Skip COUNT insns from INSN, counting library calls as 1 insn. */
+
+static rtx
+skip_consec_insns (insn, count)
+ rtx insn;
+ int count;
+{
+ for (; count > 0; count--)
+ {
+ rtx temp;
+
+ /* If first insn of libcall sequence, skip to end. */
+ /* Do this at start of loop, since INSN is guaranteed to
+ be an insn here. */
+ if (GET_CODE (insn) != NOTE
+ && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
+ insn = XEXP (temp, 0);
+
+ do insn = NEXT_INSN (insn);
+ while (GET_CODE (insn) == NOTE);
+ }
+
+ return insn;
+}
+
+/* Ignore any movable whose insn falls within a libcall
+ which is part of another movable.
+ We make use of the fact that the movable for the libcall value
+ was made later and so appears later on the chain. */
+
+static void
+ignore_some_movables (movables)
+ struct movable *movables;
+{
+ register struct movable *m, *m1;
+
+ for (m = movables; m; m = m->next)
+ {
+ /* Is this a movable for the value of a libcall? */
+ rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
+ if (note)
+ {
+ rtx insn;
+ /* Check for earlier movables inside that range,
+ and mark them invalid. We cannot use LUIDs here because
+ insns created by loop.c for prior loops don't have LUIDs.
+ Rather than reject all such insns from movables, we just
+ explicitly check each insn in the libcall (since invariant
+ libcalls aren't that common). */
+ for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
+ for (m1 = movables; m1 != m; m1 = m1->next)
+ if (m1->insn == insn)
+ m1->done = 1;
+ }
+ }
+}
+
+/* For each movable insn, see if the reg that it loads
+ leads when it dies right into another conditionally movable insn.
+ If so, record that the second insn "forces" the first one,
+ since the second can be moved only if the first is. */
+
+static void
+force_movables (movables)
+ struct movable *movables;
+{
+ register struct movable *m, *m1;
+ for (m1 = movables; m1; m1 = m1->next)
+ /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
+ if (!m1->partial && !m1->done)
+ {
+ int regno = m1->regno;
+ for (m = m1->next; m; m = m->next)
+ /* ??? Could this be a bug? What if CSE caused the
+ register of M1 to be used after this insn?
+ Since CSE does not update regno_last_uid,
+ this insn M->insn might not be where it dies.
+ But very likely this doesn't matter; what matters is
+ that M's reg is computed from M1's reg. */
+ if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
+ && !m->done)
+ break;
+ if (m != 0 && m->set_src == m1->set_dest
+ /* If m->consec, m->set_src isn't valid. */
+ && m->consec == 0)
+ m = 0;
+
+ /* Increase the priority of the moving the first insn
+ since it permits the second to be moved as well. */
+ if (m != 0)
+ {
+ m->forces = m1;
+ m1->lifetime += m->lifetime;
+ m1->savings += m->savings;
+ }
+ }
+}
+
+/* Find invariant expressions that are equal and can be combined into
+ one register. */
+
+static void
+combine_movables (movables, nregs)
+ struct movable *movables;
+ int nregs;
+{
+ register struct movable *m;
+ char *matched_regs = (char *) alloca (nregs);
+ enum machine_mode mode;
+
+ /* Regs that are set more than once are not allowed to match
+ or be matched. I'm no longer sure why not. */
+ /* Perhaps testing m->consec_sets would be more appropriate here? */
+
+ for (m = movables; m; m = m->next)
+ if (m->match == 0 && VARRAY_INT (n_times_set, m->regno) == 1 && !m->partial)
+ {
+ register struct movable *m1;
+ int regno = m->regno;
+
+ bzero (matched_regs, nregs);
+ matched_regs[regno] = 1;
+
+ /* We want later insns to match the first one. Don't make the first
+ one match any later ones. So start this loop at m->next. */
+ for (m1 = m->next; m1; m1 = m1->next)
+ if (m != m1 && m1->match == 0 && VARRAY_INT (n_times_set, m1->regno) == 1
+ /* A reg used outside the loop mustn't be eliminated. */
+ && !m1->global
+ /* A reg used for zero-extending mustn't be eliminated. */
+ && !m1->partial
+ && (matched_regs[m1->regno]
+ ||
+ (
+ /* Can combine regs with different modes loaded from the
+ same constant only if the modes are the same or
+ if both are integer modes with M wider or the same
+ width as M1. The check for integer is redundant, but
+ safe, since the only case of differing destination
+ modes with equal sources is when both sources are
+ VOIDmode, i.e., CONST_INT. */
+ (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
+ || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
+ && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
+ && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
+ >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
+ /* See if the source of M1 says it matches M. */
+ && ((GET_CODE (m1->set_src) == REG
+ && matched_regs[REGNO (m1->set_src)])
+ || rtx_equal_for_loop_p (m->set_src, m1->set_src,
+ movables))))
+ && ((m->dependencies == m1->dependencies)
+ || rtx_equal_p (m->dependencies, m1->dependencies)))
+ {
+ m->lifetime += m1->lifetime;
+ m->savings += m1->savings;
+ m1->done = 1;
+ m1->match = m;
+ matched_regs[m1->regno] = 1;
+ }
+ }
+
+ /* Now combine the regs used for zero-extension.
+ This can be done for those not marked `global'
+ provided their lives don't overlap. */
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ {
+ register struct movable *m0 = 0;
+
+ /* Combine all the registers for extension from mode MODE.
+ Don't combine any that are used outside this loop. */
+ for (m = movables; m; m = m->next)
+ if (m->partial && ! m->global
+ && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
+ {
+ register struct movable *m1;
+ int first = uid_luid[REGNO_FIRST_UID (m->regno)];
+ int last = uid_luid[REGNO_LAST_UID (m->regno)];
+
+ if (m0 == 0)
+ {
+ /* First one: don't check for overlap, just record it. */
+ m0 = m;
+ continue;
+ }
+
+ /* Make sure they extend to the same mode.
+ (Almost always true.) */
+ if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
+ continue;
+
+ /* We already have one: check for overlap with those
+ already combined together. */
+ for (m1 = movables; m1 != m; m1 = m1->next)
+ if (m1 == m0 || (m1->partial && m1->match == m0))
+ if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
+ || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
+ goto overlap;
+
+ /* No overlap: we can combine this with the others. */
+ m0->lifetime += m->lifetime;
+ m0->savings += m->savings;
+ m->done = 1;
+ m->match = m0;
+
+ overlap: ;
+ }
+ }
+}
+
+/* Return 1 if regs X and Y will become the same if moved. */
+
+static int
+regs_match_p (x, y, movables)
+ rtx x, y;
+ struct movable *movables;
+{
+ int xn = REGNO (x);
+ int yn = REGNO (y);
+ struct movable *mx, *my;
+
+ for (mx = movables; mx; mx = mx->next)
+ if (mx->regno == xn)
+ break;
+
+ for (my = movables; my; my = my->next)
+ if (my->regno == yn)
+ break;
+
+ return (mx && my
+ && ((mx->match == my->match && mx->match != 0)
+ || mx->match == my
+ || mx == my->match));
+}
+
+/* Return 1 if X and Y are identical-looking rtx's.
+ This is the Lisp function EQUAL for rtx arguments.
+
+ If two registers are matching movables or a movable register and an
+ equivalent constant, consider them equal. */
+
+static int
+rtx_equal_for_loop_p (x, y, movables)
+ rtx x, y;
+ struct movable *movables;
+{
+ register int i;
+ register int j;
+ register struct movable *m;
+ register enum rtx_code code;
+ register char *fmt;
+
+ if (x == y)
+ return 1;
+ if (x == 0 || y == 0)
+ return 0;
+
+ code = GET_CODE (x);
+
+ /* If we have a register and a constant, they may sometimes be
+ equal. */
+ if (GET_CODE (x) == REG && VARRAY_INT (set_in_loop, REGNO (x)) == -2
+ && CONSTANT_P (y))
+ {
+ for (m = movables; m; m = m->next)
+ if (m->move_insn && m->regno == REGNO (x)
+ && rtx_equal_p (m->set_src, y))
+ return 1;
+ }
+ else if (GET_CODE (y) == REG && VARRAY_INT (set_in_loop, REGNO (y)) == -2
+ && CONSTANT_P (x))
+ {
+ for (m = movables; m; m = m->next)
+ if (m->move_insn && m->regno == REGNO (y)
+ && rtx_equal_p (m->set_src, x))
+ return 1;
+ }
+
+ /* Otherwise, rtx's of different codes cannot be equal. */
+ if (code != GET_CODE (y))
+ return 0;
+
+ /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
+ (REG:SI x) and (REG:HI x) are NOT equivalent. */
+
+ if (GET_MODE (x) != GET_MODE (y))
+ return 0;
+
+ /* These three types of rtx's can be compared nonrecursively. */
+ if (code == REG)
+ return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
+
+ if (code == LABEL_REF)
+ return XEXP (x, 0) == XEXP (y, 0);
+ if (code == SYMBOL_REF)
+ return XSTR (x, 0) == XSTR (y, 0);
+
+ /* Compare the elements. If any pair of corresponding elements
+ fail to match, return 0 for the whole things. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ switch (fmt[i])
+ {
+ case 'w':
+ if (XWINT (x, i) != XWINT (y, i))
+ return 0;
+ break;
+
+ case 'i':
+ if (XINT (x, i) != XINT (y, i))
+ return 0;
+ break;
+
+ case 'E':
+ /* Two vectors must have the same length. */
+ if (XVECLEN (x, i) != XVECLEN (y, i))
+ return 0;
+
+ /* And the corresponding elements must match. */
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
+ return 0;
+ break;
+
+ case 'e':
+ if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
+ return 0;
+ break;
+
+ case 's':
+ if (strcmp (XSTR (x, i), XSTR (y, i)))
+ return 0;
+ break;
+
+ case 'u':
+ /* These are just backpointers, so they don't matter. */
+ break;
+
+ case '0':
+ break;
+
+ /* It is believed that rtx's at this level will never
+ contain anything but integers and other rtx's,
+ except for within LABEL_REFs and SYMBOL_REFs. */
+ default:
+ abort ();
+ }
+ }
+ return 1;
+}
+
+/* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
+ insns in INSNS which use thet reference. */
+
+static void
+add_label_notes (x, insns)
+ rtx x;
+ rtx insns;
+{
+ enum rtx_code code = GET_CODE (x);
+ int i, j;
+ char *fmt;
+ rtx insn;
+
+ if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
+ {
+ /* This code used to ignore labels that referred to dispatch tables to
+ avoid flow generating (slighly) worse code.
+
+ We no longer ignore such label references (see LABEL_REF handling in
+ mark_jump_label for additional information). */
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ if (reg_mentioned_p (XEXP (x, 0), insn))
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
+ REG_NOTES (insn));
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ add_label_notes (XEXP (x, i), insns);
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ add_label_notes (XVECEXP (x, i, j), insns);
+ }
+}
+
+/* Scan MOVABLES, and move the insns that deserve to be moved.
+ If two matching movables are combined, replace one reg with the
+ other throughout. */
+
+static void
+move_movables (movables, threshold, insn_count, loop_start, end, nregs)
+ struct movable *movables;
+ int threshold;
+ int insn_count;
+ rtx loop_start;
+ rtx end;
+ int nregs;
+{
+ rtx new_start = 0;
+ register struct movable *m;
+ register rtx p;
+ /* Map of pseudo-register replacements to handle combining
+ when we move several insns that load the same value
+ into different pseudo-registers. */
+ rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
+ char *already_moved = (char *) alloca (nregs);
+
+ bzero (already_moved, nregs);
+ bzero ((char *) reg_map, nregs * sizeof (rtx));
+
+ num_movables = 0;
+
+ for (m = movables; m; m = m->next)
+ {
+ /* Describe this movable insn. */
+
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
+ INSN_UID (m->insn), m->regno, m->lifetime);
+ if (m->consec > 0)
+ fprintf (loop_dump_stream, "consec %d, ", m->consec);
+ if (m->cond)
+ fprintf (loop_dump_stream, "cond ");
+ if (m->force)
+ fprintf (loop_dump_stream, "force ");
+ if (m->global)
+ fprintf (loop_dump_stream, "global ");
+ if (m->done)
+ fprintf (loop_dump_stream, "done ");
+ if (m->move_insn)
+ fprintf (loop_dump_stream, "move-insn ");
+ if (m->match)
+ fprintf (loop_dump_stream, "matches %d ",
+ INSN_UID (m->match->insn));
+ if (m->forces)
+ fprintf (loop_dump_stream, "forces %d ",
+ INSN_UID (m->forces->insn));
+ }
+
+ /* Count movables. Value used in heuristics in strength_reduce. */
+ num_movables++;
+
+ /* Ignore the insn if it's already done (it matched something else).
+ Otherwise, see if it is now safe to move. */
+
+ if (!m->done
+ && (! m->cond
+ || (1 == invariant_p (m->set_src)
+ && (m->dependencies == 0
+ || 1 == invariant_p (m->dependencies))
+ && (m->consec == 0
+ || 1 == consec_sets_invariant_p (m->set_dest,
+ m->consec + 1,
+ m->insn))))
+ && (! m->forces || m->forces->done))
+ {
+ register int regno;
+ register rtx p;
+ int savings = m->savings;
+
+ /* We have an insn that is safe to move.
+ Compute its desirability. */
+
+ p = m->insn;
+ regno = m->regno;
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "savings %d ", savings);
+
+ if (moved_once[regno] && loop_dump_stream)
+ fprintf (loop_dump_stream, "halved since already moved ");
+
+ /* An insn MUST be moved if we already moved something else
+ which is safe only if this one is moved too: that is,
+ if already_moved[REGNO] is nonzero. */
+
+ /* An insn is desirable to move if the new lifetime of the
+ register is no more than THRESHOLD times the old lifetime.
+ If it's not desirable, it means the loop is so big
+ that moving won't speed things up much,
+ and it is liable to make register usage worse. */
+
+ /* It is also desirable to move if it can be moved at no
+ extra cost because something else was already moved. */
+
+ if (already_moved[regno]
+ || flag_move_all_movables
+ || (threshold * savings * m->lifetime) >=
+ (moved_once[regno] ? insn_count * 2 : insn_count)
+ || (m->forces && m->forces->done
+ && VARRAY_INT (n_times_set, m->forces->regno) == 1))
+ {
+ int count;
+ register struct movable *m1;
+ rtx first;
+
+ /* Now move the insns that set the reg. */
+
+ if (m->partial && m->match)
+ {
+ rtx newpat, i1;
+ rtx r1, r2;
+ /* Find the end of this chain of matching regs.
+ Thus, we load each reg in the chain from that one reg.
+ And that reg is loaded with 0 directly,
+ since it has ->match == 0. */
+ for (m1 = m; m1->match; m1 = m1->match);
+ newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
+ SET_DEST (PATTERN (m1->insn)));
+ i1 = emit_insn_before (newpat, loop_start);
+
+ /* Mark the moved, invariant reg as being allowed to
+ share a hard reg with the other matching invariant. */
+ REG_NOTES (i1) = REG_NOTES (m->insn);
+ r1 = SET_DEST (PATTERN (m->insn));
+ r2 = SET_DEST (PATTERN (m1->insn));
+ regs_may_share
+ = gen_rtx_EXPR_LIST (VOIDmode, r1,
+ gen_rtx_EXPR_LIST (VOIDmode, r2,
+ regs_may_share));
+ delete_insn (m->insn);
+
+ if (new_start == 0)
+ new_start = i1;
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
+ }
+ /* If we are to re-generate the item being moved with a
+ new move insn, first delete what we have and then emit
+ the move insn before the loop. */
+ else if (m->move_insn)
+ {
+ rtx i1, temp;
+
+ for (count = m->consec; count >= 0; count--)
+ {
+ /* If this is the first insn of a library call sequence,
+ skip to the end. */
+ if (GET_CODE (p) != NOTE
+ && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
+ p = XEXP (temp, 0);
+
+ /* If this is the last insn of a libcall sequence, then
+ delete every insn in the sequence except the last.
+ The last insn is handled in the normal manner. */
+ if (GET_CODE (p) != NOTE
+ && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
+ {
+ temp = XEXP (temp, 0);
+ while (temp != p)
+ temp = delete_insn (temp);
+ }
+
+ temp = p;
+ p = delete_insn (p);
+
+ /* simplify_giv_expr expects that it can walk the insns
+ at m->insn forwards and see this old sequence we are
+ tossing here. delete_insn does preserve the next
+ pointers, but when we skip over a NOTE we must fix
+ it up. Otherwise that code walks into the non-deleted
+ insn stream. */
+ while (p && GET_CODE (p) == NOTE)
+ p = NEXT_INSN (temp) = NEXT_INSN (p);
+ }
+
+ start_sequence ();
+ emit_move_insn (m->set_dest, m->set_src);
+ temp = get_insns ();
+ end_sequence ();
+
+ add_label_notes (m->set_src, temp);
+
+ i1 = emit_insns_before (temp, loop_start);
+ if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
+ REG_NOTES (i1)
+ = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
+ m->set_src, REG_NOTES (i1));
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
+
+ /* The more regs we move, the less we like moving them. */
+ threshold -= 3;
+ }
+ else
+ {
+ for (count = m->consec; count >= 0; count--)
+ {
+ rtx i1, temp;
+
+ /* If first insn of libcall sequence, skip to end. */
+ /* Do this at start of loop, since p is guaranteed to
+ be an insn here. */
+ if (GET_CODE (p) != NOTE
+ && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
+ p = XEXP (temp, 0);
+
+ /* If last insn of libcall sequence, move all
+ insns except the last before the loop. The last
+ insn is handled in the normal manner. */
+ if (GET_CODE (p) != NOTE
+ && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
+ {
+ rtx fn_address = 0;
+ rtx fn_reg = 0;
+ rtx fn_address_insn = 0;
+
+ first = 0;
+ for (temp = XEXP (temp, 0); temp != p;
+ temp = NEXT_INSN (temp))
+ {
+ rtx body;
+ rtx n;
+ rtx next;
+
+ if (GET_CODE (temp) == NOTE)
+ continue;
+
+ body = PATTERN (temp);
+
+ /* Find the next insn after TEMP,
+ not counting USE or NOTE insns. */
+ for (next = NEXT_INSN (temp); next != p;
+ next = NEXT_INSN (next))
+ if (! (GET_CODE (next) == INSN
+ && GET_CODE (PATTERN (next)) == USE)
+ && GET_CODE (next) != NOTE)
+ break;
+
+ /* If that is the call, this may be the insn
+ that loads the function address.
+
+ Extract the function address from the insn
+ that loads it into a register.
+ If this insn was cse'd, we get incorrect code.
+
+ So emit a new move insn that copies the
+ function address into the register that the
+ call insn will use. flow.c will delete any
+ redundant stores that we have created. */
+ if (GET_CODE (next) == CALL_INSN
+ && GET_CODE (body) == SET
+ && GET_CODE (SET_DEST (body)) == REG
+ && (n = find_reg_note (temp, REG_EQUAL,
+ NULL_RTX)))
+ {
+ fn_reg = SET_SRC (body);
+ if (GET_CODE (fn_reg) != REG)
+ fn_reg = SET_DEST (body);
+ fn_address = XEXP (n, 0);
+ fn_address_insn = temp;
+ }
+ /* We have the call insn.
+ If it uses the register we suspect it might,
+ load it with the correct address directly. */
+ if (GET_CODE (temp) == CALL_INSN
+ && fn_address != 0
+ && reg_referenced_p (fn_reg, body))
+ emit_insn_after (gen_move_insn (fn_reg,
+ fn_address),
+ fn_address_insn);
+
+ if (GET_CODE (temp) == CALL_INSN)
+ {
+ i1 = emit_call_insn_before (body, loop_start);
+ /* Because the USAGE information potentially
+ contains objects other than hard registers
+ we need to copy it. */
+ if (CALL_INSN_FUNCTION_USAGE (temp))
+ CALL_INSN_FUNCTION_USAGE (i1)
+ = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
+ }
+ else
+ i1 = emit_insn_before (body, loop_start);
+ if (first == 0)
+ first = i1;
+ if (temp == fn_address_insn)
+ fn_address_insn = i1;
+ REG_NOTES (i1) = REG_NOTES (temp);
+ delete_insn (temp);
+ }
+ if (new_start == 0)
+ new_start = first;
+ }
+ if (m->savemode != VOIDmode)
+ {
+ /* P sets REG to zero; but we should clear only
+ the bits that are not covered by the mode
+ m->savemode. */
+ rtx reg = m->set_dest;
+ rtx sequence;
+ rtx tem;
+
+ start_sequence ();
+ tem = expand_binop
+ (GET_MODE (reg), and_optab, reg,
+ GEN_INT ((((HOST_WIDE_INT) 1
+ << GET_MODE_BITSIZE (m->savemode)))
+ - 1),
+ reg, 1, OPTAB_LIB_WIDEN);
+ if (tem == 0)
+ abort ();
+ if (tem != reg)
+ emit_move_insn (reg, tem);
+ sequence = gen_sequence ();
+ end_sequence ();
+ i1 = emit_insn_before (sequence, loop_start);
+ }
+ else if (GET_CODE (p) == CALL_INSN)
+ {
+ i1 = emit_call_insn_before (PATTERN (p), loop_start);
+ /* Because the USAGE information potentially
+ contains objects other than hard registers
+ we need to copy it. */
+ if (CALL_INSN_FUNCTION_USAGE (p))
+ CALL_INSN_FUNCTION_USAGE (i1)
+ = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
+ }
+ else if (count == m->consec && m->move_insn_first)
+ {
+ /* The SET_SRC might not be invariant, so we must
+ use the REG_EQUAL note. */
+ start_sequence ();
+ emit_move_insn (m->set_dest, m->set_src);
+ temp = get_insns ();
+ end_sequence ();
+
+ add_label_notes (m->set_src, temp);
+
+ i1 = emit_insns_before (temp, loop_start);
+ if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
+ REG_NOTES (i1)
+ = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
+ : REG_EQUAL),
+ m->set_src, REG_NOTES (i1));
+ }
+ else
+ i1 = emit_insn_before (PATTERN (p), loop_start);
+
+ if (REG_NOTES (i1) == 0)
+ {
+ REG_NOTES (i1) = REG_NOTES (p);
+
+ /* If there is a REG_EQUAL note present whose value
+ is not loop invariant, then delete it, since it
+ may cause problems with later optimization passes.
+ It is possible for cse to create such notes
+ like this as a result of record_jump_cond. */
+
+ if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
+ && ! invariant_p (XEXP (temp, 0)))
+ remove_note (i1, temp);
+ }
+
+ if (new_start == 0)
+ new_start = i1;
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, " moved to %d",
+ INSN_UID (i1));
+
+ /* If library call, now fix the REG_NOTES that contain
+ insn pointers, namely REG_LIBCALL on FIRST
+ and REG_RETVAL on I1. */
+ if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
+ {
+ XEXP (temp, 0) = first;
+ temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
+ XEXP (temp, 0) = i1;
+ }
+
+ temp = p;
+ delete_insn (p);
+ p = NEXT_INSN (p);
+
+ /* simplify_giv_expr expects that it can walk the insns
+ at m->insn forwards and see this old sequence we are
+ tossing here. delete_insn does preserve the next
+ pointers, but when we skip over a NOTE we must fix
+ it up. Otherwise that code walks into the non-deleted
+ insn stream. */
+ while (p && GET_CODE (p) == NOTE)
+ p = NEXT_INSN (temp) = NEXT_INSN (p);
+ }
+
+ /* The more regs we move, the less we like moving them. */
+ threshold -= 3;
+ }
+
+ /* Any other movable that loads the same register
+ MUST be moved. */
+ already_moved[regno] = 1;
+
+ /* This reg has been moved out of one loop. */
+ moved_once[regno] = 1;
+
+ /* The reg set here is now invariant. */
+ if (! m->partial)
+ VARRAY_INT (set_in_loop, regno) = 0;
+
+ m->done = 1;
+
+ /* Change the length-of-life info for the register
+ to say it lives at least the full length of this loop.
+ This will help guide optimizations in outer loops. */
+
+ if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
+ /* This is the old insn before all the moved insns.
+ We can't use the moved insn because it is out of range
+ in uid_luid. Only the old insns have luids. */
+ REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
+ if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
+ REGNO_LAST_UID (regno) = INSN_UID (end);
+
+ /* Combine with this moved insn any other matching movables. */
+
+ if (! m->partial)
+ for (m1 = movables; m1; m1 = m1->next)
+ if (m1->match == m)
+ {
+ rtx temp;
+
+ /* Schedule the reg loaded by M1
+ for replacement so that shares the reg of M.
+ If the modes differ (only possible in restricted
+ circumstances, make a SUBREG. */
+ if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
+ reg_map[m1->regno] = m->set_dest;
+ else
+ reg_map[m1->regno]
+ = gen_lowpart_common (GET_MODE (m1->set_dest),
+ m->set_dest);
+
+ /* Get rid of the matching insn
+ and prevent further processing of it. */
+ m1->done = 1;
+
+ /* if library call, delete all insn except last, which
+ is deleted below */
+ if ((temp = find_reg_note (m1->insn, REG_RETVAL,
+ NULL_RTX)))
+ {
+ for (temp = XEXP (temp, 0); temp != m1->insn;
+ temp = NEXT_INSN (temp))
+ delete_insn (temp);
+ }
+ delete_insn (m1->insn);
+
+ /* Any other movable that loads the same register
+ MUST be moved. */
+ already_moved[m1->regno] = 1;
+
+ /* The reg merged here is now invariant,
+ if the reg it matches is invariant. */
+ if (! m->partial)
+ VARRAY_INT (set_in_loop, m1->regno) = 0;
+ }
+ }
+ else if (loop_dump_stream)
+ fprintf (loop_dump_stream, "not desirable");
+ }
+ else if (loop_dump_stream && !m->match)
+ fprintf (loop_dump_stream, "not safe");
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "\n");
+ }
+
+ if (new_start == 0)
+ new_start = loop_start;
+
+ /* Go through all the instructions in the loop, making
+ all the register substitutions scheduled in REG_MAP. */
+ for (p = new_start; p != end; p = NEXT_INSN (p))
+ if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
+ || GET_CODE (p) == CALL_INSN)
+ {
+ replace_regs (PATTERN (p), reg_map, nregs, 0);
+ replace_regs (REG_NOTES (p), reg_map, nregs, 0);
+ INSN_CODE (p) = -1;
+ }
+}
+
+#if 0
+/* Scan X and replace the address of any MEM in it with ADDR.
+ REG is the address that MEM should have before the replacement. */
+
+static void
+replace_call_address (x, reg, addr)
+ rtx x, reg, addr;
+{
+ register enum rtx_code code;
+ register int i;
+ register char *fmt;
+
+ if (x == 0)
+ return;
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case PC:
+ case CC0:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CONST:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case REG:
+ return;
+
+ case SET:
+ /* Short cut for very common case. */
+ replace_call_address (XEXP (x, 1), reg, addr);
+ return;
+
+ case CALL:
+ /* Short cut for very common case. */
+ replace_call_address (XEXP (x, 0), reg, addr);
+ return;
+
+ case MEM:
+ /* If this MEM uses a reg other than the one we expected,
+ something is wrong. */
+ if (XEXP (x, 0) != reg)
+ abort ();
+ XEXP (x, 0) = addr;
+ return;
+
+ default:
+ break;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ replace_call_address (XEXP (x, i), reg, addr);
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ replace_call_address (XVECEXP (x, i, j), reg, addr);
+ }
+ }
+}
+#endif
+
+/* Return the number of memory refs to addresses that vary
+ in the rtx X. */
+
+static int
+count_nonfixed_reads (x)
+ rtx x;
+{
+ register enum rtx_code code;
+ register int i;
+ register char *fmt;
+ int value;
+
+ if (x == 0)
+ return 0;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case PC:
+ case CC0:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CONST:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case REG:
+ return 0;
+
+ case MEM:
+ return ((invariant_p (XEXP (x, 0)) != 1)
+ + count_nonfixed_reads (XEXP (x, 0)));
+
+ default:
+ break;
+ }
+
+ value = 0;
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ value += count_nonfixed_reads (XEXP (x, i));
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ value += count_nonfixed_reads (XVECEXP (x, i, j));
+ }
+ }
+ return value;
+}
+
+
+#if 0
+/* P is an instruction that sets a register to the result of a ZERO_EXTEND.
+ Replace it with an instruction to load just the low bytes
+ if the machine supports such an instruction,
+ and insert above LOOP_START an instruction to clear the register. */
+
+static void
+constant_high_bytes (p, loop_start)
+ rtx p, loop_start;
+{
+ register rtx new;
+ register int insn_code_number;
+
+ /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
+ to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
+
+ new = gen_rtx_SET (VOIDmode,
+ gen_rtx_STRICT_LOW_PART (VOIDmode,
+ gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
+ SET_DEST (PATTERN (p)),
+ 0)),
+ XEXP (SET_SRC (PATTERN (p)), 0));
+ insn_code_number = recog (new, p);
+
+ if (insn_code_number)
+ {
+ register int i;
+
+ /* Clear destination register before the loop. */
+ emit_insn_before (gen_rtx_SET (VOIDmode, SET_DEST (PATTERN (p)),
+ const0_rtx),
+ loop_start);
+
+ /* Inside the loop, just load the low part. */
+ PATTERN (p) = new;
+ }
+}
+#endif
+
+/* Scan a loop setting the variables `unknown_address_altered',
+ `num_mem_sets', `loop_continue', `loops_enclosed', `loop_has_call',
+ `loop_has_volatile', and `loop_has_tablejump'.
+ Also, fill in the array `loop_mems' and the list `loop_store_mems'. */
+
+static void
+prescan_loop (start, end)
+ rtx start, end;
+{
+ register int level = 1;
+ rtx insn;
+ int loop_has_multiple_exit_targets = 0;
+ /* The label after END. Jumping here is just like falling off the
+ end of the loop. We use next_nonnote_insn instead of next_label
+ as a hedge against the (pathological) case where some actual insn
+ might end up between the two. */
+ rtx exit_target = next_nonnote_insn (end);
+ if (exit_target == NULL_RTX || GET_CODE (exit_target) != CODE_LABEL)
+ loop_has_multiple_exit_targets = 1;
+
+ unknown_address_altered = 0;
+ loop_has_call = 0;
+ loop_has_volatile = 0;
+ loop_has_tablejump = 0;
+ loop_store_mems = NULL_RTX;
+ first_loop_store_insn = NULL_RTX;
+ loop_mems_idx = 0;
+
+ num_mem_sets = 0;
+ loops_enclosed = 1;
+ loop_continue = 0;
+
+ for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
+ insn = NEXT_INSN (insn))
+ {
+ if (GET_CODE (insn) == NOTE)
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
+ {
+ ++level;
+ /* Count number of loops contained in this one. */
+ loops_enclosed++;
+ }
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
+ {
+ --level;
+ if (level == 0)
+ {
+ end = insn;
+ break;
+ }
+ }
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
+ {
+ if (level == 1)
+ loop_continue = insn;
+ }
+ }
+ else if (GET_CODE (insn) == CALL_INSN)
+ {
+ if (! CONST_CALL_P (insn))
+ unknown_address_altered = 1;
+ loop_has_call = 1;
+ }
+ else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
+ {
+ rtx label1 = NULL_RTX;
+ rtx label2 = NULL_RTX;
+
+ if (volatile_refs_p (PATTERN (insn)))
+ loop_has_volatile = 1;
+
+ if (GET_CODE (insn) == JUMP_INSN
+ && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
+ || GET_CODE (PATTERN (insn)) == ADDR_VEC))
+ loop_has_tablejump = 1;
+
+ note_stores (PATTERN (insn), note_addr_stored);
+ if (! first_loop_store_insn && loop_store_mems)
+ first_loop_store_insn = insn;
+
+ if (! loop_has_multiple_exit_targets
+ && GET_CODE (insn) == JUMP_INSN
+ && GET_CODE (PATTERN (insn)) == SET
+ && SET_DEST (PATTERN (insn)) == pc_rtx)
+ {
+ if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
+ {
+ label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
+ label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
+ }
+ else
+ {
+ label1 = SET_SRC (PATTERN (insn));
+ }
+
+ do {
+ if (label1 && label1 != pc_rtx)
+ {
+ if (GET_CODE (label1) != LABEL_REF)
+ {
+ /* Something tricky. */
+ loop_has_multiple_exit_targets = 1;
+ break;
+ }
+ else if (XEXP (label1, 0) != exit_target
+ && LABEL_OUTSIDE_LOOP_P (label1))
+ {
+ /* A jump outside the current loop. */
+ loop_has_multiple_exit_targets = 1;
+ break;
+ }
+ }
+
+ label1 = label2;
+ label2 = NULL_RTX;
+ } while (label1);
+ }
+ }
+ else if (GET_CODE (insn) == RETURN)
+ loop_has_multiple_exit_targets = 1;
+ }
+
+ /* Now, rescan the loop, setting up the LOOP_MEMS array. */
+ if (/* We can't tell what MEMs are aliased by what. */
+ !unknown_address_altered
+ /* An exception thrown by a called function might land us
+ anywhere. */
+ && !loop_has_call
+ /* We don't want loads for MEMs moved to a location before the
+ one at which their stack memory becomes allocated. (Note
+ that this is not a problem for malloc, etc., since those
+ require actual function calls. */
+ && !current_function_calls_alloca
+ /* There are ways to leave the loop other than falling off the
+ end. */
+ && !loop_has_multiple_exit_targets)
+ for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
+ insn = NEXT_INSN (insn))
+ for_each_rtx (&insn, insert_loop_mem, 0);
+}
+
+/* LOOP_NUMBER_CONT_DOMINATOR is now the last label between the loop start
+ and the continue note that is a the destination of a (cond)jump after
+ the continue note. If there is any (cond)jump between the loop start
+ and what we have so far as LOOP_NUMBER_CONT_DOMINATOR that has a
+ target between LOOP_DOMINATOR and the continue note, move
+ LOOP_NUMBER_CONT_DOMINATOR forward to that label; if a jump's
+ destination cannot be determined, clear LOOP_NUMBER_CONT_DOMINATOR. */
+
+static void
+verify_dominator (loop_number)
+ int loop_number;
+{
+ rtx insn;
+
+ if (! loop_number_cont_dominator[loop_number])
+ /* This can happen for an empty loop, e.g. in
+ gcc.c-torture/compile/920410-2.c */
+ return;
+ if (loop_number_cont_dominator[loop_number] == const0_rtx)
+ {
+ loop_number_cont_dominator[loop_number] = 0;
+ return;
+ }
+ for (insn = loop_number_loop_starts[loop_number];
+ insn != loop_number_cont_dominator[loop_number];
+ insn = NEXT_INSN (insn))
+ {
+ if (GET_CODE (insn) == JUMP_INSN
+ && GET_CODE (PATTERN (insn)) != RETURN)
+ {
+ rtx label = JUMP_LABEL (insn);
+ int label_luid = INSN_LUID (label);
+
+ if (! condjump_p (insn)
+ && ! condjump_in_parallel_p (insn))
+ {
+ loop_number_cont_dominator[loop_number] = NULL_RTX;
+ return;
+ }
+ if (label_luid < INSN_LUID (loop_number_loop_cont[loop_number])
+ && (label_luid
+ > INSN_LUID (loop_number_cont_dominator[loop_number])))
+ loop_number_cont_dominator[loop_number] = label;
+ }
+ }
+}
+
+/* Scan the function looking for loops. Record the start and end of each loop.
+ Also mark as invalid loops any loops that contain a setjmp or are branched
+ to from outside the loop. */
+
+static void
+find_and_verify_loops (f)
+ rtx f;
+{
+ rtx insn, label;
+ int current_loop = -1;
+ int next_loop = -1;
+ int loop;
+
+ compute_luids (f, NULL_RTX, 0);
+
+ /* If there are jumps to undefined labels,
+ treat them as jumps out of any/all loops.
+ This also avoids writing past end of tables when there are no loops. */
+ uid_loop_num[0] = -1;
+
+ /* Find boundaries of loops, mark which loops are contained within
+ loops, and invalidate loops that have setjmp. */
+
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ {
+ if (GET_CODE (insn) == NOTE)
+ switch (NOTE_LINE_NUMBER (insn))
+ {
+ case NOTE_INSN_LOOP_BEG:
+ loop_number_loop_starts[++next_loop] = insn;
+ loop_number_loop_ends[next_loop] = 0;
+ loop_number_loop_cont[next_loop] = 0;
+ loop_number_cont_dominator[next_loop] = 0;
+ loop_outer_loop[next_loop] = current_loop;
+ loop_invalid[next_loop] = 0;
+ loop_number_exit_labels[next_loop] = 0;
+ loop_number_exit_count[next_loop] = 0;
+ current_loop = next_loop;
+ break;
+
+ case NOTE_INSN_SETJMP:
+ /* In this case, we must invalidate our current loop and any
+ enclosing loop. */
+ for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
+ {
+ loop_invalid[loop] = 1;
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "\nLoop at %d ignored due to setjmp.\n",
+ INSN_UID (loop_number_loop_starts[loop]));
+ }
+ break;
+
+ case NOTE_INSN_LOOP_CONT:
+ loop_number_loop_cont[current_loop] = insn;
+ break;
+ case NOTE_INSN_LOOP_END:
+ if (current_loop == -1)
+ abort ();
+
+ loop_number_loop_ends[current_loop] = insn;
+ verify_dominator (current_loop);
+ current_loop = loop_outer_loop[current_loop];
+ break;
+
+ default:
+ break;
+ }
+ /* If for any loop, this is a jump insn between the NOTE_INSN_LOOP_CONT
+ and NOTE_INSN_LOOP_END notes, update loop_number_loop_dominator. */
+ else if (GET_CODE (insn) == JUMP_INSN
+ && GET_CODE (PATTERN (insn)) != RETURN
+ && current_loop >= 0)
+ {
+ int this_loop;
+ rtx label = JUMP_LABEL (insn);
+
+ if (! condjump_p (insn) && ! condjump_in_parallel_p (insn))
+ label = NULL_RTX;
+
+ this_loop = current_loop;
+ do
+ {
+ /* First see if we care about this loop. */
+ if (loop_number_loop_cont[this_loop]
+ && loop_number_cont_dominator[this_loop] != const0_rtx)
+ {
+ /* If the jump destination is not known, invalidate
+ loop_number_const_dominator. */
+ if (! label)
+ loop_number_cont_dominator[this_loop] = const0_rtx;
+ else
+ /* Check if the destination is between loop start and
+ cont. */
+ if ((INSN_LUID (label)
+ < INSN_LUID (loop_number_loop_cont[this_loop]))
+ && (INSN_LUID (label)
+ > INSN_LUID (loop_number_loop_starts[this_loop]))
+ /* And if there is no later destination already
+ recorded. */
+ && (! loop_number_cont_dominator[this_loop]
+ || (INSN_LUID (label)
+ > INSN_LUID (loop_number_cont_dominator
+ [this_loop]))))
+ loop_number_cont_dominator[this_loop] = label;
+ }
+ this_loop = loop_outer_loop[this_loop];
+ }
+ while (this_loop >= 0);
+ }
+
+ /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
+ enclosing loop, but this doesn't matter. */
+ uid_loop_num[INSN_UID (insn)] = current_loop;
+ }
+
+ /* Any loop containing a label used in an initializer must be invalidated,
+ because it can be jumped into from anywhere. */
+
+ for (label = forced_labels; label; label = XEXP (label, 1))
+ {
+ int loop_num;
+
+ for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
+ loop_num != -1;
+ loop_num = loop_outer_loop[loop_num])
+ loop_invalid[loop_num] = 1;
+ }
+
+ /* Any loop containing a label used for an exception handler must be
+ invalidated, because it can be jumped into from anywhere. */
+
+ for (label = exception_handler_labels; label; label = XEXP (label, 1))
+ {
+ int loop_num;
+
+ for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
+ loop_num != -1;
+ loop_num = loop_outer_loop[loop_num])
+ loop_invalid[loop_num] = 1;
+ }
+
+ /* Now scan all insn's in the function. If any JUMP_INSN branches into a
+ loop that it is not contained within, that loop is marked invalid.
+ If any INSN or CALL_INSN uses a label's address, then the loop containing
+ that label is marked invalid, because it could be jumped into from
+ anywhere.
+
+ Also look for blocks of code ending in an unconditional branch that
+ exits the loop. If such a block is surrounded by a conditional
+ branch around the block, move the block elsewhere (see below) and
+ invert the jump to point to the code block. This may eliminate a
+ label in our loop and will simplify processing by both us and a
+ possible second cse pass. */
+
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ int this_loop_num = uid_loop_num[INSN_UID (insn)];
+
+ if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
+ {
+ rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
+ if (note)
+ {
+ int loop_num;
+
+ for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
+ loop_num != -1;
+ loop_num = loop_outer_loop[loop_num])
+ loop_invalid[loop_num] = 1;
+ }
+ }
+
+ if (GET_CODE (insn) != JUMP_INSN)
+ continue;
+
+ mark_loop_jump (PATTERN (insn), this_loop_num);
+
+ /* See if this is an unconditional branch outside the loop. */
+ if (this_loop_num != -1
+ && (GET_CODE (PATTERN (insn)) == RETURN
+ || (simplejump_p (insn)
+ && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
+ != this_loop_num)))
+ && get_max_uid () < max_uid_for_loop)
+ {
+ rtx p;
+ rtx our_next = next_real_insn (insn);
+ int dest_loop;
+ int outer_loop = -1;
+
+ /* Go backwards until we reach the start of the loop, a label,
+ or a JUMP_INSN. */
+ for (p = PREV_INSN (insn);
+ GET_CODE (p) != CODE_LABEL
+ && ! (GET_CODE (p) == NOTE
+ && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
+ && GET_CODE (p) != JUMP_INSN;
+ p = PREV_INSN (p))
+ ;
+
+ /* Check for the case where we have a jump to an inner nested
+ loop, and do not perform the optimization in that case. */
+
+ if (JUMP_LABEL (insn))
+ {
+ dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
+ if (dest_loop != -1)
+ {
+ for (outer_loop = dest_loop; outer_loop != -1;
+ outer_loop = loop_outer_loop[outer_loop])
+ if (outer_loop == this_loop_num)
+ break;
+ }
+ }
+
+ /* Make sure that the target of P is within the current loop. */
+
+ if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
+ && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
+ outer_loop = this_loop_num;
+
+ /* If we stopped on a JUMP_INSN to the next insn after INSN,
+ we have a block of code to try to move.
+
+ We look backward and then forward from the target of INSN
+ to find a BARRIER at the same loop depth as the target.
+ If we find such a BARRIER, we make a new label for the start
+ of the block, invert the jump in P and point it to that label,
+ and move the block of code to the spot we found. */
+
+ if (outer_loop == -1
+ && GET_CODE (p) == JUMP_INSN
+ && JUMP_LABEL (p) != 0
+ /* Just ignore jumps to labels that were never emitted.
+ These always indicate compilation errors. */
+ && INSN_UID (JUMP_LABEL (p)) != 0
+ && condjump_p (p)
+ && ! simplejump_p (p)
+ && next_real_insn (JUMP_LABEL (p)) == our_next)
+ {
+ rtx target
+ = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
+ int target_loop_num = uid_loop_num[INSN_UID (target)];
+ rtx loc;
+
+ for (loc = target; loc; loc = PREV_INSN (loc))
+ if (GET_CODE (loc) == BARRIER
+ && uid_loop_num[INSN_UID (loc)] == target_loop_num)
+ break;
+
+ if (loc == 0)
+ for (loc = target; loc; loc = NEXT_INSN (loc))
+ if (GET_CODE (loc) == BARRIER
+ && uid_loop_num[INSN_UID (loc)] == target_loop_num)
+ break;
+
+ if (loc)
+ {
+ rtx cond_label = JUMP_LABEL (p);
+ rtx new_label = get_label_after (p);
+
+ /* Ensure our label doesn't go away. */
+ LABEL_NUSES (cond_label)++;
+
+ /* Verify that uid_loop_num is large enough and that
+ we can invert P. */
+ if (invert_jump (p, new_label))
+ {
+ rtx q, r;
+
+ /* If no suitable BARRIER was found, create a suitable
+ one before TARGET. Since TARGET is a fall through
+ path, we'll need to insert an jump around our block
+ and a add a BARRIER before TARGET.
+
+ This creates an extra unconditional jump outside
+ the loop. However, the benefits of removing rarely
+ executed instructions from inside the loop usually
+ outweighs the cost of the extra unconditional jump
+ outside the loop. */
+ if (loc == 0)
+ {
+ rtx temp;
+
+ temp = gen_jump (JUMP_LABEL (insn));
+ temp = emit_jump_insn_before (temp, target);
+ JUMP_LABEL (temp) = JUMP_LABEL (insn);
+ LABEL_NUSES (JUMP_LABEL (insn))++;
+ loc = emit_barrier_before (target);
+ }
+
+ /* Include the BARRIER after INSN and copy the
+ block after LOC. */
+ new_label = squeeze_notes (new_label, NEXT_INSN (insn));
+ reorder_insns (new_label, NEXT_INSN (insn), loc);
+
+ /* All those insns are now in TARGET_LOOP_NUM. */
+ for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
+ q = NEXT_INSN (q))
+ uid_loop_num[INSN_UID (q)] = target_loop_num;
+
+ /* The label jumped to by INSN is no longer a loop exit.
+ Unless INSN does not have a label (e.g., it is a
+ RETURN insn), search loop_number_exit_labels to find
+ its label_ref, and remove it. Also turn off
+ LABEL_OUTSIDE_LOOP_P bit. */
+ if (JUMP_LABEL (insn))
+ {
+ int loop_num;
+
+ for (q = 0,
+ r = loop_number_exit_labels[this_loop_num];
+ r; q = r, r = LABEL_NEXTREF (r))
+ if (XEXP (r, 0) == JUMP_LABEL (insn))
+ {
+ LABEL_OUTSIDE_LOOP_P (r) = 0;
+ if (q)
+ LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
+ else
+ loop_number_exit_labels[this_loop_num]
+ = LABEL_NEXTREF (r);
+ break;
+ }
+
+ for (loop_num = this_loop_num;
+ loop_num != -1 && loop_num != target_loop_num;
+ loop_num = loop_outer_loop[loop_num])
+ loop_number_exit_count[loop_num]--;
+
+ /* If we didn't find it, then something is wrong. */
+ if (! r)
+ abort ();
+ }
+
+ /* P is now a jump outside the loop, so it must be put
+ in loop_number_exit_labels, and marked as such.
+ The easiest way to do this is to just call
+ mark_loop_jump again for P. */
+ mark_loop_jump (PATTERN (p), this_loop_num);
+
+ /* If INSN now jumps to the insn after it,
+ delete INSN. */
+ if (JUMP_LABEL (insn) != 0
+ && (next_real_insn (JUMP_LABEL (insn))
+ == next_real_insn (insn)))
+ delete_insn (insn);
+ }
+
+ /* Continue the loop after where the conditional
+ branch used to jump, since the only branch insn
+ in the block (if it still remains) is an inter-loop
+ branch and hence needs no processing. */
+ insn = NEXT_INSN (cond_label);
+
+ if (--LABEL_NUSES (cond_label) == 0)
+ delete_insn (cond_label);
+
+ /* This loop will be continued with NEXT_INSN (insn). */
+ insn = PREV_INSN (insn);
+ }
+ }
+ }
+ }
+}
+
+/* If any label in X jumps to a loop different from LOOP_NUM and any of the
+ loops it is contained in, mark the target loop invalid.
+
+ For speed, we assume that X is part of a pattern of a JUMP_INSN. */
+
+static void
+mark_loop_jump (x, loop_num)
+ rtx x;
+ int loop_num;
+{
+ int dest_loop;
+ int outer_loop;
+ int i;
+
+ switch (GET_CODE (x))
+ {
+ case PC:
+ case USE:
+ case CLOBBER:
+ case REG:
+ case MEM:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case RETURN:
+ return;
+
+ case CONST:
+ /* There could be a label reference in here. */
+ mark_loop_jump (XEXP (x, 0), loop_num);
+ return;
+
+ case PLUS:
+ case MINUS:
+ case MULT:
+ mark_loop_jump (XEXP (x, 0), loop_num);
+ mark_loop_jump (XEXP (x, 1), loop_num);
+ return;
+
+ case LO_SUM:
+ /* This may refer to a LABEL_REF or SYMBOL_REF. */
+ mark_loop_jump (XEXP (x, 1), loop_num);
+ return;
+
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ mark_loop_jump (XEXP (x, 0), loop_num);
+ return;
+
+ case LABEL_REF:
+ dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
+
+ /* Link together all labels that branch outside the loop. This
+ is used by final_[bg]iv_value and the loop unrolling code. Also
+ mark this LABEL_REF so we know that this branch should predict
+ false. */
+
+ /* A check to make sure the label is not in an inner nested loop,
+ since this does not count as a loop exit. */
+ if (dest_loop != -1)
+ {
+ for (outer_loop = dest_loop; outer_loop != -1;
+ outer_loop = loop_outer_loop[outer_loop])
+ if (outer_loop == loop_num)
+ break;
+ }
+ else
+ outer_loop = -1;
+
+ if (loop_num != -1 && outer_loop == -1)
+ {
+ LABEL_OUTSIDE_LOOP_P (x) = 1;
+ LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
+ loop_number_exit_labels[loop_num] = x;
+
+ for (outer_loop = loop_num;
+ outer_loop != -1 && outer_loop != dest_loop;
+ outer_loop = loop_outer_loop[outer_loop])
+ loop_number_exit_count[outer_loop]++;
+ }
+
+ /* If this is inside a loop, but not in the current loop or one enclosed
+ by it, it invalidates at least one loop. */
+
+ if (dest_loop == -1)
+ return;
+
+ /* We must invalidate every nested loop containing the target of this
+ label, except those that also contain the jump insn. */
+
+ for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
+ {
+ /* Stop when we reach a loop that also contains the jump insn. */
+ for (outer_loop = loop_num; outer_loop != -1;
+ outer_loop = loop_outer_loop[outer_loop])
+ if (dest_loop == outer_loop)
+ return;
+
+ /* If we get here, we know we need to invalidate a loop. */
+ if (loop_dump_stream && ! loop_invalid[dest_loop])
+ fprintf (loop_dump_stream,
+ "\nLoop at %d ignored due to multiple entry points.\n",
+ INSN_UID (loop_number_loop_starts[dest_loop]));
+
+ loop_invalid[dest_loop] = 1;
+ }
+ return;
+
+ case SET:
+ /* If this is not setting pc, ignore. */
+ if (SET_DEST (x) == pc_rtx)
+ mark_loop_jump (SET_SRC (x), loop_num);
+ return;
+
+ case IF_THEN_ELSE:
+ mark_loop_jump (XEXP (x, 1), loop_num);
+ mark_loop_jump (XEXP (x, 2), loop_num);
+ return;
+
+ case PARALLEL:
+ case ADDR_VEC:
+ for (i = 0; i < XVECLEN (x, 0); i++)
+ mark_loop_jump (XVECEXP (x, 0, i), loop_num);
+ return;
+
+ case ADDR_DIFF_VEC:
+ for (i = 0; i < XVECLEN (x, 1); i++)
+ mark_loop_jump (XVECEXP (x, 1, i), loop_num);
+ return;
+
+ default:
+ /* Strictly speaking this is not a jump into the loop, only a possible
+ jump out of the loop. However, we have no way to link the destination
+ of this jump onto the list of exit labels. To be safe we mark this
+ loop and any containing loops as invalid. */
+ if (loop_num != -1)
+ {
+ for (outer_loop = loop_num; outer_loop != -1;
+ outer_loop = loop_outer_loop[outer_loop])
+ {
+ if (loop_dump_stream && ! loop_invalid[outer_loop])
+ fprintf (loop_dump_stream,
+ "\nLoop at %d ignored due to unknown exit jump.\n",
+ INSN_UID (loop_number_loop_starts[outer_loop]));
+ loop_invalid[outer_loop] = 1;
+ }
+ }
+ return;
+ }
+}
+
+/* Return nonzero if there is a label in the range from
+ insn INSN to and including the insn whose luid is END
+ INSN must have an assigned luid (i.e., it must not have
+ been previously created by loop.c). */
+
+static int
+labels_in_range_p (insn, end)
+ rtx insn;
+ int end;
+{
+ while (insn && INSN_LUID (insn) <= end)
+ {
+ if (GET_CODE (insn) == CODE_LABEL)
+ return 1;
+ insn = NEXT_INSN (insn);
+ }
+
+ return 0;
+}
+
+/* Record that a memory reference X is being set. */
+
+static void
+note_addr_stored (x, y)
+ rtx x;
+ rtx y ATTRIBUTE_UNUSED;
+{
+ if (x == 0 || GET_CODE (x) != MEM)
+ return;
+
+ /* Count number of memory writes.
+ This affects heuristics in strength_reduce. */
+ num_mem_sets++;
+
+ /* BLKmode MEM means all memory is clobbered. */
+ if (GET_MODE (x) == BLKmode)
+ unknown_address_altered = 1;
+
+ if (unknown_address_altered)
+ return;
+
+ loop_store_mems = gen_rtx_EXPR_LIST (VOIDmode, x, loop_store_mems);
+}
+
+/* Return nonzero if the rtx X is invariant over the current loop.
+
+ The value is 2 if we refer to something only conditionally invariant.
+
+ If `unknown_address_altered' is nonzero, no memory ref is invariant.
+ Otherwise, a memory ref is invariant if it does not conflict with
+ anything stored in `loop_store_mems'. */
+
+int
+invariant_p (x)
+ register rtx x;
+{
+ register int i;
+ register enum rtx_code code;
+ register char *fmt;
+ int conditional = 0;
+ rtx mem_list_entry;
+
+ if (x == 0)
+ return 1;
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case CONST:
+ return 1;
+
+ case LABEL_REF:
+ /* A LABEL_REF is normally invariant, however, if we are unrolling
+ loops, and this label is inside the loop, then it isn't invariant.
+ This is because each unrolled copy of the loop body will have
+ a copy of this label. If this was invariant, then an insn loading
+ the address of this label into a register might get moved outside
+ the loop, and then each loop body would end up using the same label.
+
+ We don't know the loop bounds here though, so just fail for all
+ labels. */
+ if (flag_unroll_loops)
+ return 0;
+ else
+ return 1;
+
+ case PC:
+ case CC0:
+ case UNSPEC_VOLATILE:
+ return 0;
+
+ case REG:
+ /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
+ since the reg might be set by initialization within the loop. */
+
+ if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
+ || x == arg_pointer_rtx)
+ && ! current_function_has_nonlocal_goto)
+ return 1;
+
+ if (loop_has_call
+ && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
+ return 0;
+
+ if (VARRAY_INT (set_in_loop, REGNO (x)) < 0)
+ return 2;
+
+ return VARRAY_INT (set_in_loop, REGNO (x)) == 0;
+
+ case MEM:
+ /* Volatile memory references must be rejected. Do this before
+ checking for read-only items, so that volatile read-only items
+ will be rejected also. */
+ if (MEM_VOLATILE_P (x))
+ return 0;
+
+ /* Read-only items (such as constants in a constant pool) are
+ invariant if their address is. */
+ if (RTX_UNCHANGING_P (x))
+ break;
+
+ /* If we had a subroutine call, any location in memory could have been
+ clobbered. */
+ if (unknown_address_altered)
+ return 0;
+
+ /* See if there is any dependence between a store and this load. */
+ mem_list_entry = loop_store_mems;
+ while (mem_list_entry)
+ {
+ if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
+ x, rtx_varies_p))
+ return 0;
+ mem_list_entry = XEXP (mem_list_entry, 1);
+ }
+
+ /* It's not invalidated by a store in memory
+ but we must still verify the address is invariant. */
+ break;
+
+ case ASM_OPERANDS:
+ /* Don't mess with insns declared volatile. */
+ if (MEM_VOLATILE_P (x))
+ return 0;
+ break;
+
+ default:
+ break;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ int tem = invariant_p (XEXP (x, i));
+ if (tem == 0)
+ return 0;
+ if (tem == 2)
+ conditional = 1;
+ }
+ else if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ int tem = invariant_p (XVECEXP (x, i, j));
+ if (tem == 0)
+ return 0;
+ if (tem == 2)
+ conditional = 1;
+ }
+
+ }
+ }
+
+ return 1 + conditional;
+}
+
+
+/* Return nonzero if all the insns in the loop that set REG
+ are INSN and the immediately following insns,
+ and if each of those insns sets REG in an invariant way
+ (not counting uses of REG in them).
+
+ The value is 2 if some of these insns are only conditionally invariant.
+
+ We assume that INSN itself is the first set of REG
+ and that its source is invariant. */
+
+static int
+consec_sets_invariant_p (reg, n_sets, insn)
+ int n_sets;
+ rtx reg, insn;
+{
+ register rtx p = insn;
+ register int regno = REGNO (reg);
+ rtx temp;
+ /* Number of sets we have to insist on finding after INSN. */
+ int count = n_sets - 1;
+ int old = VARRAY_INT (set_in_loop, regno);
+ int value = 0;
+ int this;
+
+ /* If N_SETS hit the limit, we can't rely on its value. */
+ if (n_sets == 127)
+ return 0;
+
+ VARRAY_INT (set_in_loop, regno) = 0;
+
+ while (count > 0)
+ {
+ register enum rtx_code code;
+ rtx set;
+
+ p = NEXT_INSN (p);
+ code = GET_CODE (p);
+
+ /* If library call, skip to end of it. */
+ if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
+ p = XEXP (temp, 0);
+
+ this = 0;
+ if (code == INSN
+ && (set = single_set (p))
+ && GET_CODE (SET_DEST (set)) == REG
+ && REGNO (SET_DEST (set)) == regno)
+ {
+ this = invariant_p (SET_SRC (set));
+ if (this != 0)
+ value |= this;
+ else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
+ {
+ /* If this is a libcall, then any invariant REG_EQUAL note is OK.
+ If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
+ notes are OK. */
+ this = (CONSTANT_P (XEXP (temp, 0))
+ || (find_reg_note (p, REG_RETVAL, NULL_RTX)
+ && invariant_p (XEXP (temp, 0))));
+ if (this != 0)
+ value |= this;
+ }
+ }
+ if (this != 0)
+ count--;
+ else if (code != NOTE)
+ {
+ VARRAY_INT (set_in_loop, regno) = old;
+ return 0;
+ }
+ }
+
+ VARRAY_INT (set_in_loop, regno) = old;
+ /* If invariant_p ever returned 2, we return 2. */
+ return 1 + (value & 2);
+}
+
+#if 0
+/* I don't think this condition is sufficient to allow INSN
+ to be moved, so we no longer test it. */
+
+/* Return 1 if all insns in the basic block of INSN and following INSN
+ that set REG are invariant according to TABLE. */
+
+static int
+all_sets_invariant_p (reg, insn, table)
+ rtx reg, insn;
+ short *table;
+{
+ register rtx p = insn;
+ register int regno = REGNO (reg);
+
+ while (1)
+ {
+ register enum rtx_code code;
+ p = NEXT_INSN (p);
+ code = GET_CODE (p);
+ if (code == CODE_LABEL || code == JUMP_INSN)
+ return 1;
+ if (code == INSN && GET_CODE (PATTERN (p)) == SET
+ && GET_CODE (SET_DEST (PATTERN (p))) == REG
+ && REGNO (SET_DEST (PATTERN (p))) == regno)
+ {
+ if (!invariant_p (SET_SRC (PATTERN (p)), table))
+ return 0;
+ }
+ }
+}
+#endif /* 0 */
+
+/* Look at all uses (not sets) of registers in X. For each, if it is
+ the single use, set USAGE[REGNO] to INSN; if there was a previous use in
+ a different insn, set USAGE[REGNO] to const0_rtx. */
+
+static void
+find_single_use_in_loop (insn, x, usage)
+ rtx insn;
+ rtx x;
+ varray_type usage;
+{
+ enum rtx_code code = GET_CODE (x);
+ char *fmt = GET_RTX_FORMAT (code);
+ int i, j;
+
+ if (code == REG)
+ VARRAY_RTX (usage, REGNO (x))
+ = (VARRAY_RTX (usage, REGNO (x)) != 0
+ && VARRAY_RTX (usage, REGNO (x)) != insn)
+ ? const0_rtx : insn;
+
+ else if (code == SET)
+ {
+ /* Don't count SET_DEST if it is a REG; otherwise count things
+ in SET_DEST because if a register is partially modified, it won't
+ show up as a potential movable so we don't care how USAGE is set
+ for it. */
+ if (GET_CODE (SET_DEST (x)) != REG)
+ find_single_use_in_loop (insn, SET_DEST (x), usage);
+ find_single_use_in_loop (insn, SET_SRC (x), usage);
+ }
+ else
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e' && XEXP (x, i) != 0)
+ find_single_use_in_loop (insn, XEXP (x, i), usage);
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
+ }
+}
+
+/* Count and record any set in X which is contained in INSN. Update
+ MAY_NOT_MOVE and LAST_SET for any register set in X. */
+
+static void
+count_one_set (insn, x, may_not_move, last_set)
+ rtx insn, x;
+ varray_type may_not_move;
+ rtx *last_set;
+{
+ if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
+ /* Don't move a reg that has an explicit clobber.
+ It's not worth the pain to try to do it correctly. */
+ VARRAY_CHAR (may_not_move, REGNO (XEXP (x, 0))) = 1;
+
+ if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
+ {
+ rtx dest = SET_DEST (x);
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SIGN_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+ if (GET_CODE (dest) == REG)
+ {
+ register int regno = REGNO (dest);
+ /* If this is the first setting of this reg
+ in current basic block, and it was set before,
+ it must be set in two basic blocks, so it cannot
+ be moved out of the loop. */
+ if (VARRAY_INT (set_in_loop, regno) > 0
+ && last_set[regno] == 0)
+ VARRAY_CHAR (may_not_move, regno) = 1;
+ /* If this is not first setting in current basic block,
+ see if reg was used in between previous one and this.
+ If so, neither one can be moved. */
+ if (last_set[regno] != 0
+ && reg_used_between_p (dest, last_set[regno], insn))
+ VARRAY_CHAR (may_not_move, regno) = 1;
+ if (VARRAY_INT (set_in_loop, regno) < 127)
+ ++VARRAY_INT (set_in_loop, regno);
+ last_set[regno] = insn;
+ }
+ }
+}
+
+/* Increment SET_IN_LOOP at the index of each register
+ that is modified by an insn between FROM and TO.
+ If the value of an element of SET_IN_LOOP becomes 127 or more,
+ stop incrementing it, to avoid overflow.
+
+ Store in SINGLE_USAGE[I] the single insn in which register I is
+ used, if it is only used once. Otherwise, it is set to 0 (for no
+ uses) or const0_rtx for more than one use. This parameter may be zero,
+ in which case this processing is not done.
+
+ Store in *COUNT_PTR the number of actual instruction
+ in the loop. We use this to decide what is worth moving out. */
+
+/* last_set[n] is nonzero iff reg n has been set in the current basic block.
+ In that case, it is the insn that last set reg n. */
+
+static void
+count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
+ register rtx from, to;
+ varray_type may_not_move;
+ varray_type single_usage;
+ int *count_ptr;
+ int nregs;
+{
+ register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
+ register rtx insn;
+ register int count = 0;
+
+ bzero ((char *) last_set, nregs * sizeof (rtx));
+ for (insn = from; insn != to; insn = NEXT_INSN (insn))
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ ++count;
+
+ /* Record registers that have exactly one use. */
+ find_single_use_in_loop (insn, PATTERN (insn), single_usage);
+
+ /* Include uses in REG_EQUAL notes. */
+ if (REG_NOTES (insn))
+ find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
+
+ if (GET_CODE (PATTERN (insn)) == SET
+ || GET_CODE (PATTERN (insn)) == CLOBBER)
+ count_one_set (insn, PATTERN (insn), may_not_move, last_set);
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ {
+ register int i;
+ for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
+ count_one_set (insn, XVECEXP (PATTERN (insn), 0, i),
+ may_not_move, last_set);
+ }
+ }
+
+ if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
+ bzero ((char *) last_set, nregs * sizeof (rtx));
+ }
+ *count_ptr = count;
+}
+
+/* Given a loop that is bounded by LOOP_START and LOOP_END
+ and that is entered at SCAN_START,
+ return 1 if the register set in SET contained in insn INSN is used by
+ any insn that precedes INSN in cyclic order starting
+ from the loop entry point.
+
+ We don't want to use INSN_LUID here because if we restrict INSN to those
+ that have a valid INSN_LUID, it means we cannot move an invariant out
+ from an inner loop past two loops. */
+
+static int
+loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
+ rtx set, insn, loop_start, scan_start, loop_end;
+{
+ rtx reg = SET_DEST (set);
+ rtx p;
+
+ /* Scan forward checking for register usage. If we hit INSN, we
+ are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
+ for (p = scan_start; p != insn; p = NEXT_INSN (p))
+ {
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
+ && reg_overlap_mentioned_p (reg, PATTERN (p)))
+ return 1;
+
+ if (p == loop_end)
+ p = loop_start;
+ }
+
+ return 0;
+}
+
+/* A "basic induction variable" or biv is a pseudo reg that is set
+ (within this loop) only by incrementing or decrementing it. */
+/* A "general induction variable" or giv is a pseudo reg whose
+ value is a linear function of a biv. */
+
+/* Bivs are recognized by `basic_induction_var';
+ Givs by `general_induction_var'. */
+
+/* Indexed by register number, indicates whether or not register is an
+ induction variable, and if so what type. */
+
+varray_type reg_iv_type;
+
+/* Indexed by register number, contains pointer to `struct induction'
+ if register is an induction variable. This holds general info for
+ all induction variables. */
+
+varray_type reg_iv_info;
+
+/* Indexed by register number, contains pointer to `struct iv_class'
+ if register is a basic induction variable. This holds info describing
+ the class (a related group) of induction variables that the biv belongs
+ to. */
+
+struct iv_class **reg_biv_class;
+
+/* The head of a list which links together (via the next field)
+ every iv class for the current loop. */
+
+struct iv_class *loop_iv_list;
+
+/* Givs made from biv increments are always splittable for loop unrolling.
+ Since there is no regscan info for them, we have to keep track of them
+ separately. */
+int first_increment_giv, last_increment_giv;
+
+/* Communication with routines called via `note_stores'. */
+
+static rtx note_insn;
+
+/* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
+
+static rtx addr_placeholder;
+
+/* ??? Unfinished optimizations, and possible future optimizations,
+ for the strength reduction code. */
+
+/* ??? The interaction of biv elimination, and recognition of 'constant'
+ bivs, may cause problems. */
+
+/* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
+ performance problems.
+
+ Perhaps don't eliminate things that can be combined with an addressing
+ mode. Find all givs that have the same biv, mult_val, and add_val;
+ then for each giv, check to see if its only use dies in a following
+ memory address. If so, generate a new memory address and check to see
+ if it is valid. If it is valid, then store the modified memory address,
+ otherwise, mark the giv as not done so that it will get its own iv. */
+
+/* ??? Could try to optimize branches when it is known that a biv is always
+ positive. */
+
+/* ??? When replace a biv in a compare insn, we should replace with closest
+ giv so that an optimized branch can still be recognized by the combiner,
+ e.g. the VAX acb insn. */
+
+/* ??? Many of the checks involving uid_luid could be simplified if regscan
+ was rerun in loop_optimize whenever a register was added or moved.
+ Also, some of the optimizations could be a little less conservative. */
+
+/* Perform strength reduction and induction variable elimination.
+
+ Pseudo registers created during this function will be beyond the last
+ valid index in several tables including n_times_set and regno_last_uid.
+ This does not cause a problem here, because the added registers cannot be
+ givs outside of their loop, and hence will never be reconsidered.
+ But scan_loop must check regnos to make sure they are in bounds.
+
+ SCAN_START is the first instruction in the loop, as the loop would
+ actually be executed. END is the NOTE_INSN_LOOP_END. LOOP_TOP is
+ the first instruction in the loop, as it is layed out in the
+ instruction stream. LOOP_START is the NOTE_INSN_LOOP_BEG.
+ LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
+
+static void
+strength_reduce (scan_start, end, loop_top, insn_count,
+ loop_start, loop_end, loop_cont, unroll_p, bct_p)
+ rtx scan_start;
+ rtx end;
+ rtx loop_top;
+ int insn_count;
+ rtx loop_start;
+ rtx loop_end;
+ rtx loop_cont;
+ int unroll_p, bct_p ATTRIBUTE_UNUSED;
+{
+ rtx p;
+ rtx set;
+ rtx inc_val;
+ rtx mult_val;
+ rtx dest_reg;
+ rtx *location;
+ /* This is 1 if current insn is not executed at least once for every loop
+ iteration. */
+ int not_every_iteration = 0;
+ /* This is 1 if current insn may be executed more than once for every
+ loop iteration. */
+ int maybe_multiple = 0;
+ /* Temporary list pointers for traversing loop_iv_list. */
+ struct iv_class *bl, **backbl;
+ /* Ratio of extra register life span we can justify
+ for saving an instruction. More if loop doesn't call subroutines
+ since in that case saving an insn makes more difference
+ and more registers are available. */
+ /* ??? could set this to last value of threshold in move_movables */
+ int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
+ /* Map of pseudo-register replacements. */
+ rtx *reg_map;
+ int reg_map_size;
+ int call_seen;
+ rtx test;
+ rtx end_insert_before;
+ int loop_depth = 0;
+ int n_extra_increment;
+ struct loop_info loop_iteration_info;
+ struct loop_info *loop_info = &loop_iteration_info;
+
+ /* If scan_start points to the loop exit test, we have to be wary of
+ subversive use of gotos inside expression statements. */
+ if (prev_nonnote_insn (scan_start) != prev_nonnote_insn (loop_start))
+ maybe_multiple = back_branch_in_range_p (scan_start, loop_start, loop_end);
+
+ VARRAY_INT_INIT (reg_iv_type, max_reg_before_loop, "reg_iv_type");
+ VARRAY_GENERIC_PTR_INIT (reg_iv_info, max_reg_before_loop, "reg_iv_info");
+ reg_biv_class = (struct iv_class **)
+ alloca (max_reg_before_loop * sizeof (struct iv_class *));
+ bzero ((char *) reg_biv_class, (max_reg_before_loop
+ * sizeof (struct iv_class *)));
+
+ loop_iv_list = 0;
+ addr_placeholder = gen_reg_rtx (Pmode);
+
+ /* Save insn immediately after the loop_end. Insns inserted after loop_end
+ must be put before this insn, so that they will appear in the right
+ order (i.e. loop order).
+
+ If loop_end is the end of the current function, then emit a
+ NOTE_INSN_DELETED after loop_end and set end_insert_before to the
+ dummy note insn. */
+ if (NEXT_INSN (loop_end) != 0)
+ end_insert_before = NEXT_INSN (loop_end);
+ else
+ end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
+
+ /* Scan through loop to find all possible bivs. */
+
+ for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
+ p != NULL_RTX;
+ p = next_insn_in_loop (p, scan_start, end, loop_top))
+ {
+ if (GET_CODE (p) == INSN
+ && (set = single_set (p))
+ && GET_CODE (SET_DEST (set)) == REG)
+ {
+ dest_reg = SET_DEST (set);
+ if (REGNO (dest_reg) < max_reg_before_loop
+ && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
+ && REG_IV_TYPE (REGNO (dest_reg)) != NOT_BASIC_INDUCT)
+ {
+ if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
+ dest_reg, p, &inc_val, &mult_val,
+ &location))
+ {
+ /* It is a possible basic induction variable.
+ Create and initialize an induction structure for it. */
+
+ struct induction *v
+ = (struct induction *) alloca (sizeof (struct induction));
+
+ record_biv (v, p, dest_reg, inc_val, mult_val, location,
+ not_every_iteration, maybe_multiple);
+ REG_IV_TYPE (REGNO (dest_reg)) = BASIC_INDUCT;
+ }
+ else if (REGNO (dest_reg) < max_reg_before_loop)
+ REG_IV_TYPE (REGNO (dest_reg)) = NOT_BASIC_INDUCT;
+ }
+ }
+
+ /* Past CODE_LABEL, we get to insns that may be executed multiple
+ times. The only way we can be sure that they can't is if every
+ jump insn between here and the end of the loop either
+ returns, exits the loop, is a jump to a location that is still
+ behind the label, or is a jump to the loop start. */
+
+ if (GET_CODE (p) == CODE_LABEL)
+ {
+ rtx insn = p;
+
+ maybe_multiple = 0;
+
+ while (1)
+ {
+ insn = NEXT_INSN (insn);
+ if (insn == scan_start)
+ break;
+ if (insn == end)
+ {
+ if (loop_top != 0)
+ insn = loop_top;
+ else
+ break;
+ if (insn == scan_start)
+ break;
+ }
+
+ if (GET_CODE (insn) == JUMP_INSN
+ && GET_CODE (PATTERN (insn)) != RETURN
+ && (! condjump_p (insn)
+ || (JUMP_LABEL (insn) != 0
+ && JUMP_LABEL (insn) != scan_start
+ && ! loop_insn_first_p (p, JUMP_LABEL (insn)))))
+ {
+ maybe_multiple = 1;
+ break;
+ }
+ }
+ }
+
+ /* Past a jump, we get to insns for which we can't count
+ on whether they will be executed during each iteration. */
+ /* This code appears twice in strength_reduce. There is also similar
+ code in scan_loop. */
+ if (GET_CODE (p) == JUMP_INSN
+ /* If we enter the loop in the middle, and scan around to the
+ beginning, don't set not_every_iteration for that.
+ This can be any kind of jump, since we want to know if insns
+ will be executed if the loop is executed. */
+ && ! (JUMP_LABEL (p) == loop_top
+ && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
+ || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
+ {
+ rtx label = 0;
+
+ /* If this is a jump outside the loop, then it also doesn't
+ matter. Check to see if the target of this branch is on the
+ loop_number_exits_labels list. */
+
+ for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
+ label;
+ label = LABEL_NEXTREF (label))
+ if (XEXP (label, 0) == JUMP_LABEL (p))
+ break;
+
+ if (! label)
+ not_every_iteration = 1;
+ }
+
+ else if (GET_CODE (p) == NOTE)
+ {
+ /* At the virtual top of a converted loop, insns are again known to
+ be executed each iteration: logically, the loop begins here
+ even though the exit code has been duplicated.
+
+ Insns are also again known to be executed each iteration at
+ the LOOP_CONT note. */
+ if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
+ || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
+ && loop_depth == 0)
+ not_every_iteration = 0;
+ else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
+ loop_depth++;
+ else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
+ loop_depth--;
+ }
+
+ /* Unlike in the code motion pass where MAYBE_NEVER indicates that
+ an insn may never be executed, NOT_EVERY_ITERATION indicates whether
+ or not an insn is known to be executed each iteration of the
+ loop, whether or not any iterations are known to occur.
+
+ Therefore, if we have just passed a label and have no more labels
+ between here and the test insn of the loop, we know these insns
+ will be executed each iteration. */
+
+ if (not_every_iteration && GET_CODE (p) == CODE_LABEL
+ && no_labels_between_p (p, loop_end)
+ && loop_insn_first_p (p, loop_cont))
+ not_every_iteration = 0;
+ }
+
+ /* Scan loop_iv_list to remove all regs that proved not to be bivs.
+ Make a sanity check against n_times_set. */
+ for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
+ {
+ if (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
+ /* Above happens if register modified by subreg, etc. */
+ /* Make sure it is not recognized as a basic induction var: */
+ || VARRAY_INT (n_times_set, bl->regno) != bl->biv_count
+ /* If never incremented, it is invariant that we decided not to
+ move. So leave it alone. */
+ || ! bl->incremented)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
+ bl->regno,
+ (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
+ ? "not induction variable"
+ : (! bl->incremented ? "never incremented"
+ : "count error")));
+
+ REG_IV_TYPE (bl->regno) = NOT_BASIC_INDUCT;
+ *backbl = bl->next;
+ }
+ else
+ {
+ backbl = &bl->next;
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
+ }
+ }
+
+ /* Exit if there are no bivs. */
+ if (! loop_iv_list)
+ {
+ /* Can still unroll the loop anyways, but indicate that there is no
+ strength reduction info available. */
+ if (unroll_p)
+ unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
+ loop_info, 0);
+
+ return;
+ }
+
+ /* Find initial value for each biv by searching backwards from loop_start,
+ halting at first label. Also record any test condition. */
+
+ call_seen = 0;
+ for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
+ {
+ note_insn = p;
+
+ if (GET_CODE (p) == CALL_INSN)
+ call_seen = 1;
+
+ if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
+ || GET_CODE (p) == CALL_INSN)
+ note_stores (PATTERN (p), record_initial);
+
+ /* Record any test of a biv that branches around the loop if no store
+ between it and the start of loop. We only care about tests with
+ constants and registers and only certain of those. */
+ if (GET_CODE (p) == JUMP_INSN
+ && JUMP_LABEL (p) != 0
+ && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
+ && (test = get_condition_for_loop (p)) != 0
+ && GET_CODE (XEXP (test, 0)) == REG
+ && REGNO (XEXP (test, 0)) < max_reg_before_loop
+ && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
+ && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
+ && bl->init_insn == 0)
+ {
+ /* If an NE test, we have an initial value! */
+ if (GET_CODE (test) == NE)
+ {
+ bl->init_insn = p;
+ bl->init_set = gen_rtx_SET (VOIDmode,
+ XEXP (test, 0), XEXP (test, 1));
+ }
+ else
+ bl->initial_test = test;
+ }
+ }
+
+ /* Look at the each biv and see if we can say anything better about its
+ initial value from any initializing insns set up above. (This is done
+ in two passes to avoid missing SETs in a PARALLEL.) */
+ for (backbl = &loop_iv_list; (bl = *backbl); backbl = &bl->next)
+ {
+ rtx src;
+ rtx note;
+
+ if (! bl->init_insn)
+ continue;
+
+ /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
+ is a constant, use the value of that. */
+ if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
+ && CONSTANT_P (XEXP (note, 0)))
+ || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
+ && CONSTANT_P (XEXP (note, 0))))
+ src = XEXP (note, 0);
+ else
+ src = SET_SRC (bl->init_set);
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "Biv %d initialized at insn %d: initial value ",
+ bl->regno, INSN_UID (bl->init_insn));
+
+ if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
+ || GET_MODE (src) == VOIDmode)
+ && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
+ {
+ bl->initial_value = src;
+
+ if (loop_dump_stream)
+ {
+ if (GET_CODE (src) == CONST_INT)
+ {
+ fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
+ fputc ('\n', loop_dump_stream);
+ }
+ else
+ {
+ print_rtl (loop_dump_stream, src);
+ fprintf (loop_dump_stream, "\n");
+ }
+ }
+ }
+ else
+ {
+ struct iv_class *bl2 = 0;
+ rtx increment;
+
+ /* Biv initial value is not a simple move. If it is the sum of
+ another biv and a constant, check if both bivs are incremented
+ in lockstep. Then we are actually looking at a giv.
+ For simplicity, we only handle the case where there is but a
+ single increment, and the register is not used elsewhere. */
+ if (bl->biv_count == 1
+ && bl->regno < max_reg_before_loop
+ && uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
+ && GET_CODE (src) == PLUS
+ && GET_CODE (XEXP (src, 0)) == REG
+ && CONSTANT_P (XEXP (src, 1))
+ && ((increment = biv_total_increment (bl, loop_start, loop_end))
+ != NULL_RTX))
+ {
+ int regno = REGNO (XEXP (src, 0));
+
+ for (bl2 = loop_iv_list; bl2; bl2 = bl2->next)
+ if (bl2->regno == regno)
+ break;
+ }
+
+ /* Now, can we transform this biv into a giv? */
+ if (bl2
+ && bl2->biv_count == 1
+ && rtx_equal_p (increment,
+ biv_total_increment (bl2, loop_start, loop_end))
+ /* init_insn is only set to insns that are before loop_start
+ without any intervening labels. */
+ && ! reg_set_between_p (bl2->biv->src_reg,
+ PREV_INSN (bl->init_insn), loop_start)
+ /* The register from BL2 must be set before the register from
+ BL is set, or we must be able to move the latter set after
+ the former set. Currently there can't be any labels
+ in-between when biv_toal_increment returns nonzero both times
+ but we test it here in case some day some real cfg analysis
+ gets used to set always_computable. */
+ && ((loop_insn_first_p (bl2->biv->insn, bl->biv->insn)
+ && no_labels_between_p (bl2->biv->insn, bl->biv->insn))
+ || (! reg_used_between_p (bl->biv->src_reg, bl->biv->insn,
+ bl2->biv->insn)
+ && no_jumps_between_p (bl->biv->insn, bl2->biv->insn)))
+ && validate_change (bl->biv->insn,
+ &SET_SRC (single_set (bl->biv->insn)),
+ copy_rtx (src), 0))
+ {
+ int loop_num = uid_loop_num[INSN_UID (loop_start)];
+ rtx dominator = loop_number_cont_dominator[loop_num];
+ rtx giv = bl->biv->src_reg;
+ rtx giv_insn = bl->biv->insn;
+ rtx after_giv = NEXT_INSN (giv_insn);
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "is giv of biv %d\n", bl2->regno);
+ /* Let this giv be discovered by the generic code. */
+ REG_IV_TYPE (bl->regno) = UNKNOWN_INDUCT;
+ /* We can get better optimization if we can move the giv setting
+ before the first giv use. */
+ if (dominator
+ && ! loop_insn_first_p (dominator, scan_start)
+ && ! reg_set_between_p (bl2->biv->src_reg, loop_start,
+ dominator)
+ && ! reg_used_between_p (giv, loop_start, dominator)
+ && ! reg_used_between_p (giv, giv_insn, loop_end))
+ {
+ rtx p;
+ rtx next;
+
+ for (next = NEXT_INSN (dominator); ; next = NEXT_INSN (next))
+ {
+ if ((GET_RTX_CLASS (GET_CODE (next)) == 'i'
+ && (reg_mentioned_p (giv, PATTERN (next))
+ || reg_set_p (bl2->biv->src_reg, next)))
+ || GET_CODE (next) == JUMP_INSN)
+ break;
+#ifdef HAVE_cc0
+ if (GET_RTX_CLASS (GET_CODE (next)) != 'i'
+ || ! sets_cc0_p (PATTERN (next)))
+#endif
+ dominator = next;
+ }
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "move after insn %d\n",
+ INSN_UID (dominator));
+ /* Avoid problems with luids by actually moving the insn
+ and adjusting all luids in the range. */
+ reorder_insns (giv_insn, giv_insn, dominator);
+ for (p = dominator; INSN_UID (p) >= max_uid_for_loop; )
+ p = PREV_INSN (p);
+ compute_luids (giv_insn, after_giv, INSN_LUID (p));
+ /* If the only purpose of the init insn is to initialize
+ this giv, delete it. */
+ if (single_set (bl->init_insn)
+ && ! reg_used_between_p (giv, bl->init_insn, loop_start))
+ delete_insn (bl->init_insn);
+ }
+ else if (! loop_insn_first_p (bl2->biv->insn, bl->biv->insn))
+ {
+ rtx p = PREV_INSN (giv_insn);
+ while (INSN_UID (p) >= max_uid_for_loop)
+ p = PREV_INSN (p);
+ reorder_insns (giv_insn, giv_insn, bl2->biv->insn);
+ compute_luids (after_giv, NEXT_INSN (giv_insn),
+ INSN_LUID (p));
+ }
+ /* Remove this biv from the chain. */
+ if (bl->next)
+ *bl = *bl->next;
+ else
+ {
+ *backbl = 0;
+ break;
+ }
+ }
+
+ /* If we can't make it a giv,
+ let biv keep initial value of "itself". */
+ else if (loop_dump_stream)
+ fprintf (loop_dump_stream, "is complex\n");
+ }
+ }
+
+ /* If a biv is unconditionally incremented several times in a row, convert
+ all but the last increment into a giv. */
+
+ /* Get an upper bound for the number of registers
+ we might have after all bivs have been processed. */
+ first_increment_giv = max_reg_num ();
+ for (n_extra_increment = 0, bl = loop_iv_list; bl; bl = bl->next)
+ n_extra_increment += bl->biv_count - 1;
+
+ /* If the loop contains volatile memory references do not allow any
+ replacements to take place, since this could loose the volatile markers. */
+ if (n_extra_increment && ! loop_has_volatile)
+ {
+ int nregs = first_increment_giv + n_extra_increment;
+
+ /* Reallocate reg_iv_type and reg_iv_info. */
+ VARRAY_GROW (reg_iv_type, nregs);
+ VARRAY_GROW (reg_iv_info, nregs);
+
+ for (bl = loop_iv_list; bl; bl = bl->next)
+ {
+ struct induction **vp, *v, *next;
+ int biv_dead_after_loop = 0;
+
+ /* The biv increments lists are in reverse order. Fix this first. */
+ for (v = bl->biv, bl->biv = 0; v; v = next)
+ {
+ next = v->next_iv;
+ v->next_iv = bl->biv;
+ bl->biv = v;
+ }
+
+ /* We must guard against the case that an early exit between v->insn
+ and next->insn leaves the biv live after the loop, since that
+ would mean that we'd be missing an increment for the final
+ value. The following test to set biv_dead_after_loop is like
+ the first part of the test to set bl->eliminable.
+ We don't check here if we can calculate the final value, since
+ this can't succeed if we already know that there is a jump
+ between v->insn and next->insn, yet next->always_executed is
+ set and next->maybe_multiple is cleared. Such a combination
+ implies that the jump destination is outside the loop.
+ If we want to make this check more sophisticated, we should
+ check each branch between v->insn and next->insn individually
+ to see if the biv is dead at its destination. */
+
+ if (uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
+ && bl->init_insn
+ && INSN_UID (bl->init_insn) < max_uid_for_loop
+ && (uid_luid[REGNO_FIRST_UID (bl->regno)]
+ >= INSN_LUID (bl->init_insn))
+#ifdef HAVE_decrement_and_branch_until_zero
+ && ! bl->nonneg
+#endif
+ && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
+ biv_dead_after_loop = 1;
+
+ for (vp = &bl->biv, next = *vp; v = next, next = v->next_iv;)
+ {
+ HOST_WIDE_INT offset;
+ rtx set, add_val, old_reg, dest_reg, last_use_insn;
+ int old_regno, new_regno;
+
+ if (! v->always_executed
+ || v->maybe_multiple
+ || GET_CODE (v->add_val) != CONST_INT
+ || ! next->always_executed
+ || next->maybe_multiple
+ || ! CONSTANT_P (next->add_val)
+ || ! (biv_dead_after_loop
+ || no_jumps_between_p (v->insn, next->insn)))
+ {
+ vp = &v->next_iv;
+ continue;
+ }
+ offset = INTVAL (v->add_val);
+ set = single_set (v->insn);
+ add_val = plus_constant (next->add_val, offset);
+ old_reg = v->dest_reg;
+ dest_reg = gen_reg_rtx (v->mode);
+
+ /* Unlike reg_iv_type / reg_iv_info, the other three arrays
+ have been allocated with some slop space, so we may not
+ actually need to reallocate them. If we do, the following
+ if statement will be executed just once in this loop. */
+ if ((unsigned) max_reg_num () > n_times_set->num_elements)
+ {
+ /* Grow all the remaining arrays. */
+ VARRAY_GROW (set_in_loop, nregs);
+ VARRAY_GROW (n_times_set, nregs);
+ VARRAY_GROW (may_not_optimize, nregs);
+ }
+
+ if (! validate_change (next->insn, next->location, add_val, 0))
+ {
+ vp = &v->next_iv;
+ continue;
+ }
+
+ /* Here we can try to eliminate the increment by combining
+ it into the uses. */
+
+ /* Set last_use_insn so that we can check against it. */
+
+ for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
+ p != next->insn;
+ p = next_insn_in_loop (p, scan_start, end, loop_top))
+ {
+ if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
+ continue;
+ if (reg_mentioned_p (old_reg, PATTERN (p)))
+ {
+ last_use_insn = p;
+ }
+ }
+
+ /* If we can't get the LUIDs for the insns, we can't
+ calculate the lifetime. This is likely from unrolling
+ of an inner loop, so there is little point in making this
+ a DEST_REG giv anyways. */
+ if (INSN_UID (v->insn) >= max_uid_for_loop
+ || INSN_UID (last_use_insn) >= max_uid_for_loop
+ || ! validate_change (v->insn, &SET_DEST (set), dest_reg, 0))
+ {
+ /* Change the increment at NEXT back to what it was. */
+ if (! validate_change (next->insn, next->location,
+ next->add_val, 0))
+ abort ();
+ vp = &v->next_iv;
+ continue;
+ }
+ next->add_val = add_val;
+ v->dest_reg = dest_reg;
+ v->giv_type = DEST_REG;
+ v->location = &SET_SRC (set);
+ v->cant_derive = 0;
+ v->combined_with = 0;
+ v->maybe_dead = 0;
+ v->derive_adjustment = 0;
+ v->same = 0;
+ v->ignore = 0;
+ v->new_reg = 0;
+ v->final_value = 0;
+ v->same_insn = 0;
+ v->auto_inc_opt = 0;
+ v->unrolled = 0;
+ v->shared = 0;
+ v->derived_from = 0;
+ v->always_computable = 1;
+ v->always_executed = 1;
+ v->replaceable = 1;
+ v->no_const_addval = 0;
+
+ old_regno = REGNO (old_reg);
+ new_regno = REGNO (dest_reg);
+ VARRAY_INT (set_in_loop, old_regno)--;
+ VARRAY_INT (set_in_loop, new_regno) = 1;
+ VARRAY_INT (n_times_set, old_regno)--;
+ VARRAY_INT (n_times_set, new_regno) = 1;
+ VARRAY_CHAR (may_not_optimize, new_regno) = 0;
+
+ REG_IV_TYPE (new_regno) = GENERAL_INDUCT;
+ REG_IV_INFO (new_regno) = v;
+
+ /* Remove the increment from the list of biv increments,
+ and record it as a giv. */
+ *vp = next;
+ bl->biv_count--;
+ v->next_iv = bl->giv;
+ bl->giv = v;
+ bl->giv_count++;
+ v->benefit = rtx_cost (SET_SRC (set), SET);
+ bl->total_benefit += v->benefit;
+
+ /* Now replace the biv with DEST_REG in all insns between
+ the replaced increment and the next increment, and
+ remember the last insn that needed a replacement. */
+ for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
+ p != next->insn;
+ p = next_insn_in_loop (p, scan_start, end, loop_top))
+ {
+ rtx note;
+
+ if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
+ continue;
+ if (reg_mentioned_p (old_reg, PATTERN (p)))
+ {
+ last_use_insn = p;
+ if (! validate_replace_rtx (old_reg, dest_reg, p))
+ abort ();
+ }
+ for (note = REG_NOTES (p); note; note = XEXP (note, 1))
+ {
+ if (GET_CODE (note) == EXPR_LIST)
+ XEXP (note, 0)
+ = replace_rtx (XEXP (note, 0), old_reg, dest_reg);
+ }
+ }
+
+ v->last_use = last_use_insn;
+ v->lifetime = INSN_LUID (v->insn) - INSN_LUID (last_use_insn);
+ /* If the lifetime is zero, it means that this register is really
+ a dead store. So mark this as a giv that can be ignored.
+ This will not prevent the biv from being eliminated. */
+ if (v->lifetime == 0)
+ v->ignore = 1;
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "Increment %d of biv %d converted to giv %d.\n\n",
+ INSN_UID (v->insn), old_regno, new_regno);
+ }
+ }
+ }
+ last_increment_giv = max_reg_num () - 1;
+
+ /* Search the loop for general induction variables. */
+
+ /* A register is a giv if: it is only set once, it is a function of a
+ biv and a constant (or invariant), and it is not a biv. */
+
+ not_every_iteration = 0;
+ loop_depth = 0;
+ p = scan_start;
+ while (1)
+ {
+ p = NEXT_INSN (p);
+ /* At end of a straight-in loop, we are done.
+ At end of a loop entered at the bottom, scan the top. */
+ if (p == scan_start)
+ break;
+ if (p == end)
+ {
+ if (loop_top != 0)
+ p = loop_top;
+ else
+ break;
+ if (p == scan_start)
+ break;
+ }
+
+ /* Look for a general induction variable in a register. */
+ if (GET_CODE (p) == INSN
+ && (set = single_set (p))
+ && GET_CODE (SET_DEST (set)) == REG
+ && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
+ {
+ rtx src_reg;
+ rtx add_val;
+ rtx mult_val;
+ int benefit;
+ rtx regnote = 0;
+ rtx last_consec_insn;
+
+ dest_reg = SET_DEST (set);
+ if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
+ continue;
+
+ if (/* SET_SRC is a giv. */
+ (general_induction_var (SET_SRC (set), &src_reg, &add_val,
+ &mult_val, 0, &benefit)
+ /* Equivalent expression is a giv. */
+ || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
+ && general_induction_var (XEXP (regnote, 0), &src_reg,
+ &add_val, &mult_val, 0,
+ &benefit)))
+ /* Don't try to handle any regs made by loop optimization.
+ We have nothing on them in regno_first_uid, etc. */
+ && REGNO (dest_reg) < max_reg_before_loop
+ /* Don't recognize a BASIC_INDUCT_VAR here. */
+ && dest_reg != src_reg
+ /* This must be the only place where the register is set. */
+ && (VARRAY_INT (n_times_set, REGNO (dest_reg)) == 1
+ /* or all sets must be consecutive and make a giv. */
+ || (benefit = consec_sets_giv (benefit, p,
+ src_reg, dest_reg,
+ &add_val, &mult_val,
+ &last_consec_insn))))
+ {
+ struct induction *v
+ = (struct induction *) alloca (sizeof (struct induction));
+
+ /* If this is a library call, increase benefit. */
+ if (find_reg_note (p, REG_RETVAL, NULL_RTX))
+ benefit += libcall_benefit (p);
+
+ /* Skip the consecutive insns, if there are any. */
+ if (VARRAY_INT (n_times_set, REGNO (dest_reg)) != 1)
+ p = last_consec_insn;
+
+ record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
+ DEST_REG, not_every_iteration, NULL_PTR, loop_start,
+ loop_end);
+
+ }
+ }
+
+#ifndef DONT_REDUCE_ADDR
+ /* Look for givs which are memory addresses. */
+ /* This resulted in worse code on a VAX 8600. I wonder if it
+ still does. */
+ if (GET_CODE (p) == INSN)
+ find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
+ loop_end);
+#endif
+
+ /* Update the status of whether giv can derive other givs. This can
+ change when we pass a label or an insn that updates a biv. */
+ if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
+ || GET_CODE (p) == CODE_LABEL)
+ update_giv_derive (p);
+
+ /* Past a jump, we get to insns for which we can't count
+ on whether they will be executed during each iteration. */
+ /* This code appears twice in strength_reduce. There is also similar
+ code in scan_loop. */
+ if (GET_CODE (p) == JUMP_INSN
+ /* If we enter the loop in the middle, and scan around to the
+ beginning, don't set not_every_iteration for that.
+ This can be any kind of jump, since we want to know if insns
+ will be executed if the loop is executed. */
+ && ! (JUMP_LABEL (p) == loop_top
+ && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
+ || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
+ {
+ rtx label = 0;
+
+ /* If this is a jump outside the loop, then it also doesn't
+ matter. Check to see if the target of this branch is on the
+ loop_number_exits_labels list. */
+
+ for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
+ label;
+ label = LABEL_NEXTREF (label))
+ if (XEXP (label, 0) == JUMP_LABEL (p))
+ break;
+
+ if (! label)
+ not_every_iteration = 1;
+ }
+
+ else if (GET_CODE (p) == NOTE)
+ {
+ /* At the virtual top of a converted loop, insns are again known to
+ be executed each iteration: logically, the loop begins here
+ even though the exit code has been duplicated.
+
+ Insns are also again known to be executed each iteration at
+ the LOOP_CONT note. */
+ if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
+ || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
+ && loop_depth == 0)
+ not_every_iteration = 0;
+ else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
+ loop_depth++;
+ else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
+ loop_depth--;
+ }
+
+ /* Unlike in the code motion pass where MAYBE_NEVER indicates that
+ an insn may never be executed, NOT_EVERY_ITERATION indicates whether
+ or not an insn is known to be executed each iteration of the
+ loop, whether or not any iterations are known to occur.
+
+ Therefore, if we have just passed a label and have no more labels
+ between here and the test insn of the loop, we know these insns
+ will be executed each iteration. */
+
+ if (not_every_iteration && GET_CODE (p) == CODE_LABEL
+ && no_labels_between_p (p, loop_end)
+ && loop_insn_first_p (p, loop_cont))
+ not_every_iteration = 0;
+ }
+
+ /* Try to calculate and save the number of loop iterations. This is
+ set to zero if the actual number can not be calculated. This must
+ be called after all giv's have been identified, since otherwise it may
+ fail if the iteration variable is a giv. */
+
+ loop_iterations (loop_start, loop_end, loop_info);
+
+ /* Now for each giv for which we still don't know whether or not it is
+ replaceable, check to see if it is replaceable because its final value
+ can be calculated. This must be done after loop_iterations is called,
+ so that final_giv_value will work correctly. */
+
+ for (bl = loop_iv_list; bl; bl = bl->next)
+ {
+ struct induction *v;
+
+ for (v = bl->giv; v; v = v->next_iv)
+ if (! v->replaceable && ! v->not_replaceable)
+ check_final_value (v, loop_start, loop_end, loop_info->n_iterations);
+ }
+
+ /* Try to prove that the loop counter variable (if any) is always
+ nonnegative; if so, record that fact with a REG_NONNEG note
+ so that "decrement and branch until zero" insn can be used. */
+ check_dbra_loop (loop_end, insn_count, loop_start, loop_info);
+
+ /* Create reg_map to hold substitutions for replaceable giv regs.
+ Some givs might have been made from biv increments, so look at
+ reg_iv_type for a suitable size. */
+ reg_map_size = reg_iv_type->num_elements;
+ reg_map = (rtx *) alloca (reg_map_size * sizeof (rtx));
+ bzero ((char *) reg_map, reg_map_size * sizeof (rtx));
+
+ /* Examine each iv class for feasibility of strength reduction/induction
+ variable elimination. */
+
+ for (bl = loop_iv_list; bl; bl = bl->next)
+ {
+ struct induction *v;
+ int benefit;
+ int all_reduced;
+ rtx final_value = 0;
+ unsigned nregs;
+
+ /* Test whether it will be possible to eliminate this biv
+ provided all givs are reduced. This is possible if either
+ the reg is not used outside the loop, or we can compute
+ what its final value will be.
+
+ For architectures with a decrement_and_branch_until_zero insn,
+ don't do this if we put a REG_NONNEG note on the endtest for
+ this biv. */
+
+ /* Compare against bl->init_insn rather than loop_start.
+ We aren't concerned with any uses of the biv between
+ init_insn and loop_start since these won't be affected
+ by the value of the biv elsewhere in the function, so
+ long as init_insn doesn't use the biv itself.
+ March 14, 1989 -- self@bayes.arc.nasa.gov */
+
+ if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
+ && bl->init_insn
+ && INSN_UID (bl->init_insn) < max_uid_for_loop
+ && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
+#ifdef HAVE_decrement_and_branch_until_zero
+ && ! bl->nonneg
+#endif
+ && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
+ || ((final_value = final_biv_value (bl, loop_start, loop_end,
+ loop_info->n_iterations))
+#ifdef HAVE_decrement_and_branch_until_zero
+ && ! bl->nonneg
+#endif
+ ))
+ bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
+ threshold, insn_count);
+ else
+ {
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream,
+ "Cannot eliminate biv %d.\n",
+ bl->regno);
+ fprintf (loop_dump_stream,
+ "First use: insn %d, last use: insn %d.\n",
+ REGNO_FIRST_UID (bl->regno),
+ REGNO_LAST_UID (bl->regno));
+ }
+ }
+
+ /* Combine all giv's for this iv_class. */
+ combine_givs (bl);
+
+ /* This will be true at the end, if all givs which depend on this
+ biv have been strength reduced.
+ We can't (currently) eliminate the biv unless this is so. */
+ all_reduced = 1;
+
+ /* Check each giv in this class to see if we will benefit by reducing
+ it. Skip giv's combined with others. */
+ for (v = bl->giv; v; v = v->next_iv)
+ {
+ struct induction *tv;
+
+ if (v->ignore || v->same)
+ continue;
+
+ benefit = v->benefit;
+
+ /* Reduce benefit if not replaceable, since we will insert
+ a move-insn to replace the insn that calculates this giv.
+ Don't do this unless the giv is a user variable, since it
+ will often be marked non-replaceable because of the duplication
+ of the exit code outside the loop. In such a case, the copies
+ we insert are dead and will be deleted. So they don't have
+ a cost. Similar situations exist. */
+ /* ??? The new final_[bg]iv_value code does a much better job
+ of finding replaceable giv's, and hence this code may no longer
+ be necessary. */
+ if (! v->replaceable && ! bl->eliminable
+ && REG_USERVAR_P (v->dest_reg))
+ benefit -= copy_cost;
+
+ /* Decrease the benefit to count the add-insns that we will
+ insert to increment the reduced reg for the giv. */
+ benefit -= add_cost * bl->biv_count;
+
+ /* Decide whether to strength-reduce this giv or to leave the code
+ unchanged (recompute it from the biv each time it is used).
+ This decision can be made independently for each giv. */
+
+#ifdef AUTO_INC_DEC
+ /* Attempt to guess whether autoincrement will handle some of the
+ new add insns; if so, increase BENEFIT (undo the subtraction of
+ add_cost that was done above). */
+ if (v->giv_type == DEST_ADDR
+ && GET_CODE (v->mult_val) == CONST_INT)
+ {
+ if (HAVE_POST_INCREMENT
+ && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
+ benefit += add_cost * bl->biv_count;
+ else if (HAVE_PRE_INCREMENT
+ && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
+ benefit += add_cost * bl->biv_count;
+ else if (HAVE_POST_DECREMENT
+ && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
+ benefit += add_cost * bl->biv_count;
+ else if (HAVE_PRE_DECREMENT
+ && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
+ benefit += add_cost * bl->biv_count;
+ }
+#endif
+
+ /* If an insn is not to be strength reduced, then set its ignore
+ flag, and clear all_reduced. */
+
+ /* A giv that depends on a reversed biv must be reduced if it is
+ used after the loop exit, otherwise, it would have the wrong
+ value after the loop exit. To make it simple, just reduce all
+ of such giv's whether or not we know they are used after the loop
+ exit. */
+
+ if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
+ && ! bl->reversed )
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "giv of insn %d not worth while, %d vs %d.\n",
+ INSN_UID (v->insn),
+ v->lifetime * threshold * benefit, insn_count);
+ v->ignore = 1;
+ all_reduced = 0;
+ }
+ else
+ {
+ /* Check that we can increment the reduced giv without a
+ multiply insn. If not, reject it. */
+
+ for (tv = bl->biv; tv; tv = tv->next_iv)
+ if (tv->mult_val == const1_rtx
+ && ! product_cheap_p (tv->add_val, v->mult_val))
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "giv of insn %d: would need a multiply.\n",
+ INSN_UID (v->insn));
+ v->ignore = 1;
+ all_reduced = 0;
+ break;
+ }
+ }
+ }
+
+ /* Check for givs whose first use is their definition and whose
+ last use is the definition of another giv. If so, it is likely
+ dead and should not be used to derive another giv nor to
+ eliminate a biv. */
+ for (v = bl->giv; v; v = v->next_iv)
+ {
+ if (v->ignore
+ || (v->same && v->same->ignore))
+ continue;
+
+ if (v->last_use)
+ {
+ struct induction *v1;
+
+ for (v1 = bl->giv; v1; v1 = v1->next_iv)
+ if (v->last_use == v1->insn)
+ v->maybe_dead = 1;
+ }
+ else if (v->giv_type == DEST_REG
+ && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
+ {
+ struct induction *v1;
+
+ for (v1 = bl->giv; v1; v1 = v1->next_iv)
+ if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
+ v->maybe_dead = 1;
+ }
+ }
+
+ /* Now that we know which givs will be reduced, try to rearrange the
+ combinations to reduce register pressure.
+ recombine_givs calls find_life_end, which needs reg_iv_type and
+ reg_iv_info to be valid for all pseudos. We do the necessary
+ reallocation here since it allows to check if there are still
+ more bivs to process. */
+ nregs = max_reg_num ();
+ if (nregs > reg_iv_type->num_elements)
+ {
+ /* If there are still more bivs to process, allocate some slack
+ space so that we're not constantly reallocating these arrays. */
+ if (bl->next)
+ nregs += nregs / 4;
+ /* Reallocate reg_iv_type and reg_iv_info. */
+ VARRAY_GROW (reg_iv_type, nregs);
+ VARRAY_GROW (reg_iv_info, nregs);
+ }
+ recombine_givs (bl, loop_start, loop_end, unroll_p);
+
+ /* Reduce each giv that we decided to reduce. */
+
+ for (v = bl->giv; v; v = v->next_iv)
+ {
+ struct induction *tv;
+ if (! v->ignore && v->same == 0)
+ {
+ int auto_inc_opt = 0;
+
+ /* If the code for derived givs immediately below has already
+ allocated a new_reg, we must keep it. */
+ if (! v->new_reg)
+ v->new_reg = gen_reg_rtx (v->mode);
+
+ if (v->derived_from)
+ {
+ struct induction *d = v->derived_from;
+
+ /* In case d->dest_reg is not replaceable, we have
+ to replace it in v->insn now. */
+ if (! d->new_reg)
+ d->new_reg = gen_reg_rtx (d->mode);
+ PATTERN (v->insn)
+ = replace_rtx (PATTERN (v->insn), d->dest_reg, d->new_reg);
+ PATTERN (v->insn)
+ = replace_rtx (PATTERN (v->insn), v->dest_reg, v->new_reg);
+ if (bl->biv_count != 1)
+ {
+ /* For each place where the biv is incremented, add an
+ insn to set the new, reduced reg for the giv. */
+ for (tv = bl->biv; tv; tv = tv->next_iv)
+ {
+ /* We always emit reduced giv increments before the
+ biv increment when bl->biv_count != 1. So by
+ emitting the add insns for derived givs after the
+ biv increment, they pick up the updated value of
+ the reduced giv. */
+ emit_insn_after (copy_rtx (PATTERN (v->insn)),
+ tv->insn);
+
+ }
+ }
+ continue;
+ }
+
+#ifdef AUTO_INC_DEC
+ /* If the target has auto-increment addressing modes, and
+ this is an address giv, then try to put the increment
+ immediately after its use, so that flow can create an
+ auto-increment addressing mode. */
+ if (v->giv_type == DEST_ADDR && bl->biv_count == 1
+ && bl->biv->always_executed && ! bl->biv->maybe_multiple
+ /* We don't handle reversed biv's because bl->biv->insn
+ does not have a valid INSN_LUID. */
+ && ! bl->reversed
+ && v->always_executed && ! v->maybe_multiple
+ && INSN_UID (v->insn) < max_uid_for_loop)
+ {
+ /* If other giv's have been combined with this one, then
+ this will work only if all uses of the other giv's occur
+ before this giv's insn. This is difficult to check.
+
+ We simplify this by looking for the common case where
+ there is one DEST_REG giv, and this giv's insn is the
+ last use of the dest_reg of that DEST_REG giv. If the
+ increment occurs after the address giv, then we can
+ perform the optimization. (Otherwise, the increment
+ would have to go before other_giv, and we would not be
+ able to combine it with the address giv to get an
+ auto-inc address.) */
+ if (v->combined_with)
+ {
+ struct induction *other_giv = 0;
+
+ for (tv = bl->giv; tv; tv = tv->next_iv)
+ if (tv->same == v)
+ {
+ if (other_giv)
+ break;
+ else
+ other_giv = tv;
+ }
+ if (! tv && other_giv
+ && REGNO (other_giv->dest_reg) < max_reg_before_loop
+ && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
+ == INSN_UID (v->insn))
+ && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
+ auto_inc_opt = 1;
+ }
+ /* Check for case where increment is before the address
+ giv. Do this test in "loop order". */
+ else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
+ && (INSN_LUID (v->insn) < INSN_LUID (scan_start)
+ || (INSN_LUID (bl->biv->insn)
+ > INSN_LUID (scan_start))))
+ || (INSN_LUID (v->insn) < INSN_LUID (scan_start)
+ && (INSN_LUID (scan_start)
+ < INSN_LUID (bl->biv->insn))))
+ auto_inc_opt = -1;
+ else
+ auto_inc_opt = 1;
+
+#ifdef HAVE_cc0
+ {
+ rtx prev;
+
+ /* We can't put an insn immediately after one setting
+ cc0, or immediately before one using cc0. */
+ if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
+ || (auto_inc_opt == -1
+ && (prev = prev_nonnote_insn (v->insn)) != 0
+ && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
+ && sets_cc0_p (PATTERN (prev))))
+ auto_inc_opt = 0;
+ }
+#endif
+
+ if (auto_inc_opt)
+ v->auto_inc_opt = 1;
+ }
+#endif
+
+ /* For each place where the biv is incremented, add an insn
+ to increment the new, reduced reg for the giv. */
+ for (tv = bl->biv; tv; tv = tv->next_iv)
+ {
+ rtx insert_before;
+
+ if (! auto_inc_opt)
+ insert_before = tv->insn;
+ else if (auto_inc_opt == 1)
+ insert_before = NEXT_INSN (v->insn);
+ else
+ insert_before = v->insn;
+
+ if (tv->mult_val == const1_rtx)
+ emit_iv_add_mult (tv->add_val, v->mult_val,
+ v->new_reg, v->new_reg, insert_before);
+ else /* tv->mult_val == const0_rtx */
+ /* A multiply is acceptable here
+ since this is presumed to be seldom executed. */
+ emit_iv_add_mult (tv->add_val, v->mult_val,
+ v->add_val, v->new_reg, insert_before);
+ }
+
+ /* Add code at loop start to initialize giv's reduced reg. */
+
+ emit_iv_add_mult (bl->initial_value, v->mult_val,
+ v->add_val, v->new_reg, loop_start);
+ }
+ }
+
+ /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
+ as not reduced.
+
+ For each giv register that can be reduced now: if replaceable,
+ substitute reduced reg wherever the old giv occurs;
+ else add new move insn "giv_reg = reduced_reg". */
+
+ for (v = bl->giv; v; v = v->next_iv)
+ {
+ if (v->same && v->same->ignore)
+ v->ignore = 1;
+
+ if (v->ignore)
+ continue;
+
+ /* Update expression if this was combined, in case other giv was
+ replaced. */
+ if (v->same)
+ v->new_reg = replace_rtx (v->new_reg,
+ v->same->dest_reg, v->same->new_reg);
+
+ if (v->giv_type == DEST_ADDR)
+ /* Store reduced reg as the address in the memref where we found
+ this giv. */
+ validate_change (v->insn, v->location, v->new_reg, 0);
+ else if (v->replaceable)
+ {
+ reg_map[REGNO (v->dest_reg)] = v->new_reg;
+
+#if 0
+ /* I can no longer duplicate the original problem. Perhaps
+ this is unnecessary now? */
+
+ /* Replaceable; it isn't strictly necessary to delete the old
+ insn and emit a new one, because v->dest_reg is now dead.
+
+ However, especially when unrolling loops, the special
+ handling for (set REG0 REG1) in the second cse pass may
+ make v->dest_reg live again. To avoid this problem, emit
+ an insn to set the original giv reg from the reduced giv.
+ We can not delete the original insn, since it may be part
+ of a LIBCALL, and the code in flow that eliminates dead
+ libcalls will fail if it is deleted. */
+ emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
+ v->insn);
+#endif
+ }
+ else
+ {
+ /* Not replaceable; emit an insn to set the original giv reg from
+ the reduced giv, same as above. */
+ emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
+ v->insn);
+ }
+
+ /* When a loop is reversed, givs which depend on the reversed
+ biv, and which are live outside the loop, must be set to their
+ correct final value. This insn is only needed if the giv is
+ not replaceable. The correct final value is the same as the
+ value that the giv starts the reversed loop with. */
+ if (bl->reversed && ! v->replaceable)
+ emit_iv_add_mult (bl->initial_value, v->mult_val,
+ v->add_val, v->dest_reg, end_insert_before);
+ else if (v->final_value)
+ {
+ rtx insert_before;
+
+ /* If the loop has multiple exits, emit the insn before the
+ loop to ensure that it will always be executed no matter
+ how the loop exits. Otherwise, emit the insn after the loop,
+ since this is slightly more efficient. */
+ if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
+ insert_before = loop_start;
+ else
+ insert_before = end_insert_before;
+ emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
+ insert_before);
+
+#if 0
+ /* If the insn to set the final value of the giv was emitted
+ before the loop, then we must delete the insn inside the loop
+ that sets it. If this is a LIBCALL, then we must delete
+ every insn in the libcall. Note, however, that
+ final_giv_value will only succeed when there are multiple
+ exits if the giv is dead at each exit, hence it does not
+ matter that the original insn remains because it is dead
+ anyways. */
+ /* Delete the insn inside the loop that sets the giv since
+ the giv is now set before (or after) the loop. */
+ delete_insn (v->insn);
+#endif
+ }
+
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream, "giv at %d reduced to ",
+ INSN_UID (v->insn));
+ print_rtl (loop_dump_stream, v->new_reg);
+ fprintf (loop_dump_stream, "\n");
+ }
+ }
+
+ /* All the givs based on the biv bl have been reduced if they
+ merit it. */
+
+ /* For each giv not marked as maybe dead that has been combined with a
+ second giv, clear any "maybe dead" mark on that second giv.
+ v->new_reg will either be or refer to the register of the giv it
+ combined with.
+
+ Doing this clearing avoids problems in biv elimination where a
+ giv's new_reg is a complex value that can't be put in the insn but
+ the giv combined with (with a reg as new_reg) is marked maybe_dead.
+ Since the register will be used in either case, we'd prefer it be
+ used from the simpler giv. */
+
+ for (v = bl->giv; v; v = v->next_iv)
+ if (! v->maybe_dead && v->same)
+ v->same->maybe_dead = 0;
+
+ /* Try to eliminate the biv, if it is a candidate.
+ This won't work if ! all_reduced,
+ since the givs we planned to use might not have been reduced.
+
+ We have to be careful that we didn't initially think we could eliminate
+ this biv because of a giv that we now think may be dead and shouldn't
+ be used as a biv replacement.
+
+ Also, there is the possibility that we may have a giv that looks
+ like it can be used to eliminate a biv, but the resulting insn
+ isn't valid. This can happen, for example, on the 88k, where a
+ JUMP_INSN can compare a register only with zero. Attempts to
+ replace it with a compare with a constant will fail.
+
+ Note that in cases where this call fails, we may have replaced some
+ of the occurrences of the biv with a giv, but no harm was done in
+ doing so in the rare cases where it can occur. */
+
+ if (all_reduced == 1 && bl->eliminable
+ && maybe_eliminate_biv (bl, loop_start, end, 1,
+ threshold, insn_count))
+
+ {
+ /* ?? If we created a new test to bypass the loop entirely,
+ or otherwise drop straight in, based on this test, then
+ we might want to rewrite it also. This way some later
+ pass has more hope of removing the initialization of this
+ biv entirely. */
+
+ /* If final_value != 0, then the biv may be used after loop end
+ and we must emit an insn to set it just in case.
+
+ Reversed bivs already have an insn after the loop setting their
+ value, so we don't need another one. We can't calculate the
+ proper final value for such a biv here anyways. */
+ if (final_value != 0 && ! bl->reversed)
+ {
+ rtx insert_before;
+
+ /* If the loop has multiple exits, emit the insn before the
+ loop to ensure that it will always be executed no matter
+ how the loop exits. Otherwise, emit the insn after the
+ loop, since this is slightly more efficient. */
+ if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
+ insert_before = loop_start;
+ else
+ insert_before = end_insert_before;
+
+ emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
+ end_insert_before);
+ }
+
+#if 0
+ /* Delete all of the instructions inside the loop which set
+ the biv, as they are all dead. If is safe to delete them,
+ because an insn setting a biv will never be part of a libcall. */
+ /* However, deleting them will invalidate the regno_last_uid info,
+ so keeping them around is more convenient. Final_biv_value
+ will only succeed when there are multiple exits if the biv
+ is dead at each exit, hence it does not matter that the original
+ insn remains, because it is dead anyways. */
+ for (v = bl->biv; v; v = v->next_iv)
+ delete_insn (v->insn);
+#endif
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
+ bl->regno);
+ }
+ }
+
+ /* Go through all the instructions in the loop, making all the
+ register substitutions scheduled in REG_MAP. */
+
+ for (p = loop_start; p != end; p = NEXT_INSN (p))
+ if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
+ || GET_CODE (p) == CALL_INSN)
+ {
+ replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
+ replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
+ INSN_CODE (p) = -1;
+ }
+
+ /* Unroll loops from within strength reduction so that we can use the
+ induction variable information that strength_reduce has already
+ collected. */
+
+ if (unroll_p)
+ unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
+ loop_info, 1);
+
+#ifdef HAVE_decrement_and_branch_on_count
+ /* Instrument the loop with BCT insn. */
+ if (HAVE_decrement_and_branch_on_count && bct_p
+ && flag_branch_on_count_reg)
+ insert_bct (loop_start, loop_end, loop_info);
+#endif /* HAVE_decrement_and_branch_on_count */
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "\n");
+ VARRAY_FREE (reg_iv_type);
+ VARRAY_FREE (reg_iv_info);
+}
+
+/* Return 1 if X is a valid source for an initial value (or as value being
+ compared against in an initial test).
+
+ X must be either a register or constant and must not be clobbered between
+ the current insn and the start of the loop.
+
+ INSN is the insn containing X. */
+
+static int
+valid_initial_value_p (x, insn, call_seen, loop_start)
+ rtx x;
+ rtx insn;
+ int call_seen;
+ rtx loop_start;
+{
+ if (CONSTANT_P (x))
+ return 1;
+
+ /* Only consider pseudos we know about initialized in insns whose luids
+ we know. */
+ if (GET_CODE (x) != REG
+ || REGNO (x) >= max_reg_before_loop)
+ return 0;
+
+ /* Don't use call-clobbered registers across a call which clobbers it. On
+ some machines, don't use any hard registers at all. */
+ if (REGNO (x) < FIRST_PSEUDO_REGISTER
+ && (SMALL_REGISTER_CLASSES
+ || (call_used_regs[REGNO (x)] && call_seen)))
+ return 0;
+
+ /* Don't use registers that have been clobbered before the start of the
+ loop. */
+ if (reg_set_between_p (x, insn, loop_start))
+ return 0;
+
+ return 1;
+}
+
+/* Scan X for memory refs and check each memory address
+ as a possible giv. INSN is the insn whose pattern X comes from.
+ NOT_EVERY_ITERATION is 1 if the insn might not be executed during
+ every loop iteration. */
+
+static void
+find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
+ rtx x;
+ rtx insn;
+ int not_every_iteration;
+ rtx loop_start, loop_end;
+{
+ register int i, j;
+ register enum rtx_code code;
+ register char *fmt;
+
+ if (x == 0)
+ return;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case REG:
+ case CONST_INT:
+ case CONST:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case PC:
+ case CC0:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ case USE:
+ case CLOBBER:
+ return;
+
+ case MEM:
+ {
+ rtx src_reg;
+ rtx add_val;
+ rtx mult_val;
+ int benefit;
+
+ /* This code used to disable creating GIVs with mult_val == 1 and
+ add_val == 0. However, this leads to lost optimizations when
+ it comes time to combine a set of related DEST_ADDR GIVs, since
+ this one would not be seen. */
+
+ if (general_induction_var (XEXP (x, 0), &src_reg, &add_val,
+ &mult_val, 1, &benefit))
+ {
+ /* Found one; record it. */
+ struct induction *v
+ = (struct induction *) oballoc (sizeof (struct induction));
+
+ record_giv (v, insn, src_reg, addr_placeholder, mult_val,
+ add_val, benefit, DEST_ADDR, not_every_iteration,
+ &XEXP (x, 0), loop_start, loop_end);
+
+ v->mem_mode = GET_MODE (x);
+ }
+ }
+ return;
+
+ default:
+ break;
+ }
+
+ /* Recursively scan the subexpressions for other mem refs. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
+ loop_end);
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
+ loop_start, loop_end);
+}
+
+/* Fill in the data about one biv update.
+ V is the `struct induction' in which we record the biv. (It is
+ allocated by the caller, with alloca.)
+ INSN is the insn that sets it.
+ DEST_REG is the biv's reg.
+
+ MULT_VAL is const1_rtx if the biv is being incremented here, in which case
+ INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
+ being set to INC_VAL.
+
+ NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
+ executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
+ can be executed more than once per iteration. If MAYBE_MULTIPLE
+ and NOT_EVERY_ITERATION are both zero, we know that the biv update is
+ executed exactly once per iteration. */
+
+static void
+record_biv (v, insn, dest_reg, inc_val, mult_val, location,
+ not_every_iteration, maybe_multiple)
+ struct induction *v;
+ rtx insn;
+ rtx dest_reg;
+ rtx inc_val;
+ rtx mult_val;
+ rtx *location;
+ int not_every_iteration;
+ int maybe_multiple;
+{
+ struct iv_class *bl;
+
+ v->insn = insn;
+ v->src_reg = dest_reg;
+ v->dest_reg = dest_reg;
+ v->mult_val = mult_val;
+ v->add_val = inc_val;
+ v->location = location;
+ v->mode = GET_MODE (dest_reg);
+ v->always_computable = ! not_every_iteration;
+ v->always_executed = ! not_every_iteration;
+ v->maybe_multiple = maybe_multiple;
+
+ /* Add this to the reg's iv_class, creating a class
+ if this is the first incrementation of the reg. */
+
+ bl = reg_biv_class[REGNO (dest_reg)];
+ if (bl == 0)
+ {
+ /* Create and initialize new iv_class. */
+
+ bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
+
+ bl->regno = REGNO (dest_reg);
+ bl->biv = 0;
+ bl->giv = 0;
+ bl->biv_count = 0;
+ bl->giv_count = 0;
+
+ /* Set initial value to the reg itself. */
+ bl->initial_value = dest_reg;
+ /* We haven't seen the initializing insn yet */
+ bl->init_insn = 0;
+ bl->init_set = 0;
+ bl->initial_test = 0;
+ bl->incremented = 0;
+ bl->eliminable = 0;
+ bl->nonneg = 0;
+ bl->reversed = 0;
+ bl->total_benefit = 0;
+
+ /* Add this class to loop_iv_list. */
+ bl->next = loop_iv_list;
+ loop_iv_list = bl;
+
+ /* Put it in the array of biv register classes. */
+ reg_biv_class[REGNO (dest_reg)] = bl;
+ }
+
+ /* Update IV_CLASS entry for this biv. */
+ v->next_iv = bl->biv;
+ bl->biv = v;
+ bl->biv_count++;
+ if (mult_val == const1_rtx)
+ bl->incremented = 1;
+
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream,
+ "Insn %d: possible biv, reg %d,",
+ INSN_UID (insn), REGNO (dest_reg));
+ if (GET_CODE (inc_val) == CONST_INT)
+ {
+ fprintf (loop_dump_stream, " const =");
+ fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
+ fputc ('\n', loop_dump_stream);
+ }
+ else
+ {
+ fprintf (loop_dump_stream, " const = ");
+ print_rtl (loop_dump_stream, inc_val);
+ fprintf (loop_dump_stream, "\n");
+ }
+ }
+}
+
+/* Fill in the data about one giv.
+ V is the `struct induction' in which we record the giv. (It is
+ allocated by the caller, with alloca.)
+ INSN is the insn that sets it.
+ BENEFIT estimates the savings from deleting this insn.
+ TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
+ into a register or is used as a memory address.
+
+ SRC_REG is the biv reg which the giv is computed from.
+ DEST_REG is the giv's reg (if the giv is stored in a reg).
+ MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
+ LOCATION points to the place where this giv's value appears in INSN. */
+
+static void
+record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
+ type, not_every_iteration, location, loop_start, loop_end)
+ struct induction *v;
+ rtx insn;
+ rtx src_reg;
+ rtx dest_reg;
+ rtx mult_val, add_val;
+ int benefit;
+ enum g_types type;
+ int not_every_iteration;
+ rtx *location;
+ rtx loop_start, loop_end;
+{
+ struct induction *b;
+ struct iv_class *bl;
+ rtx set = single_set (insn);
+
+ v->insn = insn;
+ v->src_reg = src_reg;
+ v->giv_type = type;
+ v->dest_reg = dest_reg;
+ v->mult_val = mult_val;
+ v->add_val = add_val;
+ v->benefit = benefit;
+ v->location = location;
+ v->cant_derive = 0;
+ v->combined_with = 0;
+ v->maybe_multiple = 0;
+ v->maybe_dead = 0;
+ v->derive_adjustment = 0;
+ v->same = 0;
+ v->ignore = 0;
+ v->new_reg = 0;
+ v->final_value = 0;
+ v->same_insn = 0;
+ v->auto_inc_opt = 0;
+ v->unrolled = 0;
+ v->shared = 0;
+ v->derived_from = 0;
+ v->last_use = 0;
+
+ /* The v->always_computable field is used in update_giv_derive, to
+ determine whether a giv can be used to derive another giv. For a
+ DEST_REG giv, INSN computes a new value for the giv, so its value
+ isn't computable if INSN insn't executed every iteration.
+ However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
+ it does not compute a new value. Hence the value is always computable
+ regardless of whether INSN is executed each iteration. */
+
+ if (type == DEST_ADDR)
+ v->always_computable = 1;
+ else
+ v->always_computable = ! not_every_iteration;
+
+ v->always_executed = ! not_every_iteration;
+
+ if (type == DEST_ADDR)
+ {
+ v->mode = GET_MODE (*location);
+ v->lifetime = 1;
+ }
+ else /* type == DEST_REG */
+ {
+ v->mode = GET_MODE (SET_DEST (set));
+
+ v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
+ - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
+
+ /* If the lifetime is zero, it means that this register is
+ really a dead store. So mark this as a giv that can be
+ ignored. This will not prevent the biv from being eliminated. */
+ if (v->lifetime == 0)
+ v->ignore = 1;
+
+ REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
+ REG_IV_INFO (REGNO (dest_reg)) = v;
+ }
+
+ /* Add the giv to the class of givs computed from one biv. */
+
+ bl = reg_biv_class[REGNO (src_reg)];
+ if (bl)
+ {
+ v->next_iv = bl->giv;
+ bl->giv = v;
+ /* Don't count DEST_ADDR. This is supposed to count the number of
+ insns that calculate givs. */
+ if (type == DEST_REG)
+ bl->giv_count++;
+ bl->total_benefit += benefit;
+ }
+ else
+ /* Fatal error, biv missing for this giv? */
+ abort ();
+
+ if (type == DEST_ADDR)
+ v->replaceable = 1;
+ else
+ {
+ /* The giv can be replaced outright by the reduced register only if all
+ of the following conditions are true:
+ - the insn that sets the giv is always executed on any iteration
+ on which the giv is used at all
+ (there are two ways to deduce this:
+ either the insn is executed on every iteration,
+ or all uses follow that insn in the same basic block),
+ - the giv is not used outside the loop
+ - no assignments to the biv occur during the giv's lifetime. */
+
+ if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
+ /* Previous line always fails if INSN was moved by loop opt. */
+ && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
+ && (! not_every_iteration
+ || last_use_this_basic_block (dest_reg, insn)))
+ {
+ /* Now check that there are no assignments to the biv within the
+ giv's lifetime. This requires two separate checks. */
+
+ /* Check each biv update, and fail if any are between the first
+ and last use of the giv.
+
+ If this loop contains an inner loop that was unrolled, then
+ the insn modifying the biv may have been emitted by the loop
+ unrolling code, and hence does not have a valid luid. Just
+ mark the biv as not replaceable in this case. It is not very
+ useful as a biv, because it is used in two different loops.
+ It is very unlikely that we would be able to optimize the giv
+ using this biv anyways. */
+
+ v->replaceable = 1;
+ for (b = bl->biv; b; b = b->next_iv)
+ {
+ if (INSN_UID (b->insn) >= max_uid_for_loop
+ || ((uid_luid[INSN_UID (b->insn)]
+ >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
+ && (uid_luid[INSN_UID (b->insn)]
+ <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
+ {
+ v->replaceable = 0;
+ v->not_replaceable = 1;
+ break;
+ }
+ }
+
+ /* If there are any backwards branches that go from after the
+ biv update to before it, then this giv is not replaceable. */
+ if (v->replaceable)
+ for (b = bl->biv; b; b = b->next_iv)
+ if (back_branch_in_range_p (b->insn, loop_start, loop_end))
+ {
+ v->replaceable = 0;
+ v->not_replaceable = 1;
+ break;
+ }
+ }
+ else
+ {
+ /* May still be replaceable, we don't have enough info here to
+ decide. */
+ v->replaceable = 0;
+ v->not_replaceable = 0;
+ }
+ }
+
+ /* Record whether the add_val contains a const_int, for later use by
+ combine_givs. */
+ {
+ rtx tem = add_val;
+
+ v->no_const_addval = 1;
+ if (tem == const0_rtx)
+ ;
+ else if (GET_CODE (tem) == CONST_INT)
+ v->no_const_addval = 0;
+ else if (GET_CODE (tem) == PLUS)
+ {
+ while (1)
+ {
+ if (GET_CODE (XEXP (tem, 0)) == PLUS)
+ tem = XEXP (tem, 0);
+ else if (GET_CODE (XEXP (tem, 1)) == PLUS)
+ tem = XEXP (tem, 1);
+ else
+ break;
+ }
+ if (GET_CODE (XEXP (tem, 1)) == CONST_INT)
+ v->no_const_addval = 0;
+ }
+ }
+
+ if (loop_dump_stream)
+ {
+ if (type == DEST_REG)
+ fprintf (loop_dump_stream, "Insn %d: giv reg %d",
+ INSN_UID (insn), REGNO (dest_reg));
+ else
+ fprintf (loop_dump_stream, "Insn %d: dest address",
+ INSN_UID (insn));
+
+ fprintf (loop_dump_stream, " src reg %d benefit %d",
+ REGNO (src_reg), v->benefit);
+ fprintf (loop_dump_stream, " lifetime %d",
+ v->lifetime);
+
+ if (v->replaceable)
+ fprintf (loop_dump_stream, " replaceable");
+
+ if (v->no_const_addval)
+ fprintf (loop_dump_stream, " ncav");
+
+ if (GET_CODE (mult_val) == CONST_INT)
+ {
+ fprintf (loop_dump_stream, " mult ");
+ fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
+ }
+ else
+ {
+ fprintf (loop_dump_stream, " mult ");
+ print_rtl (loop_dump_stream, mult_val);
+ }
+
+ if (GET_CODE (add_val) == CONST_INT)
+ {
+ fprintf (loop_dump_stream, " add ");
+ fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
+ }
+ else
+ {
+ fprintf (loop_dump_stream, " add ");
+ print_rtl (loop_dump_stream, add_val);
+ }
+ }
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "\n");
+
+}
+
+
+/* All this does is determine whether a giv can be made replaceable because
+ its final value can be calculated. This code can not be part of record_giv
+ above, because final_giv_value requires that the number of loop iterations
+ be known, and that can not be accurately calculated until after all givs
+ have been identified. */
+
+static void
+check_final_value (v, loop_start, loop_end, n_iterations)
+ struct induction *v;
+ rtx loop_start, loop_end;
+ unsigned HOST_WIDE_INT n_iterations;
+{
+ struct iv_class *bl;
+ rtx final_value = 0;
+
+ bl = reg_biv_class[REGNO (v->src_reg)];
+
+ /* DEST_ADDR givs will never reach here, because they are always marked
+ replaceable above in record_giv. */
+
+ /* The giv can be replaced outright by the reduced register only if all
+ of the following conditions are true:
+ - the insn that sets the giv is always executed on any iteration
+ on which the giv is used at all
+ (there are two ways to deduce this:
+ either the insn is executed on every iteration,
+ or all uses follow that insn in the same basic block),
+ - its final value can be calculated (this condition is different
+ than the one above in record_giv)
+ - no assignments to the biv occur during the giv's lifetime. */
+
+#if 0
+ /* This is only called now when replaceable is known to be false. */
+ /* Clear replaceable, so that it won't confuse final_giv_value. */
+ v->replaceable = 0;
+#endif
+
+ if ((final_value = final_giv_value (v, loop_start, loop_end, n_iterations))
+ && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
+ {
+ int biv_increment_seen = 0;
+ rtx p = v->insn;
+ rtx last_giv_use;
+
+ v->replaceable = 1;
+
+ /* When trying to determine whether or not a biv increment occurs
+ during the lifetime of the giv, we can ignore uses of the variable
+ outside the loop because final_value is true. Hence we can not
+ use regno_last_uid and regno_first_uid as above in record_giv. */
+
+ /* Search the loop to determine whether any assignments to the
+ biv occur during the giv's lifetime. Start with the insn
+ that sets the giv, and search around the loop until we come
+ back to that insn again.
+
+ Also fail if there is a jump within the giv's lifetime that jumps
+ to somewhere outside the lifetime but still within the loop. This
+ catches spaghetti code where the execution order is not linear, and
+ hence the above test fails. Here we assume that the giv lifetime
+ does not extend from one iteration of the loop to the next, so as
+ to make the test easier. Since the lifetime isn't known yet,
+ this requires two loops. See also record_giv above. */
+
+ last_giv_use = v->insn;
+
+ while (1)
+ {
+ p = NEXT_INSN (p);
+ if (p == loop_end)
+ p = NEXT_INSN (loop_start);
+ if (p == v->insn)
+ break;
+
+ if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
+ || GET_CODE (p) == CALL_INSN)
+ {
+ if (biv_increment_seen)
+ {
+ if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
+ {
+ v->replaceable = 0;
+ v->not_replaceable = 1;
+ break;
+ }
+ }
+ else if (reg_set_p (v->src_reg, PATTERN (p)))
+ biv_increment_seen = 1;
+ else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
+ last_giv_use = p;
+ }
+ }
+
+ /* Now that the lifetime of the giv is known, check for branches
+ from within the lifetime to outside the lifetime if it is still
+ replaceable. */
+
+ if (v->replaceable)
+ {
+ p = v->insn;
+ while (1)
+ {
+ p = NEXT_INSN (p);
+ if (p == loop_end)
+ p = NEXT_INSN (loop_start);
+ if (p == last_giv_use)
+ break;
+
+ if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
+ && LABEL_NAME (JUMP_LABEL (p))
+ && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
+ && loop_insn_first_p (loop_start, JUMP_LABEL (p)))
+ || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
+ && loop_insn_first_p (JUMP_LABEL (p), loop_end))))
+ {
+ v->replaceable = 0;
+ v->not_replaceable = 1;
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "Found branch outside giv lifetime.\n");
+
+ break;
+ }
+ }
+ }
+
+ /* If it is replaceable, then save the final value. */
+ if (v->replaceable)
+ v->final_value = final_value;
+ }
+
+ if (loop_dump_stream && v->replaceable)
+ fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
+ INSN_UID (v->insn), REGNO (v->dest_reg));
+}
+
+/* Update the status of whether a giv can derive other givs.
+
+ We need to do something special if there is or may be an update to the biv
+ between the time the giv is defined and the time it is used to derive
+ another giv.
+
+ In addition, a giv that is only conditionally set is not allowed to
+ derive another giv once a label has been passed.
+
+ The cases we look at are when a label or an update to a biv is passed. */
+
+static void
+update_giv_derive (p)
+ rtx p;
+{
+ struct iv_class *bl;
+ struct induction *biv, *giv;
+ rtx tem;
+ int dummy;
+
+ /* Search all IV classes, then all bivs, and finally all givs.
+
+ There are three cases we are concerned with. First we have the situation
+ of a giv that is only updated conditionally. In that case, it may not
+ derive any givs after a label is passed.
+
+ The second case is when a biv update occurs, or may occur, after the
+ definition of a giv. For certain biv updates (see below) that are
+ known to occur between the giv definition and use, we can adjust the
+ giv definition. For others, or when the biv update is conditional,
+ we must prevent the giv from deriving any other givs. There are two
+ sub-cases within this case.
+
+ If this is a label, we are concerned with any biv update that is done
+ conditionally, since it may be done after the giv is defined followed by
+ a branch here (actually, we need to pass both a jump and a label, but
+ this extra tracking doesn't seem worth it).
+
+ If this is a jump, we are concerned about any biv update that may be
+ executed multiple times. We are actually only concerned about
+ backward jumps, but it is probably not worth performing the test
+ on the jump again here.
+
+ If this is a biv update, we must adjust the giv status to show that a
+ subsequent biv update was performed. If this adjustment cannot be done,
+ the giv cannot derive further givs. */
+
+ for (bl = loop_iv_list; bl; bl = bl->next)
+ for (biv = bl->biv; biv; biv = biv->next_iv)
+ if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
+ || biv->insn == p)
+ {
+ for (giv = bl->giv; giv; giv = giv->next_iv)
+ {
+ /* If cant_derive is already true, there is no point in
+ checking all of these conditions again. */
+ if (giv->cant_derive)
+ continue;
+
+ /* If this giv is conditionally set and we have passed a label,
+ it cannot derive anything. */
+ if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
+ giv->cant_derive = 1;
+
+ /* Skip givs that have mult_val == 0, since
+ they are really invariants. Also skip those that are
+ replaceable, since we know their lifetime doesn't contain
+ any biv update. */
+ else if (giv->mult_val == const0_rtx || giv->replaceable)
+ continue;
+
+ /* The only way we can allow this giv to derive another
+ is if this is a biv increment and we can form the product
+ of biv->add_val and giv->mult_val. In this case, we will
+ be able to compute a compensation. */
+ else if (biv->insn == p)
+ {
+ tem = 0;
+
+ if (biv->mult_val == const1_rtx)
+ tem = simplify_giv_expr (gen_rtx_MULT (giv->mode,
+ biv->add_val,
+ giv->mult_val),
+ &dummy);
+
+ if (tem && giv->derive_adjustment)
+ tem = simplify_giv_expr (gen_rtx_PLUS (giv->mode, tem,
+ giv->derive_adjustment),
+ &dummy);
+ if (tem)
+ giv->derive_adjustment = tem;
+ else
+ giv->cant_derive = 1;
+ }
+ else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
+ || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
+ giv->cant_derive = 1;
+ }
+ }
+}
+
+/* Check whether an insn is an increment legitimate for a basic induction var.
+ X is the source of insn P, or a part of it.
+ MODE is the mode in which X should be interpreted.
+
+ DEST_REG is the putative biv, also the destination of the insn.
+ We accept patterns of these forms:
+ REG = REG + INVARIANT (includes REG = REG - CONSTANT)
+ REG = INVARIANT + REG
+
+ If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
+ store the additive term into *INC_VAL, and store the place where
+ we found the additive term into *LOCATION.
+
+ If X is an assignment of an invariant into DEST_REG, we set
+ *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
+
+ We also want to detect a BIV when it corresponds to a variable
+ whose mode was promoted via PROMOTED_MODE. In that case, an increment
+ of the variable may be a PLUS that adds a SUBREG of that variable to
+ an invariant and then sign- or zero-extends the result of the PLUS
+ into the variable.
+
+ Most GIVs in such cases will be in the promoted mode, since that is the
+ probably the natural computation mode (and almost certainly the mode
+ used for addresses) on the machine. So we view the pseudo-reg containing
+ the variable as the BIV, as if it were simply incremented.
+
+ Note that treating the entire pseudo as a BIV will result in making
+ simple increments to any GIVs based on it. However, if the variable
+ overflows in its declared mode but not its promoted mode, the result will
+ be incorrect. This is acceptable if the variable is signed, since
+ overflows in such cases are undefined, but not if it is unsigned, since
+ those overflows are defined. So we only check for SIGN_EXTEND and
+ not ZERO_EXTEND.
+
+ If we cannot find a biv, we return 0. */
+
+static int
+basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val, location)
+ register rtx x;
+ enum machine_mode mode;
+ rtx p;
+ rtx dest_reg;
+ rtx *inc_val;
+ rtx *mult_val;
+ rtx **location;
+{
+ register enum rtx_code code;
+ rtx *argp, arg;
+ rtx insn, set = 0;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case PLUS:
+ if (rtx_equal_p (XEXP (x, 0), dest_reg)
+ || (GET_CODE (XEXP (x, 0)) == SUBREG
+ && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
+ && SUBREG_REG (XEXP (x, 0)) == dest_reg))
+ {
+ argp = &XEXP (x, 1);
+ }
+ else if (rtx_equal_p (XEXP (x, 1), dest_reg)
+ || (GET_CODE (XEXP (x, 1)) == SUBREG
+ && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
+ && SUBREG_REG (XEXP (x, 1)) == dest_reg))
+ {
+ argp = &XEXP (x, 0);
+ }
+ else
+ return 0;
+
+ arg = *argp;
+ if (invariant_p (arg) != 1)
+ return 0;
+
+ *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
+ *mult_val = const1_rtx;
+ *location = argp;
+ return 1;
+
+ case SUBREG:
+ /* If this is a SUBREG for a promoted variable, check the inner
+ value. */
+ if (SUBREG_PROMOTED_VAR_P (x))
+ return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
+ dest_reg, p, inc_val, mult_val, location);
+ return 0;
+
+ case REG:
+ /* If this register is assigned in a previous insn, look at its
+ source, but don't go outside the loop or past a label. */
+
+ insn = p;
+ while (1)
+ {
+ do {
+ insn = PREV_INSN (insn);
+ } while (insn && GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
+
+ if (!insn)
+ break;
+ set = single_set (insn);
+ if (set == 0)
+ break;
+
+ if ((SET_DEST (set) == x
+ || (GET_CODE (SET_DEST (set)) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
+ <= UNITS_PER_WORD)
+ && SUBREG_REG (SET_DEST (set)) == x))
+ && basic_induction_var (SET_SRC (set),
+ (GET_MODE (SET_SRC (set)) == VOIDmode
+ ? GET_MODE (x)
+ : GET_MODE (SET_SRC (set))),
+ dest_reg, insn,
+ inc_val, mult_val, location))
+ return 1;
+ }
+ /* ... fall through ... */
+
+ /* Can accept constant setting of biv only when inside inner most loop.
+ Otherwise, a biv of an inner loop may be incorrectly recognized
+ as a biv of the outer loop,
+ causing code to be moved INTO the inner loop. */
+ case MEM:
+ if (invariant_p (x) != 1)
+ return 0;
+ case CONST_INT:
+ case SYMBOL_REF:
+ case CONST:
+ /* convert_modes aborts if we try to convert to or from CCmode, so just
+ exclude that case. It is very unlikely that a condition code value
+ would be a useful iterator anyways. */
+ if (loops_enclosed == 1
+ && GET_MODE_CLASS (mode) != MODE_CC
+ && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
+ {
+ /* Possible bug here? Perhaps we don't know the mode of X. */
+ *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
+ *mult_val = const0_rtx;
+ return 1;
+ }
+ else
+ return 0;
+
+ case SIGN_EXTEND:
+ return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
+ dest_reg, p, inc_val, mult_val, location);
+
+ case ASHIFTRT:
+ /* Similar, since this can be a sign extension. */
+ for (insn = PREV_INSN (p);
+ (insn && GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
+ insn = PREV_INSN (insn))
+ ;
+
+ if (insn)
+ set = single_set (insn);
+
+ if (set && SET_DEST (set) == XEXP (x, 0)
+ && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) >= 0
+ && GET_CODE (SET_SRC (set)) == ASHIFT
+ && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
+ return basic_induction_var (XEXP (SET_SRC (set), 0),
+ GET_MODE (XEXP (x, 0)),
+ dest_reg, insn, inc_val, mult_val,
+ location);
+ return 0;
+
+ default:
+ return 0;
+ }
+}
+
+/* A general induction variable (giv) is any quantity that is a linear
+ function of a basic induction variable,
+ i.e. giv = biv * mult_val + add_val.
+ The coefficients can be any loop invariant quantity.
+ A giv need not be computed directly from the biv;
+ it can be computed by way of other givs. */
+
+/* Determine whether X computes a giv.
+ If it does, return a nonzero value
+ which is the benefit from eliminating the computation of X;
+ set *SRC_REG to the register of the biv that it is computed from;
+ set *ADD_VAL and *MULT_VAL to the coefficients,
+ such that the value of X is biv * mult + add; */
+
+static int
+general_induction_var (x, src_reg, add_val, mult_val, is_addr, pbenefit)
+ rtx x;
+ rtx *src_reg;
+ rtx *add_val;
+ rtx *mult_val;
+ int is_addr;
+ int *pbenefit;
+{
+ rtx orig_x = x;
+ char *storage;
+
+ /* If this is an invariant, forget it, it isn't a giv. */
+ if (invariant_p (x) == 1)
+ return 0;
+
+ /* See if the expression could be a giv and get its form.
+ Mark our place on the obstack in case we don't find a giv. */
+ storage = (char *) oballoc (0);
+ *pbenefit = 0;
+ x = simplify_giv_expr (x, pbenefit);
+ if (x == 0)
+ {
+ obfree (storage);
+ return 0;
+ }
+
+ switch (GET_CODE (x))
+ {
+ case USE:
+ case CONST_INT:
+ /* Since this is now an invariant and wasn't before, it must be a giv
+ with MULT_VAL == 0. It doesn't matter which BIV we associate this
+ with. */
+ *src_reg = loop_iv_list->biv->dest_reg;
+ *mult_val = const0_rtx;
+ *add_val = x;
+ break;
+
+ case REG:
+ /* This is equivalent to a BIV. */
+ *src_reg = x;
+ *mult_val = const1_rtx;
+ *add_val = const0_rtx;
+ break;
+
+ case PLUS:
+ /* Either (plus (biv) (invar)) or
+ (plus (mult (biv) (invar_1)) (invar_2)). */
+ if (GET_CODE (XEXP (x, 0)) == MULT)
+ {
+ *src_reg = XEXP (XEXP (x, 0), 0);
+ *mult_val = XEXP (XEXP (x, 0), 1);
+ }
+ else
+ {
+ *src_reg = XEXP (x, 0);
+ *mult_val = const1_rtx;
+ }
+ *add_val = XEXP (x, 1);
+ break;
+
+ case MULT:
+ /* ADD_VAL is zero. */
+ *src_reg = XEXP (x, 0);
+ *mult_val = XEXP (x, 1);
+ *add_val = const0_rtx;
+ break;
+
+ default:
+ abort ();
+ }
+
+ /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
+ unless they are CONST_INT). */
+ if (GET_CODE (*add_val) == USE)
+ *add_val = XEXP (*add_val, 0);
+ if (GET_CODE (*mult_val) == USE)
+ *mult_val = XEXP (*mult_val, 0);
+
+ if (is_addr)
+ {
+#ifdef ADDRESS_COST
+ *pbenefit += ADDRESS_COST (orig_x) - reg_address_cost;
+#else
+ *pbenefit += rtx_cost (orig_x, MEM) - reg_address_cost;
+#endif
+ }
+ else
+ *pbenefit += rtx_cost (orig_x, SET);
+
+ /* Always return true if this is a giv so it will be detected as such,
+ even if the benefit is zero or negative. This allows elimination
+ of bivs that might otherwise not be eliminated. */
+ return 1;
+}
+
+/* Given an expression, X, try to form it as a linear function of a biv.
+ We will canonicalize it to be of the form
+ (plus (mult (BIV) (invar_1))
+ (invar_2))
+ with possible degeneracies.
+
+ The invariant expressions must each be of a form that can be used as a
+ machine operand. We surround then with a USE rtx (a hack, but localized
+ and certainly unambiguous!) if not a CONST_INT for simplicity in this
+ routine; it is the caller's responsibility to strip them.
+
+ If no such canonicalization is possible (i.e., two biv's are used or an
+ expression that is neither invariant nor a biv or giv), this routine
+ returns 0.
+
+ For a non-zero return, the result will have a code of CONST_INT, USE,
+ REG (for a BIV), PLUS, or MULT. No other codes will occur.
+
+ *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
+
+static rtx sge_plus PROTO ((enum machine_mode, rtx, rtx));
+static rtx sge_plus_constant PROTO ((rtx, rtx));
+
+static rtx
+simplify_giv_expr (x, benefit)
+ rtx x;
+ int *benefit;
+{
+ enum machine_mode mode = GET_MODE (x);
+ rtx arg0, arg1;
+ rtx tem;
+
+ /* If this is not an integer mode, or if we cannot do arithmetic in this
+ mode, this can't be a giv. */
+ if (mode != VOIDmode
+ && (GET_MODE_CLASS (mode) != MODE_INT
+ || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
+ return NULL_RTX;
+
+ switch (GET_CODE (x))
+ {
+ case PLUS:
+ arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
+ arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
+ if (arg0 == 0 || arg1 == 0)
+ return NULL_RTX;
+
+ /* Put constant last, CONST_INT last if both constant. */
+ if ((GET_CODE (arg0) == USE
+ || GET_CODE (arg0) == CONST_INT)
+ && ! ((GET_CODE (arg0) == USE
+ && GET_CODE (arg1) == USE)
+ || GET_CODE (arg1) == CONST_INT))
+ tem = arg0, arg0 = arg1, arg1 = tem;
+
+ /* Handle addition of zero, then addition of an invariant. */
+ if (arg1 == const0_rtx)
+ return arg0;
+ else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
+ switch (GET_CODE (arg0))
+ {
+ case CONST_INT:
+ case USE:
+ /* Adding two invariants must result in an invariant, so enclose
+ addition operation inside a USE and return it. */
+ if (GET_CODE (arg0) == USE)
+ arg0 = XEXP (arg0, 0);
+ if (GET_CODE (arg1) == USE)
+ arg1 = XEXP (arg1, 0);
+
+ if (GET_CODE (arg0) == CONST_INT)
+ tem = arg0, arg0 = arg1, arg1 = tem;
+ if (GET_CODE (arg1) == CONST_INT)
+ tem = sge_plus_constant (arg0, arg1);
+ else
+ tem = sge_plus (mode, arg0, arg1);
+
+ if (GET_CODE (tem) != CONST_INT)
+ tem = gen_rtx_USE (mode, tem);
+ return tem;
+
+ case REG:
+ case MULT:
+ /* biv + invar or mult + invar. Return sum. */
+ return gen_rtx_PLUS (mode, arg0, arg1);
+
+ case PLUS:
+ /* (a + invar_1) + invar_2. Associate. */
+ return simplify_giv_expr (
+ gen_rtx_PLUS (mode, XEXP (arg0, 0),
+ gen_rtx_PLUS (mode, XEXP (arg0, 1), arg1)),
+ benefit);
+
+ default:
+ abort ();
+ }
+
+ /* Each argument must be either REG, PLUS, or MULT. Convert REG to
+ MULT to reduce cases. */
+ if (GET_CODE (arg0) == REG)
+ arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
+ if (GET_CODE (arg1) == REG)
+ arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
+
+ /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
+ Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
+ Recurse to associate the second PLUS. */
+ if (GET_CODE (arg1) == MULT)
+ tem = arg0, arg0 = arg1, arg1 = tem;
+
+ if (GET_CODE (arg1) == PLUS)
+ return simplify_giv_expr (gen_rtx_PLUS (mode,
+ gen_rtx_PLUS (mode, arg0,
+ XEXP (arg1, 0)),
+ XEXP (arg1, 1)),
+ benefit);
+
+ /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
+ if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
+ return NULL_RTX;
+
+ if (!rtx_equal_p (arg0, arg1))
+ return NULL_RTX;
+
+ return simplify_giv_expr (gen_rtx_MULT (mode,
+ XEXP (arg0, 0),
+ gen_rtx_PLUS (mode,
+ XEXP (arg0, 1),
+ XEXP (arg1, 1))),
+ benefit);
+
+ case MINUS:
+ /* Handle "a - b" as "a + b * (-1)". */
+ return simplify_giv_expr (gen_rtx_PLUS (mode,
+ XEXP (x, 0),
+ gen_rtx_MULT (mode, XEXP (x, 1),
+ constm1_rtx)),
+ benefit);
+
+ case MULT:
+ arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
+ arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
+ if (arg0 == 0 || arg1 == 0)
+ return NULL_RTX;
+
+ /* Put constant last, CONST_INT last if both constant. */
+ if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
+ && GET_CODE (arg1) != CONST_INT)
+ tem = arg0, arg0 = arg1, arg1 = tem;
+
+ /* If second argument is not now constant, not giv. */
+ if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
+ return NULL_RTX;
+
+ /* Handle multiply by 0 or 1. */
+ if (arg1 == const0_rtx)
+ return const0_rtx;
+
+ else if (arg1 == const1_rtx)
+ return arg0;
+
+ switch (GET_CODE (arg0))
+ {
+ case REG:
+ /* biv * invar. Done. */
+ return gen_rtx_MULT (mode, arg0, arg1);
+
+ case CONST_INT:
+ /* Product of two constants. */
+ return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
+
+ case USE:
+ /* invar * invar. It is a giv, but very few of these will
+ actually pay off, so limit to simple registers. */
+ if (GET_CODE (arg1) != CONST_INT)
+ return NULL_RTX;
+
+ arg0 = XEXP (arg0, 0);
+ if (GET_CODE (arg0) == REG)
+ tem = gen_rtx_MULT (mode, arg0, arg1);
+ else if (GET_CODE (arg0) == MULT
+ && GET_CODE (XEXP (arg0, 0)) == REG
+ && GET_CODE (XEXP (arg0, 1)) == CONST_INT)
+ {
+ tem = gen_rtx_MULT (mode, XEXP (arg0, 0),
+ GEN_INT (INTVAL (XEXP (arg0, 1))
+ * INTVAL (arg1)));
+ }
+ else
+ return NULL_RTX;
+ return gen_rtx_USE (mode, tem);
+
+ case MULT:
+ /* (a * invar_1) * invar_2. Associate. */
+ return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (arg0, 0),
+ gen_rtx_MULT (mode,
+ XEXP (arg0, 1),
+ arg1)),
+ benefit);
+
+ case PLUS:
+ /* (a + invar_1) * invar_2. Distribute. */
+ return simplify_giv_expr (gen_rtx_PLUS (mode,
+ gen_rtx_MULT (mode,
+ XEXP (arg0, 0),
+ arg1),
+ gen_rtx_MULT (mode,
+ XEXP (arg0, 1),
+ arg1)),
+ benefit);
+
+ default:
+ abort ();
+ }
+
+ case ASHIFT:
+ /* Shift by constant is multiply by power of two. */
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ return 0;
+
+ return simplify_giv_expr (gen_rtx_MULT (mode,
+ XEXP (x, 0),
+ GEN_INT ((HOST_WIDE_INT) 1
+ << INTVAL (XEXP (x, 1)))),
+ benefit);
+
+ case NEG:
+ /* "-a" is "a * (-1)" */
+ return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
+ benefit);
+
+ case NOT:
+ /* "~a" is "-a - 1". Silly, but easy. */
+ return simplify_giv_expr (gen_rtx_MINUS (mode,
+ gen_rtx_NEG (mode, XEXP (x, 0)),
+ const1_rtx),
+ benefit);
+
+ case USE:
+ /* Already in proper form for invariant. */
+ return x;
+
+ case REG:
+ /* If this is a new register, we can't deal with it. */
+ if (REGNO (x) >= max_reg_before_loop)
+ return 0;
+
+ /* Check for biv or giv. */
+ switch (REG_IV_TYPE (REGNO (x)))
+ {
+ case BASIC_INDUCT:
+ return x;
+ case GENERAL_INDUCT:
+ {
+ struct induction *v = REG_IV_INFO (REGNO (x));
+
+ /* Form expression from giv and add benefit. Ensure this giv
+ can derive another and subtract any needed adjustment if so. */
+ *benefit += v->benefit;
+ if (v->cant_derive)
+ return 0;
+
+ tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode, v->src_reg,
+ v->mult_val),
+ v->add_val);
+ if (v->derive_adjustment)
+ tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
+ return simplify_giv_expr (tem, benefit);
+ }
+
+ default:
+ /* If it isn't an induction variable, and it is invariant, we
+ may be able to simplify things further by looking through
+ the bits we just moved outside the loop. */
+ if (invariant_p (x) == 1)
+ {
+ struct movable *m;
+
+ for (m = the_movables; m ; m = m->next)
+ if (rtx_equal_p (x, m->set_dest))
+ {
+ /* Ok, we found a match. Substitute and simplify. */
+
+ /* If we match another movable, we must use that, as
+ this one is going away. */
+ if (m->match)
+ return simplify_giv_expr (m->match->set_dest, benefit);
+
+ /* If consec is non-zero, this is a member of a group of
+ instructions that were moved together. We handle this
+ case only to the point of seeking to the last insn and
+ looking for a REG_EQUAL. Fail if we don't find one. */
+ if (m->consec != 0)
+ {
+ int i = m->consec;
+ tem = m->insn;
+ do { tem = NEXT_INSN (tem); } while (--i > 0);
+
+ tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
+ if (tem)
+ tem = XEXP (tem, 0);
+ }
+ else
+ {
+ tem = single_set (m->insn);
+ if (tem)
+ tem = SET_SRC (tem);
+ }
+
+ if (tem)
+ {
+ /* What we are most interested in is pointer
+ arithmetic on invariants -- only take
+ patterns we may be able to do something with. */
+ if (GET_CODE (tem) == PLUS
+ || GET_CODE (tem) == MULT
+ || GET_CODE (tem) == ASHIFT
+ || GET_CODE (tem) == CONST_INT
+ || GET_CODE (tem) == SYMBOL_REF)
+ {
+ tem = simplify_giv_expr (tem, benefit);
+ if (tem)
+ return tem;
+ }
+ else if (GET_CODE (tem) == CONST
+ && GET_CODE (XEXP (tem, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
+ && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
+ {
+ tem = simplify_giv_expr (XEXP (tem, 0), benefit);
+ if (tem)
+ return tem;
+ }
+ }
+ break;
+ }
+ }
+ break;
+ }
+
+ /* Fall through to general case. */
+ default:
+ /* If invariant, return as USE (unless CONST_INT).
+ Otherwise, not giv. */
+ if (GET_CODE (x) == USE)
+ x = XEXP (x, 0);
+
+ if (invariant_p (x) == 1)
+ {
+ if (GET_CODE (x) == CONST_INT)
+ return x;
+ if (GET_CODE (x) == CONST
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
+ x = XEXP (x, 0);
+ return gen_rtx_USE (mode, x);
+ }
+ else
+ return 0;
+ }
+}
+
+/* This routine folds invariants such that there is only ever one
+ CONST_INT in the summation. It is only used by simplify_giv_expr. */
+
+static rtx
+sge_plus_constant (x, c)
+ rtx x, c;
+{
+ if (GET_CODE (x) == CONST_INT)
+ return GEN_INT (INTVAL (x) + INTVAL (c));
+ else if (GET_CODE (x) != PLUS)
+ return gen_rtx_PLUS (GET_MODE (x), x, c);
+ else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
+ {
+ return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
+ GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
+ }
+ else if (GET_CODE (XEXP (x, 0)) == PLUS
+ || GET_CODE (XEXP (x, 1)) != PLUS)
+ {
+ return gen_rtx_PLUS (GET_MODE (x),
+ sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
+ }
+ else
+ {
+ return gen_rtx_PLUS (GET_MODE (x),
+ sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
+ }
+}
+
+static rtx
+sge_plus (mode, x, y)
+ enum machine_mode mode;
+ rtx x, y;
+{
+ while (GET_CODE (y) == PLUS)
+ {
+ rtx a = XEXP (y, 0);
+ if (GET_CODE (a) == CONST_INT)
+ x = sge_plus_constant (x, a);
+ else
+ x = gen_rtx_PLUS (mode, x, a);
+ y = XEXP (y, 1);
+ }
+ if (GET_CODE (y) == CONST_INT)
+ x = sge_plus_constant (x, y);
+ else
+ x = gen_rtx_PLUS (mode, x, y);
+ return x;
+}
+
+/* Help detect a giv that is calculated by several consecutive insns;
+ for example,
+ giv = biv * M
+ giv = giv + A
+ The caller has already identified the first insn P as having a giv as dest;
+ we check that all other insns that set the same register follow
+ immediately after P, that they alter nothing else,
+ and that the result of the last is still a giv.
+
+ The value is 0 if the reg set in P is not really a giv.
+ Otherwise, the value is the amount gained by eliminating
+ all the consecutive insns that compute the value.
+
+ FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
+ SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
+
+ The coefficients of the ultimate giv value are stored in
+ *MULT_VAL and *ADD_VAL. */
+
+static int
+consec_sets_giv (first_benefit, p, src_reg, dest_reg,
+ add_val, mult_val, last_consec_insn)
+ int first_benefit;
+ rtx p;
+ rtx src_reg;
+ rtx dest_reg;
+ rtx *add_val;
+ rtx *mult_val;
+ rtx *last_consec_insn;
+{
+ int count;
+ enum rtx_code code;
+ int benefit;
+ rtx temp;
+ rtx set;
+
+ /* Indicate that this is a giv so that we can update the value produced in
+ each insn of the multi-insn sequence.
+
+ This induction structure will be used only by the call to
+ general_induction_var below, so we can allocate it on our stack.
+ If this is a giv, our caller will replace the induct var entry with
+ a new induction structure. */
+ struct induction *v
+ = (struct induction *) alloca (sizeof (struct induction));
+ v->src_reg = src_reg;
+ v->mult_val = *mult_val;
+ v->add_val = *add_val;
+ v->benefit = first_benefit;
+ v->cant_derive = 0;
+ v->derive_adjustment = 0;
+
+ REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
+ REG_IV_INFO (REGNO (dest_reg)) = v;
+
+ count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
+
+ while (count > 0)
+ {
+ p = NEXT_INSN (p);
+ code = GET_CODE (p);
+
+ /* If libcall, skip to end of call sequence. */
+ if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
+ p = XEXP (temp, 0);
+
+ if (code == INSN
+ && (set = single_set (p))
+ && GET_CODE (SET_DEST (set)) == REG
+ && SET_DEST (set) == dest_reg
+ && (general_induction_var (SET_SRC (set), &src_reg,
+ add_val, mult_val, 0, &benefit)
+ /* Giv created by equivalent expression. */
+ || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
+ && general_induction_var (XEXP (temp, 0), &src_reg,
+ add_val, mult_val, 0, &benefit)))
+ && src_reg == v->src_reg)
+ {
+ if (find_reg_note (p, REG_RETVAL, NULL_RTX))
+ benefit += libcall_benefit (p);
+
+ count--;
+ v->mult_val = *mult_val;
+ v->add_val = *add_val;
+ v->benefit = benefit;
+ }
+ else if (code != NOTE)
+ {
+ /* Allow insns that set something other than this giv to a
+ constant. Such insns are needed on machines which cannot
+ include long constants and should not disqualify a giv. */
+ if (code == INSN
+ && (set = single_set (p))
+ && SET_DEST (set) != dest_reg
+ && CONSTANT_P (SET_SRC (set)))
+ continue;
+
+ REG_IV_TYPE (REGNO (dest_reg)) = UNKNOWN_INDUCT;
+ return 0;
+ }
+ }
+
+ *last_consec_insn = p;
+ return v->benefit;
+}
+
+/* Return an rtx, if any, that expresses giv G2 as a function of the register
+ represented by G1. If no such expression can be found, or it is clear that
+ it cannot possibly be a valid address, 0 is returned.
+
+ To perform the computation, we note that
+ G1 = x * v + a and
+ G2 = y * v + b
+ where `v' is the biv.
+
+ So G2 = (y/b) * G1 + (b - a*y/x).
+
+ Note that MULT = y/x.
+
+ Update: A and B are now allowed to be additive expressions such that
+ B contains all variables in A. That is, computing B-A will not require
+ subtracting variables. */
+
+static rtx
+express_from_1 (a, b, mult)
+ rtx a, b, mult;
+{
+ /* If MULT is zero, then A*MULT is zero, and our expression is B. */
+
+ if (mult == const0_rtx)
+ return b;
+
+ /* If MULT is not 1, we cannot handle A with non-constants, since we
+ would then be required to subtract multiples of the registers in A.
+ This is theoretically possible, and may even apply to some Fortran
+ constructs, but it is a lot of work and we do not attempt it here. */
+
+ if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
+ return NULL_RTX;
+
+ /* In general these structures are sorted top to bottom (down the PLUS
+ chain), but not left to right across the PLUS. If B is a higher
+ order giv than A, we can strip one level and recurse. If A is higher
+ order, we'll eventually bail out, but won't know that until the end.
+ If they are the same, we'll strip one level around this loop. */
+
+ while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
+ {
+ rtx ra, rb, oa, ob, tmp;
+
+ ra = XEXP (a, 0), oa = XEXP (a, 1);
+ if (GET_CODE (ra) == PLUS)
+ tmp = ra, ra = oa, oa = tmp;
+
+ rb = XEXP (b, 0), ob = XEXP (b, 1);
+ if (GET_CODE (rb) == PLUS)
+ tmp = rb, rb = ob, ob = tmp;
+
+ if (rtx_equal_p (ra, rb))
+ /* We matched: remove one reg completely. */
+ a = oa, b = ob;
+ else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
+ /* An alternate match. */
+ a = oa, b = rb;
+ else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
+ /* An alternate match. */
+ a = ra, b = ob;
+ else
+ {
+ /* Indicates an extra register in B. Strip one level from B and
+ recurse, hoping B was the higher order expression. */
+ ob = express_from_1 (a, ob, mult);
+ if (ob == NULL_RTX)
+ return NULL_RTX;
+ return gen_rtx_PLUS (GET_MODE (b), rb, ob);
+ }
+ }
+
+ /* Here we are at the last level of A, go through the cases hoping to
+ get rid of everything but a constant. */
+
+ if (GET_CODE (a) == PLUS)
+ {
+ rtx ra, oa;
+
+ ra = XEXP (a, 0), oa = XEXP (a, 1);
+ if (rtx_equal_p (oa, b))
+ oa = ra;
+ else if (!rtx_equal_p (ra, b))
+ return NULL_RTX;
+
+ if (GET_CODE (oa) != CONST_INT)
+ return NULL_RTX;
+
+ return GEN_INT (-INTVAL (oa) * INTVAL (mult));
+ }
+ else if (GET_CODE (a) == CONST_INT)
+ {
+ return plus_constant (b, -INTVAL (a) * INTVAL (mult));
+ }
+ else if (GET_CODE (b) == PLUS)
+ {
+ if (rtx_equal_p (a, XEXP (b, 0)))
+ return XEXP (b, 1);
+ else if (rtx_equal_p (a, XEXP (b, 1)))
+ return XEXP (b, 0);
+ else
+ return NULL_RTX;
+ }
+ else if (rtx_equal_p (a, b))
+ return const0_rtx;
+
+ return NULL_RTX;
+}
+
+rtx
+express_from (g1, g2)
+ struct induction *g1, *g2;
+{
+ rtx mult, add;
+
+ /* The value that G1 will be multiplied by must be a constant integer. Also,
+ the only chance we have of getting a valid address is if b*c/a (see above
+ for notation) is also an integer. */
+ if (GET_CODE (g1->mult_val) == CONST_INT
+ && GET_CODE (g2->mult_val) == CONST_INT)
+ {
+ if (g1->mult_val == const0_rtx
+ || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
+ return NULL_RTX;
+ mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
+ }
+ else if (rtx_equal_p (g1->mult_val, g2->mult_val))
+ mult = const1_rtx;
+ else
+ {
+ /* ??? Find out if the one is a multiple of the other? */
+ return NULL_RTX;
+ }
+
+ add = express_from_1 (g1->add_val, g2->add_val, mult);
+ if (add == NULL_RTX)
+ return NULL_RTX;
+
+ /* Form simplified final result. */
+ if (mult == const0_rtx)
+ return add;
+ else if (mult == const1_rtx)
+ mult = g1->dest_reg;
+ else
+ mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
+
+ if (add == const0_rtx)
+ return mult;
+ else
+ {
+ if (GET_CODE (add) == PLUS
+ && CONSTANT_P (XEXP (add, 1)))
+ {
+ rtx tem = XEXP (add, 1);
+ mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
+ add = tem;
+ }
+
+ return gen_rtx_PLUS (g2->mode, mult, add);
+ }
+
+}
+
+/* Return an rtx, if any, that expresses giv G2 as a function of the register
+ represented by G1. This indicates that G2 should be combined with G1 and
+ that G2 can use (either directly or via an address expression) a register
+ used to represent G1. */
+
+static rtx
+combine_givs_p (g1, g2)
+ struct induction *g1, *g2;
+{
+ rtx tem = express_from (g1, g2);
+
+ /* If these givs are identical, they can be combined. We use the results
+ of express_from because the addends are not in a canonical form, so
+ rtx_equal_p is a weaker test. */
+ /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
+ combination to be the other way round. */
+ if (tem == g1->dest_reg
+ && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
+ {
+ return g1->dest_reg;
+ }
+
+ /* If G2 can be expressed as a function of G1 and that function is valid
+ as an address and no more expensive than using a register for G2,
+ the expression of G2 in terms of G1 can be used. */
+ if (tem != NULL_RTX
+ && g2->giv_type == DEST_ADDR
+ && memory_address_p (g2->mem_mode, tem)
+ /* ??? Looses, especially with -fforce-addr, where *g2->location
+ will always be a register, and so anything more complicated
+ gets discarded. */
+#if 0
+#ifdef ADDRESS_COST
+ && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
+#else
+ && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
+#endif
+#endif
+ )
+ {
+ return tem;
+ }
+
+ return NULL_RTX;
+}
+
+struct combine_givs_stats
+{
+ int giv_number;
+ int total_benefit;
+};
+
+static int
+cmp_combine_givs_stats (x, y)
+ struct combine_givs_stats *x, *y;
+{
+ int d;
+ d = y->total_benefit - x->total_benefit;
+ /* Stabilize the sort. */
+ if (!d)
+ d = x->giv_number - y->giv_number;
+ return d;
+}
+
+/* Check all pairs of givs for iv_class BL and see if any can be combined with
+ any other. If so, point SAME to the giv combined with and set NEW_REG to
+ be an expression (in terms of the other giv's DEST_REG) equivalent to the
+ giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
+
+static void
+combine_givs (bl)
+ struct iv_class *bl;
+{
+ /* Additional benefit to add for being combined multiple times. */
+ const int extra_benefit = 3;
+
+ struct induction *g1, *g2, **giv_array;
+ int i, j, k, giv_count;
+ struct combine_givs_stats *stats;
+ rtx *can_combine;
+
+ /* Count givs, because bl->giv_count is incorrect here. */
+ giv_count = 0;
+ for (g1 = bl->giv; g1; g1 = g1->next_iv)
+ if (!g1->ignore)
+ giv_count++;
+
+ giv_array
+ = (struct induction **) alloca (giv_count * sizeof (struct induction *));
+ i = 0;
+ for (g1 = bl->giv; g1; g1 = g1->next_iv)
+ if (!g1->ignore)
+ giv_array[i++] = g1;
+
+ stats = (struct combine_givs_stats *) alloca (giv_count * sizeof (*stats));
+ bzero ((char *) stats, giv_count * sizeof (*stats));
+
+ can_combine = (rtx *) alloca (giv_count * giv_count * sizeof(rtx));
+ bzero ((char *) can_combine, giv_count * giv_count * sizeof(rtx));
+
+ for (i = 0; i < giv_count; i++)
+ {
+ int this_benefit;
+ rtx single_use;
+
+ g1 = giv_array[i];
+ stats[i].giv_number = i;
+
+ /* If a DEST_REG GIV is used only once, do not allow it to combine
+ with anything, for in doing so we will gain nothing that cannot
+ be had by simply letting the GIV with which we would have combined
+ to be reduced on its own. The losage shows up in particular with
+ DEST_ADDR targets on hosts with reg+reg addressing, though it can
+ be seen elsewhere as well. */
+ if (g1->giv_type == DEST_REG
+ && (single_use = VARRAY_RTX (reg_single_usage, REGNO (g1->dest_reg)))
+ && single_use != const0_rtx)
+ continue;
+
+ this_benefit = g1->benefit;
+ /* Add an additional weight for zero addends. */
+ if (g1->no_const_addval)
+ this_benefit += 1;
+
+ for (j = 0; j < giv_count; j++)
+ {
+ rtx this_combine;
+
+ g2 = giv_array[j];
+ if (g1 != g2
+ && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
+ {
+ can_combine[i*giv_count + j] = this_combine;
+ this_benefit += g2->benefit + extra_benefit;
+ }
+ }
+ stats[i].total_benefit = this_benefit;
+ }
+
+ /* Iterate, combining until we can't. */
+restart:
+ qsort (stats, giv_count, sizeof(*stats), cmp_combine_givs_stats);
+
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream, "Sorted combine statistics:\n");
+ for (k = 0; k < giv_count; k++)
+ {
+ g1 = giv_array[stats[k].giv_number];
+ if (!g1->combined_with && !g1->same)
+ fprintf (loop_dump_stream, " {%d, %d}",
+ INSN_UID (giv_array[stats[k].giv_number]->insn),
+ stats[k].total_benefit);
+ }
+ putc ('\n', loop_dump_stream);
+ }
+
+ for (k = 0; k < giv_count; k++)
+ {
+ int g1_add_benefit = 0;
+
+ i = stats[k].giv_number;
+ g1 = giv_array[i];
+
+ /* If it has already been combined, skip. */
+ if (g1->combined_with || g1->same)
+ continue;
+
+ for (j = 0; j < giv_count; j++)
+ {
+ g2 = giv_array[j];
+ if (g1 != g2 && can_combine[i*giv_count + j]
+ /* If it has already been combined, skip. */
+ && ! g2->same && ! g2->combined_with)
+ {
+ int l;
+
+ g2->new_reg = can_combine[i*giv_count + j];
+ g2->same = g1;
+ g1->combined_with++;
+ g1->lifetime += g2->lifetime;
+
+ g1_add_benefit += g2->benefit;
+
+ /* ??? The new final_[bg]iv_value code does a much better job
+ of finding replaceable giv's, and hence this code may no
+ longer be necessary. */
+ if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
+ g1_add_benefit -= copy_cost;
+
+ /* To help optimize the next set of combinations, remove
+ this giv from the benefits of other potential mates. */
+ for (l = 0; l < giv_count; ++l)
+ {
+ int m = stats[l].giv_number;
+ if (can_combine[m*giv_count + j])
+ stats[l].total_benefit -= g2->benefit + extra_benefit;
+ }
+
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "giv at %d combined with giv at %d\n",
+ INSN_UID (g2->insn), INSN_UID (g1->insn));
+ }
+ }
+
+ /* To help optimize the next set of combinations, remove
+ this giv from the benefits of other potential mates. */
+ if (g1->combined_with)
+ {
+ for (j = 0; j < giv_count; ++j)
+ {
+ int m = stats[j].giv_number;
+ if (can_combine[m*giv_count + i])
+ stats[j].total_benefit -= g1->benefit + extra_benefit;
+ }
+
+ g1->benefit += g1_add_benefit;
+
+ /* We've finished with this giv, and everything it touched.
+ Restart the combination so that proper weights for the
+ rest of the givs are properly taken into account. */
+ /* ??? Ideally we would compact the arrays at this point, so
+ as to not cover old ground. But sanely compacting
+ can_combine is tricky. */
+ goto restart;
+ }
+ }
+}
+
+struct recombine_givs_stats
+{
+ int giv_number;
+ int start_luid, end_luid;
+};
+
+/* Used below as comparison function for qsort. We want a ascending luid
+ when scanning the array starting at the end, thus the arguments are
+ used in reverse. */
+static int
+cmp_recombine_givs_stats (x, y)
+ struct recombine_givs_stats *x, *y;
+{
+ int d;
+ d = y->start_luid - x->start_luid;
+ /* Stabilize the sort. */
+ if (!d)
+ d = y->giv_number - x->giv_number;
+ return d;
+}
+
+/* Scan X, which is a part of INSN, for the end of life of a giv. Also
+ look for the start of life of a giv where the start has not been seen
+ yet to unlock the search for the end of its life.
+ Only consider givs that belong to BIV.
+ Return the total number of lifetime ends that have been found. */
+static int
+find_life_end (x, stats, insn, biv)
+ rtx x, insn, biv;
+ struct recombine_givs_stats *stats;
+{
+ enum rtx_code code;
+ char *fmt;
+ int i, j;
+ int retval;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case SET:
+ {
+ rtx reg = SET_DEST (x);
+ if (GET_CODE (reg) == REG)
+ {
+ int regno = REGNO (reg);
+ struct induction *v = REG_IV_INFO (regno);
+
+ if (REG_IV_TYPE (regno) == GENERAL_INDUCT
+ && ! v->ignore
+ && v->src_reg == biv
+ && stats[v->ix].end_luid <= 0)
+ {
+ /* If we see a 0 here for end_luid, it means that we have
+ scanned the entire loop without finding any use at all.
+ We must not predicate this code on a start_luid match
+ since that would make the test fail for givs that have
+ been hoisted out of inner loops. */
+ if (stats[v->ix].end_luid == 0)
+ {
+ stats[v->ix].end_luid = stats[v->ix].start_luid;
+ return 1 + find_life_end (SET_SRC (x), stats, insn, biv);
+ }
+ else if (stats[v->ix].start_luid == INSN_LUID (insn))
+ stats[v->ix].end_luid = 0;
+ }
+ return find_life_end (SET_SRC (x), stats, insn, biv);
+ }
+ break;
+ }
+ case REG:
+ {
+ int regno = REGNO (x);
+ struct induction *v = REG_IV_INFO (regno);
+
+ if (REG_IV_TYPE (regno) == GENERAL_INDUCT
+ && ! v->ignore
+ && v->src_reg == biv
+ && stats[v->ix].end_luid == 0)
+ {
+ while (INSN_UID (insn) >= max_uid_for_loop)
+ insn = NEXT_INSN (insn);
+ stats[v->ix].end_luid = INSN_LUID (insn);
+ return 1;
+ }
+ return 0;
+ }
+ case LABEL_REF:
+ case CONST_DOUBLE:
+ case CONST_INT:
+ case CONST:
+ return 0;
+ default:
+ break;
+ }
+ fmt = GET_RTX_FORMAT (code);
+ retval = 0;
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ retval += find_life_end (XEXP (x, i), stats, insn, biv);
+
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ retval += find_life_end (XVECEXP (x, i, j), stats, insn, biv);
+ }
+ return retval;
+}
+
+/* For each giv that has been combined with another, look if
+ we can combine it with the most recently used one instead.
+ This tends to shorten giv lifetimes, and helps the next step:
+ try to derive givs from other givs. */
+static void
+recombine_givs (bl, loop_start, loop_end, unroll_p)
+ struct iv_class *bl;
+ rtx loop_start, loop_end;
+ int unroll_p;
+{
+ struct induction *v, **giv_array, *last_giv;
+ struct recombine_givs_stats *stats;
+ int giv_count;
+ int i, rescan;
+ int ends_need_computing;
+
+ for (giv_count = 0, v = bl->giv; v; v = v->next_iv)
+ {
+ if (! v->ignore)
+ giv_count++;
+ }
+ giv_array
+ = (struct induction **) alloca (giv_count * sizeof (struct induction *));
+ stats = (struct recombine_givs_stats *) alloca (giv_count * sizeof *stats);
+
+ /* Initialize stats and set up the ix field for each giv in stats to name
+ the corresponding index into stats. */
+ for (i = 0, v = bl->giv; v; v = v->next_iv)
+ {
+ rtx p;
+
+ if (v->ignore)
+ continue;
+ giv_array[i] = v;
+ stats[i].giv_number = i;
+ /* If this giv has been hoisted out of an inner loop, use the luid of
+ the previous insn. */
+ for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
+ p = PREV_INSN (p);
+ stats[i].start_luid = INSN_LUID (p);
+ v->ix = i;
+ i++;
+ }
+
+ qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
+
+ /* Do the actual most-recently-used recombination. */
+ for (last_giv = 0, i = giv_count - 1; i >= 0; i--)
+ {
+ v = giv_array[stats[i].giv_number];
+ if (v->same)
+ {
+ struct induction *old_same = v->same;
+ rtx new_combine;
+
+ /* combine_givs_p actually says if we can make this transformation.
+ The other tests are here only to avoid keeping a giv alive
+ that could otherwise be eliminated. */
+ if (last_giv
+ && ((old_same->maybe_dead && ! old_same->combined_with)
+ || ! last_giv->maybe_dead
+ || last_giv->combined_with)
+ && (new_combine = combine_givs_p (last_giv, v)))
+ {
+ old_same->combined_with--;
+ v->new_reg = new_combine;
+ v->same = last_giv;
+ last_giv->combined_with++;
+ /* No need to update lifetimes / benefits here since we have
+ already decided what to reduce. */
+
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream,
+ "giv at %d recombined with giv at %d as ",
+ INSN_UID (v->insn), INSN_UID (last_giv->insn));
+ print_rtl (loop_dump_stream, v->new_reg);
+ putc ('\n', loop_dump_stream);
+ }
+ continue;
+ }
+ v = v->same;
+ }
+ else if (v->giv_type != DEST_REG)
+ continue;
+ if (! last_giv
+ || (last_giv->maybe_dead && ! last_giv->combined_with)
+ || ! v->maybe_dead
+ || v->combined_with)
+ last_giv = v;
+ }
+
+ ends_need_computing = 0;
+ /* For each DEST_REG giv, compute lifetime starts, and try to compute
+ lifetime ends from regscan info. */
+ for (i = 0, v = bl->giv; v; v = v->next_iv)
+ {
+ if (v->ignore)
+ continue;
+ if (v->giv_type == DEST_ADDR)
+ {
+ /* Loop unrolling of an inner loop can even create new DEST_REG
+ givs. */
+ rtx p;
+ for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
+ p = PREV_INSN (p);
+ stats[i].start_luid = stats[i].end_luid = INSN_LUID (p);
+ if (p != v->insn)
+ stats[i].end_luid++;
+ }
+ else /* v->giv_type == DEST_REG */
+ {
+ if (v->last_use)
+ {
+ stats[i].start_luid = INSN_LUID (v->insn);
+ stats[i].end_luid = INSN_LUID (v->last_use);
+ }
+ else if (INSN_UID (v->insn) >= max_uid_for_loop)
+ {
+ rtx p;
+ /* This insn has been created by loop optimization on an inner
+ loop. We don't have a proper start_luid that will match
+ when we see the first set. But we do know that there will
+ be no use before the set, so we can set end_luid to 0 so that
+ we'll start looking for the last use right away. */
+ for (p = PREV_INSN (v->insn); INSN_UID (p) >= max_uid_for_loop; )
+ p = PREV_INSN (p);
+ stats[i].start_luid = INSN_LUID (p);
+ stats[i].end_luid = 0;
+ ends_need_computing++;
+ }
+ else
+ {
+ int regno = REGNO (v->dest_reg);
+ int count = VARRAY_INT (n_times_set, regno) - 1;
+ rtx p = v->insn;
+
+ /* Find the first insn that sets the giv, so that we can verify
+ if this giv's lifetime wraps around the loop. We also need
+ the luid of the first setting insn in order to detect the
+ last use properly. */
+ while (count)
+ {
+ p = prev_nonnote_insn (p);
+ if (reg_set_p (v->dest_reg, p))
+ count--;
+ }
+
+ stats[i].start_luid = INSN_LUID (p);
+ if (stats[i].start_luid > uid_luid[REGNO_FIRST_UID (regno)])
+ {
+ stats[i].end_luid = -1;
+ ends_need_computing++;
+ }
+ else
+ {
+ stats[i].end_luid = uid_luid[REGNO_LAST_UID (regno)];
+ if (stats[i].end_luid > INSN_LUID (loop_end))
+ {
+ stats[i].end_luid = -1;
+ ends_need_computing++;
+ }
+ }
+ }
+ }
+ i++;
+ }
+
+ /* If the regscan information was unconclusive for one or more DEST_REG
+ givs, scan the all insn in the loop to find out lifetime ends. */
+ if (ends_need_computing)
+ {
+ rtx biv = bl->biv->src_reg;
+ rtx p = loop_end;
+
+ do
+ {
+ if (p == loop_start)
+ p = loop_end;
+ p = PREV_INSN (p);
+ if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
+ continue;
+ ends_need_computing -= find_life_end (PATTERN (p), stats, p, biv);
+ }
+ while (ends_need_computing);
+ }
+
+ /* Set start_luid back to the last insn that sets the giv. This allows
+ more combinations. */
+ for (i = 0, v = bl->giv; v; v = v->next_iv)
+ {
+ if (v->ignore)
+ continue;
+ if (INSN_UID (v->insn) < max_uid_for_loop)
+ stats[i].start_luid = INSN_LUID (v->insn);
+ i++;
+ }
+
+ /* Now adjust lifetime ends by taking combined givs into account. */
+ for (i = 0, v = bl->giv; v; v = v->next_iv)
+ {
+ unsigned luid;
+ int j;
+
+ if (v->ignore)
+ continue;
+ if (v->same && ! v->same->ignore)
+ {
+ j = v->same->ix;
+ luid = stats[i].start_luid;
+ /* Use unsigned arithmetic to model loop wrap-around. */
+ if (luid - stats[j].start_luid
+ > (unsigned) stats[j].end_luid - stats[j].start_luid)
+ stats[j].end_luid = luid;
+ }
+ i++;
+ }
+
+ qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
+
+ /* Try to derive DEST_REG givs from previous DEST_REG givs with the
+ same mult_val and non-overlapping lifetime. This reduces register
+ pressure.
+ Once we find a DEST_REG giv that is suitable to derive others from,
+ we set last_giv to this giv, and try to derive as many other DEST_REG
+ givs from it without joining overlapping lifetimes. If we then
+ encounter a DEST_REG giv that we can't derive, we set rescan to the
+ index for this giv (unless rescan is already set).
+ When we are finished with the current LAST_GIV (i.e. the inner loop
+ terminates), we start again with rescan, which then becomes the new
+ LAST_GIV. */
+ for (i = giv_count - 1; i >= 0; i = rescan)
+ {
+ int life_start, life_end;
+
+ for (last_giv = 0, rescan = -1; i >= 0; i--)
+ {
+ rtx sum;
+
+ v = giv_array[stats[i].giv_number];
+ if (v->giv_type != DEST_REG || v->derived_from || v->same)
+ continue;
+ if (! last_giv)
+ {
+ /* Don't use a giv that's likely to be dead to derive
+ others - that would be likely to keep that giv alive. */
+ if (! v->maybe_dead || v->combined_with)
+ {
+ last_giv = v;
+ life_start = stats[i].start_luid;
+ life_end = stats[i].end_luid;
+ }
+ continue;
+ }
+ /* Use unsigned arithmetic to model loop wrap around. */
+ if (((unsigned) stats[i].start_luid - life_start
+ >= (unsigned) life_end - life_start)
+ && ((unsigned) stats[i].end_luid - life_start
+ > (unsigned) life_end - life_start)
+ /* Check that the giv insn we're about to use for deriving
+ precedes all uses of that giv. Note that initializing the
+ derived giv would defeat the purpose of reducing register
+ pressure.
+ ??? We could arrange to move the insn. */
+ && ((unsigned) stats[i].end_luid - INSN_LUID (loop_start)
+ > (unsigned) stats[i].start_luid - INSN_LUID (loop_start))
+ && rtx_equal_p (last_giv->mult_val, v->mult_val)
+ /* ??? Could handle libcalls, but would need more logic. */
+ && ! find_reg_note (v->insn, REG_RETVAL, NULL_RTX)
+ /* We would really like to know if for any giv that v
+ is combined with, v->insn or any intervening biv increment
+ dominates that combined giv. However, we
+ don't have this detailed control flow information.
+ N.B. since last_giv will be reduced, it is valid
+ anywhere in the loop, so we don't need to check the
+ validity of last_giv.
+ We rely here on the fact that v->always_executed implies that
+ there is no jump to someplace else in the loop before the
+ giv insn, and hence any insn that is executed before the
+ giv insn in the loop will have a lower luid. */
+ && (v->always_executed || ! v->combined_with)
+ && (sum = express_from (last_giv, v))
+ /* Make sure we don't make the add more expensive. ADD_COST
+ doesn't take different costs of registers and constants into
+ account, so compare the cost of the actual SET_SRCs. */
+ && (rtx_cost (sum, SET)
+ <= rtx_cost (SET_SRC (single_set (v->insn)), SET))
+ /* ??? unroll can't understand anything but reg + const_int
+ sums. It would be cleaner to fix unroll. */
+ && ((GET_CODE (sum) == PLUS
+ && GET_CODE (XEXP (sum, 0)) == REG
+ && GET_CODE (XEXP (sum, 1)) == CONST_INT)
+ || ! unroll_p)
+ && validate_change (v->insn, &PATTERN (v->insn),
+ gen_rtx_SET (VOIDmode, v->dest_reg, sum), 0))
+ {
+ v->derived_from = last_giv;
+ life_end = stats[i].end_luid;
+
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream,
+ "giv at %d derived from %d as ",
+ INSN_UID (v->insn), INSN_UID (last_giv->insn));
+ print_rtl (loop_dump_stream, sum);
+ putc ('\n', loop_dump_stream);
+ }
+ }
+ else if (rescan < 0)
+ rescan = i;
+ }
+ }
+}
+
+/* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
+
+void
+emit_iv_add_mult (b, m, a, reg, insert_before)
+ rtx b; /* initial value of basic induction variable */
+ rtx m; /* multiplicative constant */
+ rtx a; /* additive constant */
+ rtx reg; /* destination register */
+ rtx insert_before;
+{
+ rtx seq;
+ rtx result;
+
+ /* Prevent unexpected sharing of these rtx. */
+ a = copy_rtx (a);
+ b = copy_rtx (b);
+
+ /* Increase the lifetime of any invariants moved further in code. */
+ update_reg_last_use (a, insert_before);
+ update_reg_last_use (b, insert_before);
+ update_reg_last_use (m, insert_before);
+
+ start_sequence ();
+ result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
+ if (reg != result)
+ emit_move_insn (reg, result);
+ seq = gen_sequence ();
+ end_sequence ();
+
+ emit_insn_before (seq, insert_before);
+
+ /* It is entirely possible that the expansion created lots of new
+ registers. Iterate over the sequence we just created and
+ record them all. */
+
+ if (GET_CODE (seq) == SEQUENCE)
+ {
+ int i;
+ for (i = 0; i < XVECLEN (seq, 0); ++i)
+ {
+ rtx set = single_set (XVECEXP (seq, 0, i));
+ if (set && GET_CODE (SET_DEST (set)) == REG)
+ record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
+ }
+ }
+ else if (GET_CODE (seq) == SET
+ && GET_CODE (SET_DEST (seq)) == REG)
+ record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
+}
+
+/* Test whether A * B can be computed without
+ an actual multiply insn. Value is 1 if so. */
+
+static int
+product_cheap_p (a, b)
+ rtx a;
+ rtx b;
+{
+ int i;
+ rtx tmp;
+ struct obstack *old_rtl_obstack = rtl_obstack;
+ char *storage = (char *) obstack_alloc (&temp_obstack, 0);
+ int win = 1;
+
+ /* If only one is constant, make it B. */
+ if (GET_CODE (a) == CONST_INT)
+ tmp = a, a = b, b = tmp;
+
+ /* If first constant, both constant, so don't need multiply. */
+ if (GET_CODE (a) == CONST_INT)
+ return 1;
+
+ /* If second not constant, neither is constant, so would need multiply. */
+ if (GET_CODE (b) != CONST_INT)
+ return 0;
+
+ /* One operand is constant, so might not need multiply insn. Generate the
+ code for the multiply and see if a call or multiply, or long sequence
+ of insns is generated. */
+
+ rtl_obstack = &temp_obstack;
+ start_sequence ();
+ expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
+ tmp = gen_sequence ();
+ end_sequence ();
+
+ if (GET_CODE (tmp) == SEQUENCE)
+ {
+ if (XVEC (tmp, 0) == 0)
+ win = 1;
+ else if (XVECLEN (tmp, 0) > 3)
+ win = 0;
+ else
+ for (i = 0; i < XVECLEN (tmp, 0); i++)
+ {
+ rtx insn = XVECEXP (tmp, 0, i);
+
+ if (GET_CODE (insn) != INSN
+ || (GET_CODE (PATTERN (insn)) == SET
+ && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
+ || (GET_CODE (PATTERN (insn)) == PARALLEL
+ && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
+ && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
+ {
+ win = 0;
+ break;
+ }
+ }
+ }
+ else if (GET_CODE (tmp) == SET
+ && GET_CODE (SET_SRC (tmp)) == MULT)
+ win = 0;
+ else if (GET_CODE (tmp) == PARALLEL
+ && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
+ && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
+ win = 0;
+
+ /* Free any storage we obtained in generating this multiply and restore rtl
+ allocation to its normal obstack. */
+ obstack_free (&temp_obstack, storage);
+ rtl_obstack = old_rtl_obstack;
+
+ return win;
+}
+
+/* Check to see if loop can be terminated by a "decrement and branch until
+ zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
+ Also try reversing an increment loop to a decrement loop
+ to see if the optimization can be performed.
+ Value is nonzero if optimization was performed. */
+
+/* This is useful even if the architecture doesn't have such an insn,
+ because it might change a loops which increments from 0 to n to a loop
+ which decrements from n to 0. A loop that decrements to zero is usually
+ faster than one that increments from zero. */
+
+/* ??? This could be rewritten to use some of the loop unrolling procedures,
+ such as approx_final_value, biv_total_increment, loop_iterations, and
+ final_[bg]iv_value. */
+
+static int
+check_dbra_loop (loop_end, insn_count, loop_start, loop_info)
+ rtx loop_end;
+ int insn_count;
+ rtx loop_start;
+ struct loop_info *loop_info;
+{
+ struct iv_class *bl;
+ rtx reg;
+ rtx jump_label;
+ rtx final_value;
+ rtx start_value;
+ rtx new_add_val;
+ rtx comparison;
+ rtx before_comparison;
+ rtx p;
+ rtx jump;
+ rtx first_compare;
+ int compare_and_branch;
+
+ /* If last insn is a conditional branch, and the insn before tests a
+ register value, try to optimize it. Otherwise, we can't do anything. */
+
+ jump = PREV_INSN (loop_end);
+ comparison = get_condition_for_loop (jump);
+ if (comparison == 0)
+ return 0;
+
+ /* Try to compute whether the compare/branch at the loop end is one or
+ two instructions. */
+ get_condition (jump, &first_compare);
+ if (first_compare == jump)
+ compare_and_branch = 1;
+ else if (first_compare == prev_nonnote_insn (jump))
+ compare_and_branch = 2;
+ else
+ return 0;
+
+ /* Check all of the bivs to see if the compare uses one of them.
+ Skip biv's set more than once because we can't guarantee that
+ it will be zero on the last iteration. Also skip if the biv is
+ used between its update and the test insn. */
+
+ for (bl = loop_iv_list; bl; bl = bl->next)
+ {
+ if (bl->biv_count == 1
+ && bl->biv->dest_reg == XEXP (comparison, 0)
+ && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
+ first_compare))
+ break;
+ }
+
+ if (! bl)
+ return 0;
+
+ /* Look for the case where the basic induction variable is always
+ nonnegative, and equals zero on the last iteration.
+ In this case, add a reg_note REG_NONNEG, which allows the
+ m68k DBRA instruction to be used. */
+
+ if (((GET_CODE (comparison) == GT
+ && GET_CODE (XEXP (comparison, 1)) == CONST_INT
+ && INTVAL (XEXP (comparison, 1)) == -1)
+ || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
+ && GET_CODE (bl->biv->add_val) == CONST_INT
+ && INTVAL (bl->biv->add_val) < 0)
+ {
+ /* Initial value must be greater than 0,
+ init_val % -dec_value == 0 to ensure that it equals zero on
+ the last iteration */
+
+ if (GET_CODE (bl->initial_value) == CONST_INT
+ && INTVAL (bl->initial_value) > 0
+ && (INTVAL (bl->initial_value)
+ % (-INTVAL (bl->biv->add_val))) == 0)
+ {
+ /* register always nonnegative, add REG_NOTE to branch */
+ REG_NOTES (PREV_INSN (loop_end))
+ = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
+ REG_NOTES (PREV_INSN (loop_end)));
+ bl->nonneg = 1;
+
+ return 1;
+ }
+
+ /* If the decrement is 1 and the value was tested as >= 0 before
+ the loop, then we can safely optimize. */
+ for (p = loop_start; p; p = PREV_INSN (p))
+ {
+ if (GET_CODE (p) == CODE_LABEL)
+ break;
+ if (GET_CODE (p) != JUMP_INSN)
+ continue;
+
+ before_comparison = get_condition_for_loop (p);
+ if (before_comparison
+ && XEXP (before_comparison, 0) == bl->biv->dest_reg
+ && GET_CODE (before_comparison) == LT
+ && XEXP (before_comparison, 1) == const0_rtx
+ && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
+ && INTVAL (bl->biv->add_val) == -1)
+ {
+ REG_NOTES (PREV_INSN (loop_end))
+ = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
+ REG_NOTES (PREV_INSN (loop_end)));
+ bl->nonneg = 1;
+
+ return 1;
+ }
+ }
+ }
+ else if (INTVAL (bl->biv->add_val) > 0)
+ {
+ /* Try to change inc to dec, so can apply above optimization. */
+ /* Can do this if:
+ all registers modified are induction variables or invariant,
+ all memory references have non-overlapping addresses
+ (obviously true if only one write)
+ allow 2 insns for the compare/jump at the end of the loop. */
+ /* Also, we must avoid any instructions which use both the reversed
+ biv and another biv. Such instructions will fail if the loop is
+ reversed. We meet this condition by requiring that either
+ no_use_except_counting is true, or else that there is only
+ one biv. */
+ int num_nonfixed_reads = 0;
+ /* 1 if the iteration var is used only to count iterations. */
+ int no_use_except_counting = 0;
+ /* 1 if the loop has no memory store, or it has a single memory store
+ which is reversible. */
+ int reversible_mem_store = 1;
+
+ if (bl->giv_count == 0
+ && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
+ {
+ rtx bivreg = regno_reg_rtx[bl->regno];
+
+ /* If there are no givs for this biv, and the only exit is the
+ fall through at the end of the loop, then
+ see if perhaps there are no uses except to count. */
+ no_use_except_counting = 1;
+ for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
+ {
+ rtx set = single_set (p);
+
+ if (set && GET_CODE (SET_DEST (set)) == REG
+ && REGNO (SET_DEST (set)) == bl->regno)
+ /* An insn that sets the biv is okay. */
+ ;
+ else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
+ || p == prev_nonnote_insn (loop_end))
+ /* Don't bother about the end test. */
+ ;
+ else if (reg_mentioned_p (bivreg, PATTERN (p)))
+ {
+ no_use_except_counting = 0;
+ break;
+ }
+ }
+ }
+
+ if (no_use_except_counting)
+ ; /* no need to worry about MEMs. */
+ else if (num_mem_sets <= 1)
+ {
+ for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
+ num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
+
+ /* If the loop has a single store, and the destination address is
+ invariant, then we can't reverse the loop, because this address
+ might then have the wrong value at loop exit.
+ This would work if the source was invariant also, however, in that
+ case, the insn should have been moved out of the loop. */
+
+ if (num_mem_sets == 1)
+ {
+ struct induction *v;
+
+ reversible_mem_store
+ = (! unknown_address_altered
+ && ! invariant_p (XEXP (loop_store_mems, 0)));
+
+ /* If the store depends on a register that is set after the
+ store, it depends on the initial value, and is thus not
+ reversible. */
+ for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
+ {
+ if (v->giv_type == DEST_REG
+ && reg_mentioned_p (v->dest_reg,
+ XEXP (loop_store_mems, 0))
+ && loop_insn_first_p (first_loop_store_insn, v->insn))
+ reversible_mem_store = 0;
+ }
+ }
+ }
+ else
+ return 0;
+
+ /* This code only acts for innermost loops. Also it simplifies
+ the memory address check by only reversing loops with
+ zero or one memory access.
+ Two memory accesses could involve parts of the same array,
+ and that can't be reversed.
+ If the biv is used only for counting, than we don't need to worry
+ about all these things. */
+
+ if ((num_nonfixed_reads <= 1
+ && !loop_has_call
+ && !loop_has_volatile
+ && reversible_mem_store
+ && (bl->giv_count + bl->biv_count + num_mem_sets
+ + num_movables + compare_and_branch == insn_count)
+ && (bl == loop_iv_list && bl->next == 0))
+ || no_use_except_counting)
+ {
+ rtx tem;
+
+ /* Loop can be reversed. */
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "Can reverse loop\n");
+
+ /* Now check other conditions:
+
+ The increment must be a constant, as must the initial value,
+ and the comparison code must be LT.
+
+ This test can probably be improved since +/- 1 in the constant
+ can be obtained by changing LT to LE and vice versa; this is
+ confusing. */
+
+ if (comparison
+ /* for constants, LE gets turned into LT */
+ && (GET_CODE (comparison) == LT
+ || (GET_CODE (comparison) == LE
+ && no_use_except_counting)))
+ {
+ HOST_WIDE_INT add_val, add_adjust, comparison_val;
+ rtx initial_value, comparison_value;
+ int nonneg = 0;
+ enum rtx_code cmp_code;
+ int comparison_const_width;
+ unsigned HOST_WIDE_INT comparison_sign_mask;
+
+ add_val = INTVAL (bl->biv->add_val);
+ comparison_value = XEXP (comparison, 1);
+ if (GET_MODE (comparison_value) == VOIDmode)
+ comparison_const_width
+ = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
+ else
+ comparison_const_width
+ = GET_MODE_BITSIZE (GET_MODE (comparison_value));
+ if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
+ comparison_const_width = HOST_BITS_PER_WIDE_INT;
+ comparison_sign_mask
+ = (unsigned HOST_WIDE_INT)1 << (comparison_const_width - 1);
+
+ /* If the comparison value is not a loop invariant, then we
+ can not reverse this loop.
+
+ ??? If the insns which initialize the comparison value as
+ a whole compute an invariant result, then we could move
+ them out of the loop and proceed with loop reversal. */
+ if (!invariant_p (comparison_value))
+ return 0;
+
+ if (GET_CODE (comparison_value) == CONST_INT)
+ comparison_val = INTVAL (comparison_value);
+ initial_value = bl->initial_value;
+
+ /* Normalize the initial value if it is an integer and
+ has no other use except as a counter. This will allow
+ a few more loops to be reversed. */
+ if (no_use_except_counting
+ && GET_CODE (comparison_value) == CONST_INT
+ && GET_CODE (initial_value) == CONST_INT)
+ {
+ comparison_val = comparison_val - INTVAL (bl->initial_value);
+ /* The code below requires comparison_val to be a multiple
+ of add_val in order to do the loop reversal, so
+ round up comparison_val to a multiple of add_val.
+ Since comparison_value is constant, we know that the
+ current comparison code is LT. */
+ comparison_val = comparison_val + add_val - 1;
+ comparison_val
+ -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
+ /* We postpone overflow checks for COMPARISON_VAL here;
+ even if there is an overflow, we might still be able to
+ reverse the loop, if converting the loop exit test to
+ NE is possible. */
+ initial_value = const0_rtx;
+ }
+
+ /* First check if we can do a vanilla loop reversal. */
+ if (initial_value == const0_rtx
+ /* If we have a decrement_and_branch_on_count, prefer
+ the NE test, since this will allow that instruction to
+ be generated. Note that we must use a vanilla loop
+ reversal if the biv is used to calculate a giv or has
+ a non-counting use. */
+#if ! defined (HAVE_decrement_and_branch_until_zero) && defined (HAVE_decrement_and_branch_on_count)
+ && (! (add_val == 1 && loop_info->vtop
+ && (bl->biv_count == 0
+ || no_use_except_counting)))
+#endif
+ && GET_CODE (comparison_value) == CONST_INT
+ /* Now do postponed overflow checks on COMPARISON_VAL. */
+ && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
+ & comparison_sign_mask))
+ {
+ /* Register will always be nonnegative, with value
+ 0 on last iteration */
+ add_adjust = add_val;
+ nonneg = 1;
+ cmp_code = GE;
+ }
+ else if (add_val == 1 && loop_info->vtop
+ && (bl->biv_count == 0
+ || no_use_except_counting))
+ {
+ add_adjust = 0;
+ cmp_code = NE;
+ }
+ else
+ return 0;
+
+ if (GET_CODE (comparison) == LE)
+ add_adjust -= add_val;
+
+ /* If the initial value is not zero, or if the comparison
+ value is not an exact multiple of the increment, then we
+ can not reverse this loop. */
+ if (initial_value == const0_rtx
+ && GET_CODE (comparison_value) == CONST_INT)
+ {
+ if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
+ return 0;
+ }
+ else
+ {
+ if (! no_use_except_counting || add_val != 1)
+ return 0;
+ }
+
+ final_value = comparison_value;
+
+ /* Reset these in case we normalized the initial value
+ and comparison value above. */
+ if (GET_CODE (comparison_value) == CONST_INT
+ && GET_CODE (initial_value) == CONST_INT)
+ {
+ comparison_value = GEN_INT (comparison_val);
+ final_value
+ = GEN_INT (comparison_val + INTVAL (bl->initial_value));
+ }
+ bl->initial_value = initial_value;
+
+ /* Save some info needed to produce the new insns. */
+ reg = bl->biv->dest_reg;
+ jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
+ if (jump_label == pc_rtx)
+ jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
+ new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
+
+ /* Set start_value; if this is not a CONST_INT, we need
+ to generate a SUB.
+ Initialize biv to start_value before loop start.
+ The old initializing insn will be deleted as a
+ dead store by flow.c. */
+ if (initial_value == const0_rtx
+ && GET_CODE (comparison_value) == CONST_INT)
+ {
+ start_value = GEN_INT (comparison_val - add_adjust);
+ emit_insn_before (gen_move_insn (reg, start_value),
+ loop_start);
+ }
+ else if (GET_CODE (initial_value) == CONST_INT)
+ {
+ rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
+ enum machine_mode mode = GET_MODE (reg);
+ enum insn_code icode
+ = add_optab->handlers[(int) mode].insn_code;
+ if (! (*insn_operand_predicate[icode][0]) (reg, mode)
+ || ! ((*insn_operand_predicate[icode][1])
+ (comparison_value, mode))
+ || ! (*insn_operand_predicate[icode][2]) (offset, mode))
+ return 0;
+ start_value
+ = gen_rtx_PLUS (mode, comparison_value, offset);
+ emit_insn_before ((GEN_FCN (icode)
+ (reg, comparison_value, offset)),
+ loop_start);
+ if (GET_CODE (comparison) == LE)
+ final_value = gen_rtx_PLUS (mode, comparison_value,
+ GEN_INT (add_val));
+ }
+ else if (! add_adjust)
+ {
+ enum machine_mode mode = GET_MODE (reg);
+ enum insn_code icode
+ = sub_optab->handlers[(int) mode].insn_code;
+ if (! (*insn_operand_predicate[icode][0]) (reg, mode)
+ || ! ((*insn_operand_predicate[icode][1])
+ (comparison_value, mode))
+ || ! ((*insn_operand_predicate[icode][2])
+ (initial_value, mode)))
+ return 0;
+ start_value
+ = gen_rtx_MINUS (mode, comparison_value, initial_value);
+ emit_insn_before ((GEN_FCN (icode)
+ (reg, comparison_value, initial_value)),
+ loop_start);
+ }
+ else
+ /* We could handle the other cases too, but it'll be
+ better to have a testcase first. */
+ return 0;
+
+ /* We may not have a single insn which can increment a reg, so
+ create a sequence to hold all the insns from expand_inc. */
+ start_sequence ();
+ expand_inc (reg, new_add_val);
+ tem = gen_sequence ();
+ end_sequence ();
+
+ p = emit_insn_before (tem, bl->biv->insn);
+ delete_insn (bl->biv->insn);
+
+ /* Update biv info to reflect its new status. */
+ bl->biv->insn = p;
+ bl->initial_value = start_value;
+ bl->biv->add_val = new_add_val;
+
+ /* Update loop info. */
+ loop_info->initial_value = reg;
+ loop_info->initial_equiv_value = reg;
+ loop_info->final_value = const0_rtx;
+ loop_info->final_equiv_value = const0_rtx;
+ loop_info->comparison_value = const0_rtx;
+ loop_info->comparison_code = cmp_code;
+ loop_info->increment = new_add_val;
+
+ /* Inc LABEL_NUSES so that delete_insn will
+ not delete the label. */
+ LABEL_NUSES (XEXP (jump_label, 0)) ++;
+
+ /* Emit an insn after the end of the loop to set the biv's
+ proper exit value if it is used anywhere outside the loop. */
+ if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
+ || ! bl->init_insn
+ || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
+ emit_insn_after (gen_move_insn (reg, final_value),
+ loop_end);
+
+ /* Delete compare/branch at end of loop. */
+ delete_insn (PREV_INSN (loop_end));
+ if (compare_and_branch == 2)
+ delete_insn (first_compare);
+
+ /* Add new compare/branch insn at end of loop. */
+ start_sequence ();
+ emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
+ GET_MODE (reg), 0, 0,
+ XEXP (jump_label, 0));
+ tem = gen_sequence ();
+ end_sequence ();
+ emit_jump_insn_before (tem, loop_end);
+
+ for (tem = PREV_INSN (loop_end);
+ tem && GET_CODE (tem) != JUMP_INSN;
+ tem = PREV_INSN (tem))
+ ;
+
+ if (tem)
+ JUMP_LABEL (tem) = XEXP (jump_label, 0);
+
+ if (nonneg)
+ {
+ if (tem)
+ {
+ /* Increment of LABEL_NUSES done above. */
+ /* Register is now always nonnegative,
+ so add REG_NONNEG note to the branch. */
+ REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
+ REG_NOTES (tem));
+ }
+ bl->nonneg = 1;
+ }
+
+ /* Mark that this biv has been reversed. Each giv which depends
+ on this biv, and which is also live past the end of the loop
+ will have to be fixed up. */
+
+ bl->reversed = 1;
+
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream, "Reversed loop");
+ if (bl->nonneg)
+ fprintf (loop_dump_stream, " and added reg_nonneg\n");
+ else
+ fprintf (loop_dump_stream, "\n");
+ }
+
+ return 1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/* Verify whether the biv BL appears to be eliminable,
+ based on the insns in the loop that refer to it.
+ LOOP_START is the first insn of the loop, and END is the end insn.
+
+ If ELIMINATE_P is non-zero, actually do the elimination.
+
+ THRESHOLD and INSN_COUNT are from loop_optimize and are used to
+ determine whether invariant insns should be placed inside or at the
+ start of the loop. */
+
+static int
+maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
+ struct iv_class *bl;
+ rtx loop_start;
+ rtx end;
+ int eliminate_p;
+ int threshold, insn_count;
+{
+ rtx reg = bl->biv->dest_reg;
+ rtx p;
+
+ /* Scan all insns in the loop, stopping if we find one that uses the
+ biv in a way that we cannot eliminate. */
+
+ for (p = loop_start; p != end; p = NEXT_INSN (p))
+ {
+ enum rtx_code code = GET_CODE (p);
+ rtx where = threshold >= insn_count ? loop_start : p;
+
+ /* If this is a libcall that sets a giv, skip ahead to its end. */
+ if (GET_RTX_CLASS (code) == 'i')
+ {
+ rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
+
+ if (note)
+ {
+ rtx last = XEXP (note, 0);
+ rtx set = single_set (last);
+
+ if (set && GET_CODE (SET_DEST (set)) == REG)
+ {
+ int regno = REGNO (SET_DEST (set));
+
+ if (regno < max_reg_before_loop
+ && REG_IV_TYPE (regno) == GENERAL_INDUCT
+ && REG_IV_INFO (regno)->src_reg == bl->biv->src_reg)
+ p = last;
+ }
+ }
+ }
+ if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
+ && reg_mentioned_p (reg, PATTERN (p))
+ && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "Cannot eliminate biv %d: biv used in insn %d.\n",
+ bl->regno, INSN_UID (p));
+ break;
+ }
+ }
+
+ if (p == end)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
+ bl->regno, eliminate_p ? "was" : "can be");
+ return 1;
+ }
+
+ return 0;
+}
+
+/* INSN and REFERENCE are instructions in the same insn chain.
+ Return non-zero if INSN is first. */
+
+int
+loop_insn_first_p (insn, reference)
+ rtx insn, reference;
+{
+ rtx p, q;
+
+ for (p = insn, q = reference; ;)
+ {
+ /* Start with test for not first so that INSN == REFERENCE yields not
+ first. */
+ if (q == insn || ! p)
+ return 0;
+ if (p == reference || ! q)
+ return 1;
+
+ if (INSN_UID (p) < max_uid_for_loop
+ && INSN_UID (q) < max_uid_for_loop)
+ return INSN_LUID (p) < INSN_LUID (q);
+
+ if (INSN_UID (p) >= max_uid_for_loop)
+ p = NEXT_INSN (p);
+ if (INSN_UID (q) >= max_uid_for_loop)
+ q = NEXT_INSN (q);
+ }
+}
+
+/* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
+ the offset that we have to take into account due to auto-increment /
+ div derivation is zero. */
+static int
+biv_elimination_giv_has_0_offset (biv, giv, insn)
+ struct induction *biv, *giv;
+ rtx insn;
+{
+ /* If the giv V had the auto-inc address optimization applied
+ to it, and INSN occurs between the giv insn and the biv
+ insn, then we'd have to adjust the value used here.
+ This is rare, so we don't bother to make this possible. */
+ if (giv->auto_inc_opt
+ && ((loop_insn_first_p (giv->insn, insn)
+ && loop_insn_first_p (insn, biv->insn))
+ || (loop_insn_first_p (biv->insn, insn)
+ && loop_insn_first_p (insn, giv->insn))))
+ return 0;
+
+ /* If the giv V was derived from another giv, and INSN does
+ not occur between the giv insn and the biv insn, then we'd
+ have to adjust the value used here. This is rare, so we don't
+ bother to make this possible. */
+ if (giv->derived_from
+ && ! (giv->always_executed
+ && loop_insn_first_p (giv->insn, insn)
+ && loop_insn_first_p (insn, biv->insn)))
+ return 0;
+ if (giv->same
+ && giv->same->derived_from
+ && ! (giv->same->always_executed
+ && loop_insn_first_p (giv->same->insn, insn)
+ && loop_insn_first_p (insn, biv->insn)))
+ return 0;
+
+ return 1;
+}
+
+/* If BL appears in X (part of the pattern of INSN), see if we can
+ eliminate its use. If so, return 1. If not, return 0.
+
+ If BIV does not appear in X, return 1.
+
+ If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
+ where extra insns should be added. Depending on how many items have been
+ moved out of the loop, it will either be before INSN or at the start of
+ the loop. */
+
+static int
+maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
+ rtx x, insn;
+ struct iv_class *bl;
+ int eliminate_p;
+ rtx where;
+{
+ enum rtx_code code = GET_CODE (x);
+ rtx reg = bl->biv->dest_reg;
+ enum machine_mode mode = GET_MODE (reg);
+ struct induction *v;
+ rtx arg, tem;
+#ifdef HAVE_cc0
+ rtx new;
+#endif
+ int arg_operand;
+ char *fmt;
+ int i, j;
+
+ switch (code)
+ {
+ case REG:
+ /* If we haven't already been able to do something with this BIV,
+ we can't eliminate it. */
+ if (x == reg)
+ return 0;
+ return 1;
+
+ case SET:
+ /* If this sets the BIV, it is not a problem. */
+ if (SET_DEST (x) == reg)
+ return 1;
+
+ /* If this is an insn that defines a giv, it is also ok because
+ it will go away when the giv is reduced. */
+ for (v = bl->giv; v; v = v->next_iv)
+ if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
+ return 1;
+
+#ifdef HAVE_cc0
+ if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
+ {
+ /* Can replace with any giv that was reduced and
+ that has (MULT_VAL != 0) and (ADD_VAL == 0).
+ Require a constant for MULT_VAL, so we know it's nonzero.
+ ??? We disable this optimization to avoid potential
+ overflows. */
+
+ for (v = bl->giv; v; v = v->next_iv)
+ if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
+ && v->add_val == const0_rtx
+ && ! v->ignore && ! v->maybe_dead && v->always_computable
+ && v->mode == mode
+ && 0)
+ {
+ if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
+ continue;
+
+ if (! eliminate_p)
+ return 1;
+
+ /* If the giv has the opposite direction of change,
+ then reverse the comparison. */
+ if (INTVAL (v->mult_val) < 0)
+ new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
+ const0_rtx, v->new_reg);
+ else
+ new = v->new_reg;
+
+ /* We can probably test that giv's reduced reg. */
+ if (validate_change (insn, &SET_SRC (x), new, 0))
+ return 1;
+ }
+
+ /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
+ replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
+ Require a constant for MULT_VAL, so we know it's nonzero.
+ ??? Do this only if ADD_VAL is a pointer to avoid a potential
+ overflow problem. */
+
+ for (v = bl->giv; v; v = v->next_iv)
+ if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
+ && ! v->ignore && ! v->maybe_dead && v->always_computable
+ && v->mode == mode
+ && (GET_CODE (v->add_val) == SYMBOL_REF
+ || GET_CODE (v->add_val) == LABEL_REF
+ || GET_CODE (v->add_val) == CONST
+ || (GET_CODE (v->add_val) == REG
+ && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
+ {
+ if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
+ continue;
+
+ if (! eliminate_p)
+ return 1;
+
+ /* If the giv has the opposite direction of change,
+ then reverse the comparison. */
+ if (INTVAL (v->mult_val) < 0)
+ new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
+ v->new_reg);
+ else
+ new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
+ copy_rtx (v->add_val));
+
+ /* Replace biv with the giv's reduced register. */
+ update_reg_last_use (v->add_val, insn);
+ if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
+ return 1;
+
+ /* Insn doesn't support that constant or invariant. Copy it
+ into a register (it will be a loop invariant.) */
+ tem = gen_reg_rtx (GET_MODE (v->new_reg));
+
+ emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
+ where);
+
+ /* Substitute the new register for its invariant value in
+ the compare expression. */
+ XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
+ if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
+ return 1;
+ }
+ }
+#endif
+ break;
+
+ case COMPARE:
+ case EQ: case NE:
+ case GT: case GE: case GTU: case GEU:
+ case LT: case LE: case LTU: case LEU:
+ /* See if either argument is the biv. */
+ if (XEXP (x, 0) == reg)
+ arg = XEXP (x, 1), arg_operand = 1;
+ else if (XEXP (x, 1) == reg)
+ arg = XEXP (x, 0), arg_operand = 0;
+ else
+ break;
+
+ if (CONSTANT_P (arg))
+ {
+ /* First try to replace with any giv that has constant positive
+ mult_val and constant add_val. We might be able to support
+ negative mult_val, but it seems complex to do it in general. */
+
+ for (v = bl->giv; v; v = v->next_iv)
+ if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
+ && (GET_CODE (v->add_val) == SYMBOL_REF
+ || GET_CODE (v->add_val) == LABEL_REF
+ || GET_CODE (v->add_val) == CONST
+ || (GET_CODE (v->add_val) == REG
+ && REGNO_POINTER_FLAG (REGNO (v->add_val))))
+ && ! v->ignore && ! v->maybe_dead && v->always_computable
+ && v->mode == mode)
+ {
+ if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
+ continue;
+
+ if (! eliminate_p)
+ return 1;
+
+ /* Replace biv with the giv's reduced reg. */
+ XEXP (x, 1-arg_operand) = v->new_reg;
+
+ /* If all constants are actually constant integers and
+ the derived constant can be directly placed in the COMPARE,
+ do so. */
+ if (GET_CODE (arg) == CONST_INT
+ && GET_CODE (v->mult_val) == CONST_INT
+ && GET_CODE (v->add_val) == CONST_INT
+ && validate_change (insn, &XEXP (x, arg_operand),
+ GEN_INT (INTVAL (arg)
+ * INTVAL (v->mult_val)
+ + INTVAL (v->add_val)), 0))
+ return 1;
+
+ /* Otherwise, load it into a register. */
+ tem = gen_reg_rtx (mode);
+ emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
+ if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
+ return 1;
+
+ /* If that failed, put back the change we made above. */
+ XEXP (x, 1-arg_operand) = reg;
+ }
+
+ /* Look for giv with positive constant mult_val and nonconst add_val.
+ Insert insns to calculate new compare value.
+ ??? Turn this off due to possible overflow. */
+
+ for (v = bl->giv; v; v = v->next_iv)
+ if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
+ && ! v->ignore && ! v->maybe_dead && v->always_computable
+ && v->mode == mode
+ && 0)
+ {
+ rtx tem;
+
+ if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
+ continue;
+
+ if (! eliminate_p)
+ return 1;
+
+ tem = gen_reg_rtx (mode);
+
+ /* Replace biv with giv's reduced register. */
+ validate_change (insn, &XEXP (x, 1 - arg_operand),
+ v->new_reg, 1);
+
+ /* Compute value to compare against. */
+ emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
+ /* Use it in this insn. */
+ validate_change (insn, &XEXP (x, arg_operand), tem, 1);
+ if (apply_change_group ())
+ return 1;
+ }
+ }
+ else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
+ {
+ if (invariant_p (arg) == 1)
+ {
+ /* Look for giv with constant positive mult_val and nonconst
+ add_val. Insert insns to compute new compare value.
+ ??? Turn this off due to possible overflow. */
+
+ for (v = bl->giv; v; v = v->next_iv)
+ if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
+ && ! v->ignore && ! v->maybe_dead && v->always_computable
+ && v->mode == mode
+ && 0)
+ {
+ rtx tem;
+
+ if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
+ continue;
+
+ if (! eliminate_p)
+ return 1;
+
+ tem = gen_reg_rtx (mode);
+
+ /* Replace biv with giv's reduced register. */
+ validate_change (insn, &XEXP (x, 1 - arg_operand),
+ v->new_reg, 1);
+
+ /* Compute value to compare against. */
+ emit_iv_add_mult (arg, v->mult_val, v->add_val,
+ tem, where);
+ validate_change (insn, &XEXP (x, arg_operand), tem, 1);
+ if (apply_change_group ())
+ return 1;
+ }
+ }
+
+ /* This code has problems. Basically, you can't know when
+ seeing if we will eliminate BL, whether a particular giv
+ of ARG will be reduced. If it isn't going to be reduced,
+ we can't eliminate BL. We can try forcing it to be reduced,
+ but that can generate poor code.
+
+ The problem is that the benefit of reducing TV, below should
+ be increased if BL can actually be eliminated, but this means
+ we might have to do a topological sort of the order in which
+ we try to process biv. It doesn't seem worthwhile to do
+ this sort of thing now. */
+
+#if 0
+ /* Otherwise the reg compared with had better be a biv. */
+ if (GET_CODE (arg) != REG
+ || REG_IV_TYPE (REGNO (arg)) != BASIC_INDUCT)
+ return 0;
+
+ /* Look for a pair of givs, one for each biv,
+ with identical coefficients. */
+ for (v = bl->giv; v; v = v->next_iv)
+ {
+ struct induction *tv;
+
+ if (v->ignore || v->maybe_dead || v->mode != mode)
+ continue;
+
+ for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
+ if (! tv->ignore && ! tv->maybe_dead
+ && rtx_equal_p (tv->mult_val, v->mult_val)
+ && rtx_equal_p (tv->add_val, v->add_val)
+ && tv->mode == mode)
+ {
+ if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
+ continue;
+
+ if (! eliminate_p)
+ return 1;
+
+ /* Replace biv with its giv's reduced reg. */
+ XEXP (x, 1-arg_operand) = v->new_reg;
+ /* Replace other operand with the other giv's
+ reduced reg. */
+ XEXP (x, arg_operand) = tv->new_reg;
+ return 1;
+ }
+ }
+#endif
+ }
+
+ /* If we get here, the biv can't be eliminated. */
+ return 0;
+
+ case MEM:
+ /* If this address is a DEST_ADDR giv, it doesn't matter if the
+ biv is used in it, since it will be replaced. */
+ for (v = bl->giv; v; v = v->next_iv)
+ if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
+ return 1;
+ break;
+
+ default:
+ break;
+ }
+
+ /* See if any subexpression fails elimination. */
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ switch (fmt[i])
+ {
+ case 'e':
+ if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
+ eliminate_p, where))
+ return 0;
+ break;
+
+ case 'E':
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
+ eliminate_p, where))
+ return 0;
+ break;
+ }
+ }
+
+ return 1;
+}
+
+/* Return nonzero if the last use of REG
+ is in an insn following INSN in the same basic block. */
+
+static int
+last_use_this_basic_block (reg, insn)
+ rtx reg;
+ rtx insn;
+{
+ rtx n;
+ for (n = insn;
+ n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
+ n = NEXT_INSN (n))
+ {
+ if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
+ return 1;
+ }
+ return 0;
+}
+
+/* Called via `note_stores' to record the initial value of a biv. Here we
+ just record the location of the set and process it later. */
+
+static void
+record_initial (dest, set)
+ rtx dest;
+ rtx set;
+{
+ struct iv_class *bl;
+
+ if (GET_CODE (dest) != REG
+ || REGNO (dest) >= max_reg_before_loop
+ || REG_IV_TYPE (REGNO (dest)) != BASIC_INDUCT)
+ return;
+
+ bl = reg_biv_class[REGNO (dest)];
+
+ /* If this is the first set found, record it. */
+ if (bl->init_insn == 0)
+ {
+ bl->init_insn = note_insn;
+ bl->init_set = set;
+ }
+}
+
+/* If any of the registers in X are "old" and currently have a last use earlier
+ than INSN, update them to have a last use of INSN. Their actual last use
+ will be the previous insn but it will not have a valid uid_luid so we can't
+ use it. */
+
+static void
+update_reg_last_use (x, insn)
+ rtx x;
+ rtx insn;
+{
+ /* Check for the case where INSN does not have a valid luid. In this case,
+ there is no need to modify the regno_last_uid, as this can only happen
+ when code is inserted after the loop_end to set a pseudo's final value,
+ and hence this insn will never be the last use of x. */
+ if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
+ && INSN_UID (insn) < max_uid_for_loop
+ && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
+ REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
+ else
+ {
+ register int i, j;
+ register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ update_reg_last_use (XEXP (x, i), insn);
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ update_reg_last_use (XVECEXP (x, i, j), insn);
+ }
+ }
+}
+
+/* Given a jump insn JUMP, return the condition that will cause it to branch
+ to its JUMP_LABEL. If the condition cannot be understood, or is an
+ inequality floating-point comparison which needs to be reversed, 0 will
+ be returned.
+
+ If EARLIEST is non-zero, it is a pointer to a place where the earliest
+ insn used in locating the condition was found. If a replacement test
+ of the condition is desired, it should be placed in front of that
+ insn and we will be sure that the inputs are still valid.
+
+ The condition will be returned in a canonical form to simplify testing by
+ callers. Specifically:
+
+ (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
+ (2) Both operands will be machine operands; (cc0) will have been replaced.
+ (3) If an operand is a constant, it will be the second operand.
+ (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
+ for GE, GEU, and LEU. */
+
+rtx
+get_condition (jump, earliest)
+ rtx jump;
+ rtx *earliest;
+{
+ enum rtx_code code;
+ rtx prev = jump;
+ rtx set;
+ rtx tem;
+ rtx op0, op1;
+ int reverse_code = 0;
+ int did_reverse_condition = 0;
+ enum machine_mode mode;
+
+ /* If this is not a standard conditional jump, we can't parse it. */
+ if (GET_CODE (jump) != JUMP_INSN
+ || ! condjump_p (jump) || simplejump_p (jump))
+ return 0;
+
+ code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
+ mode = GET_MODE (XEXP (SET_SRC (PATTERN (jump)), 0));
+ op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
+ op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
+
+ if (earliest)
+ *earliest = jump;
+
+ /* If this branches to JUMP_LABEL when the condition is false, reverse
+ the condition. */
+ if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
+ && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
+ code = reverse_condition (code), did_reverse_condition ^= 1;
+
+ /* If we are comparing a register with zero, see if the register is set
+ in the previous insn to a COMPARE or a comparison operation. Perform
+ the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
+ in cse.c */
+
+ while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
+ {
+ /* Set non-zero when we find something of interest. */
+ rtx x = 0;
+
+#ifdef HAVE_cc0
+ /* If comparison with cc0, import actual comparison from compare
+ insn. */
+ if (op0 == cc0_rtx)
+ {
+ if ((prev = prev_nonnote_insn (prev)) == 0
+ || GET_CODE (prev) != INSN
+ || (set = single_set (prev)) == 0
+ || SET_DEST (set) != cc0_rtx)
+ return 0;
+
+ op0 = SET_SRC (set);
+ op1 = CONST0_RTX (GET_MODE (op0));
+ if (earliest)
+ *earliest = prev;
+ }
+#endif
+
+ /* If this is a COMPARE, pick up the two things being compared. */
+ if (GET_CODE (op0) == COMPARE)
+ {
+ op1 = XEXP (op0, 1);
+ op0 = XEXP (op0, 0);
+ continue;
+ }
+ else if (GET_CODE (op0) != REG)
+ break;
+
+ /* Go back to the previous insn. Stop if it is not an INSN. We also
+ stop if it isn't a single set or if it has a REG_INC note because
+ we don't want to bother dealing with it. */
+
+ if ((prev = prev_nonnote_insn (prev)) == 0
+ || GET_CODE (prev) != INSN
+ || FIND_REG_INC_NOTE (prev, 0)
+ || (set = single_set (prev)) == 0)
+ break;
+
+ /* If this is setting OP0, get what it sets it to if it looks
+ relevant. */
+ if (rtx_equal_p (SET_DEST (set), op0))
+ {
+ enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
+
+ /* ??? We may not combine comparisons done in a CCmode with
+ comparisons not done in a CCmode. This is to aid targets
+ like Alpha that have an IEEE compliant EQ instruction, and
+ a non-IEEE compliant BEQ instruction. The use of CCmode is
+ actually artificial, simply to prevent the combination, but
+ should not affect other platforms.
+
+ However, we must allow VOIDmode comparisons to match either
+ CCmode or non-CCmode comparison, because some ports have
+ modeless comparisons inside branch patterns.
+
+ ??? This mode check should perhaps look more like the mode check
+ in simplify_comparison in combine. */
+
+ if ((GET_CODE (SET_SRC (set)) == COMPARE
+ || (((code == NE
+ || (code == LT
+ && GET_MODE_CLASS (inner_mode) == MODE_INT
+ && (GET_MODE_BITSIZE (inner_mode)
+ <= HOST_BITS_PER_WIDE_INT)
+ && (STORE_FLAG_VALUE
+ & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (inner_mode) - 1))))
+#ifdef FLOAT_STORE_FLAG_VALUE
+ || (code == LT
+ && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
+ && FLOAT_STORE_FLAG_VALUE < 0)
+#endif
+ ))
+ && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
+ && (((GET_MODE_CLASS (mode) == MODE_CC)
+ == (GET_MODE_CLASS (inner_mode) == MODE_CC))
+ || mode == VOIDmode || inner_mode == VOIDmode))
+ x = SET_SRC (set);
+ else if (((code == EQ
+ || (code == GE
+ && (GET_MODE_BITSIZE (inner_mode)
+ <= HOST_BITS_PER_WIDE_INT)
+ && GET_MODE_CLASS (inner_mode) == MODE_INT
+ && (STORE_FLAG_VALUE
+ & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (inner_mode) - 1))))
+#ifdef FLOAT_STORE_FLAG_VALUE
+ || (code == GE
+ && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
+ && FLOAT_STORE_FLAG_VALUE < 0)
+#endif
+ ))
+ && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
+ && (((GET_MODE_CLASS (mode) == MODE_CC)
+ == (GET_MODE_CLASS (inner_mode) == MODE_CC))
+ || mode == VOIDmode || inner_mode == VOIDmode))
+
+ {
+ /* We might have reversed a LT to get a GE here. But this wasn't
+ actually the comparison of data, so we don't flag that we
+ have had to reverse the condition. */
+ did_reverse_condition ^= 1;
+ reverse_code = 1;
+ x = SET_SRC (set);
+ }
+ else
+ break;
+ }
+
+ else if (reg_set_p (op0, prev))
+ /* If this sets OP0, but not directly, we have to give up. */
+ break;
+
+ if (x)
+ {
+ if (GET_RTX_CLASS (GET_CODE (x)) == '<')
+ code = GET_CODE (x);
+ if (reverse_code)
+ {
+ code = reverse_condition (code);
+ did_reverse_condition ^= 1;
+ reverse_code = 0;
+ }
+
+ op0 = XEXP (x, 0), op1 = XEXP (x, 1);
+ if (earliest)
+ *earliest = prev;
+ }
+ }
+
+ /* If constant is first, put it last. */
+ if (CONSTANT_P (op0))
+ code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
+
+ /* If OP0 is the result of a comparison, we weren't able to find what
+ was really being compared, so fail. */
+ if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
+ return 0;
+
+ /* Canonicalize any ordered comparison with integers involving equality
+ if we can do computations in the relevant mode and we do not
+ overflow. */
+
+ if (GET_CODE (op1) == CONST_INT
+ && GET_MODE (op0) != VOIDmode
+ && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
+ {
+ HOST_WIDE_INT const_val = INTVAL (op1);
+ unsigned HOST_WIDE_INT uconst_val = const_val;
+ unsigned HOST_WIDE_INT max_val
+ = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
+
+ switch (code)
+ {
+ case LE:
+ if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
+ code = LT, op1 = GEN_INT (const_val + 1);
+ break;
+
+ /* When cross-compiling, const_val might be sign-extended from
+ BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
+ case GE:
+ if ((HOST_WIDE_INT) (const_val & max_val)
+ != (((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
+ code = GT, op1 = GEN_INT (const_val - 1);
+ break;
+
+ case LEU:
+ if (uconst_val < max_val)
+ code = LTU, op1 = GEN_INT (uconst_val + 1);
+ break;
+
+ case GEU:
+ if (uconst_val != 0)
+ code = GTU, op1 = GEN_INT (uconst_val - 1);
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ /* If this was floating-point and we reversed anything other than an
+ EQ or NE, return zero. */
+ if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
+ && did_reverse_condition && code != NE && code != EQ
+ && ! flag_fast_math
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
+ return 0;
+
+#ifdef HAVE_cc0
+ /* Never return CC0; return zero instead. */
+ if (op0 == cc0_rtx)
+ return 0;
+#endif
+
+ return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
+}
+
+/* Similar to above routine, except that we also put an invariant last
+ unless both operands are invariants. */
+
+rtx
+get_condition_for_loop (x)
+ rtx x;
+{
+ rtx comparison = get_condition (x, NULL_PTR);
+
+ if (comparison == 0
+ || ! invariant_p (XEXP (comparison, 0))
+ || invariant_p (XEXP (comparison, 1)))
+ return comparison;
+
+ return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
+ XEXP (comparison, 1), XEXP (comparison, 0));
+}
+
+#ifdef HAVE_decrement_and_branch_on_count
+/* Instrument loop for insertion of bct instruction. We distinguish between
+ loops with compile-time bounds and those with run-time bounds.
+ Information from loop_iterations() is used to compute compile-time bounds.
+ Run-time bounds should use loop preconditioning, but currently ignored.
+ */
+
+static void
+insert_bct (loop_start, loop_end, loop_info)
+ rtx loop_start, loop_end;
+ struct loop_info *loop_info;
+{
+ int i;
+ unsigned HOST_WIDE_INT n_iterations;
+
+ int increment_direction, compare_direction;
+
+ /* If the loop condition is <= or >=, the number of iteration
+ is 1 more than the range of the bounds of the loop. */
+ int add_iteration = 0;
+
+ enum machine_mode loop_var_mode = word_mode;
+
+ int loop_num = uid_loop_num [INSN_UID (loop_start)];
+
+ /* It's impossible to instrument a competely unrolled loop. */
+ if (loop_info->unroll_number == -1)
+ return;
+
+ /* Make sure that the count register is not in use. */
+ if (loop_used_count_register [loop_num])
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct %d: BCT instrumentation failed: count register already in use\n",
+ loop_num);
+ return;
+ }
+
+ /* Make sure that the function has no indirect jumps. */
+ if (indirect_jump_in_function)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
+ loop_num);
+ return;
+ }
+
+ /* Make sure that the last loop insn is a conditional jump. */
+ if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
+ || ! condjump_p (PREV_INSN (loop_end))
+ || simplejump_p (PREV_INSN (loop_end)))
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
+ loop_num);
+ return;
+ }
+
+ /* Make sure that the loop does not contain a function call
+ (the count register might be altered by the called function). */
+ if (loop_has_call)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct %d: BCT instrumentation failed: function call in loop\n",
+ loop_num);
+ return;
+ }
+
+ /* Make sure that the loop does not jump via a table.
+ (the count register might be used to perform the branch on table). */
+ if (loop_has_tablejump)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
+ loop_num);
+ return;
+ }
+
+ /* Account for loop unrolling in instrumented iteration count. */
+ if (loop_info->unroll_number > 1)
+ n_iterations = loop_info->n_iterations / loop_info->unroll_number;
+ else
+ n_iterations = loop_info->n_iterations;
+
+ if (n_iterations != 0 && n_iterations < 3)
+ {
+ /* Allow an enclosing outer loop to benefit if possible. */
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
+ loop_num);
+ return;
+ }
+
+ /* Try to instrument the loop. */
+
+ /* Handle the simpler case, where the bounds are known at compile time. */
+ if (n_iterations > 0)
+ {
+ /* Mark all enclosing loops that they cannot use count register. */
+ for (i = loop_num; i != -1; i = loop_outer_loop[i])
+ loop_used_count_register[i] = 1;
+ instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
+ return;
+ }
+
+ /* Handle the more complex case, that the bounds are NOT known
+ at compile time. In this case we generate run_time calculation
+ of the number of iterations. */
+
+ if (loop_info->iteration_var == 0)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct %d: BCT Runtime Instrumentation failed: no loop iteration variable found\n",
+ loop_num);
+ return;
+ }
+
+ if (GET_MODE_CLASS (GET_MODE (loop_info->iteration_var)) != MODE_INT
+ || GET_MODE_SIZE (GET_MODE (loop_info->iteration_var)) != UNITS_PER_WORD)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct %d: BCT Runtime Instrumentation failed: loop variable not integer\n",
+ loop_num);
+ return;
+ }
+
+ /* With runtime bounds, if the compare is of the form '!=' we give up */
+ if (loop_info->comparison_code == NE)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct %d: BCT Runtime Instrumentation failed: runtime bounds with != comparison\n",
+ loop_num);
+ return;
+ }
+/* Use common loop preconditioning code instead. */
+#if 0
+ else
+ {
+ /* We rely on the existence of run-time guard to ensure that the
+ loop executes at least once. */
+ rtx sequence;
+ rtx iterations_num_reg;
+
+ unsigned HOST_WIDE_INT increment_value_abs
+ = INTVAL (increment) * increment_direction;
+
+ /* make sure that the increment is a power of two, otherwise (an
+ expensive) divide is needed. */
+ if (exact_log2 (increment_value_abs) == -1)
+ {
+ if (loop_dump_stream)
+ fprintf (loop_dump_stream,
+ "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
+ return;
+ }
+
+ /* compute the number of iterations */
+ start_sequence ();
+ {
+ rtx temp_reg;
+
+ /* Again, the number of iterations is calculated by:
+ ;
+ ; compare-val - initial-val + (increment -1) + additional-iteration
+ ; num_iterations = -----------------------------------------------------------------
+ ; increment
+ */
+ /* ??? Do we have to call copy_rtx here before passing rtx to
+ expand_binop? */
+ if (compare_direction > 0)
+ {
+ /* <, <= :the loop variable is increasing */
+ temp_reg = expand_binop (loop_var_mode, sub_optab,
+ comparison_value, initial_value,
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ }
+ else
+ {
+ temp_reg = expand_binop (loop_var_mode, sub_optab,
+ initial_value, comparison_value,
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ }
+
+ if (increment_value_abs - 1 + add_iteration != 0)
+ temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
+ GEN_INT (increment_value_abs - 1
+ + add_iteration),
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+
+ if (increment_value_abs != 1)
+ {
+ /* ??? This will generate an expensive divide instruction for
+ most targets. The original authors apparently expected this
+ to be a shift, since they test for power-of-2 divisors above,
+ but just naively generating a divide instruction will not give
+ a shift. It happens to work for the PowerPC target because
+ the rs6000.md file has a divide pattern that emits shifts.
+ It will probably not work for any other target. */
+ iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
+ temp_reg,
+ GEN_INT (increment_value_abs),
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ }
+ else
+ iterations_num_reg = temp_reg;
+ }
+ sequence = gen_sequence ();
+ end_sequence ();
+ emit_insn_before (sequence, loop_start);
+ instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
+ }
+
+ return;
+#endif /* Complex case */
+}
+
+/* Instrument loop by inserting a bct in it as follows:
+ 1. A new counter register is created.
+ 2. In the head of the loop the new variable is initialized to the value
+ passed in the loop_num_iterations parameter.
+ 3. At the end of the loop, comparison of the register with 0 is generated.
+ The created comparison follows the pattern defined for the
+ decrement_and_branch_on_count insn, so this insn will be generated.
+ 4. The branch on the old variable are deleted. The compare must remain
+ because it might be used elsewhere. If the loop-variable or condition
+ register are used elsewhere, they will be eliminated by flow. */
+
+static void
+instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
+ rtx loop_start, loop_end;
+ rtx loop_num_iterations;
+{
+ rtx counter_reg;
+ rtx start_label;
+ rtx sequence;
+
+ if (HAVE_decrement_and_branch_on_count)
+ {
+ if (loop_dump_stream)
+ {
+ fputs ("instrument_bct: Inserting BCT (", loop_dump_stream);
+ if (GET_CODE (loop_num_iterations) == CONST_INT)
+ fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
+ INTVAL (loop_num_iterations));
+ else
+ fputs ("runtime", loop_dump_stream);
+ fputs (" iterations)", loop_dump_stream);
+ }
+
+ /* Discard original jump to continue loop. Original compare result
+ may still be live, so it cannot be discarded explicitly. */
+ delete_insn (PREV_INSN (loop_end));
+
+ /* Insert the label which will delimit the start of the loop. */
+ start_label = gen_label_rtx ();
+ emit_label_after (start_label, loop_start);
+
+ /* Insert initialization of the count register into the loop header. */
+ start_sequence ();
+ counter_reg = gen_reg_rtx (word_mode);
+ emit_insn (gen_move_insn (counter_reg, loop_num_iterations));
+ sequence = gen_sequence ();
+ end_sequence ();
+ emit_insn_before (sequence, loop_start);
+
+ /* Insert new comparison on the count register instead of the
+ old one, generating the needed BCT pattern (that will be
+ later recognized by assembly generation phase). */
+ emit_jump_insn_before (gen_decrement_and_branch_on_count (counter_reg,
+ start_label),
+ loop_end);
+ LABEL_NUSES (start_label)++;
+ }
+
+}
+#endif /* HAVE_decrement_and_branch_on_count */
+
+/* Scan the function and determine whether it has indirect (computed) jumps.
+
+ This is taken mostly from flow.c; similar code exists elsewhere
+ in the compiler. It may be useful to put this into rtlanal.c. */
+static int
+indirect_jump_in_function_p (start)
+ rtx start;
+{
+ rtx insn;
+
+ for (insn = start; insn; insn = NEXT_INSN (insn))
+ if (computed_jump_p (insn))
+ return 1;
+
+ return 0;
+}
+
+/* Add MEM to the LOOP_MEMS array, if appropriate. See the
+ documentation for LOOP_MEMS for the definition of `appropriate'.
+ This function is called from prescan_loop via for_each_rtx. */
+
+static int
+insert_loop_mem (mem, data)
+ rtx *mem;
+ void *data ATTRIBUTE_UNUSED;
+{
+ int i;
+ rtx m = *mem;
+
+ if (m == NULL_RTX)
+ return 0;
+
+ switch (GET_CODE (m))
+ {
+ case MEM:
+ break;
+
+ case CONST_DOUBLE:
+ /* We're not interested in the MEM associated with a
+ CONST_DOUBLE, so there's no need to traverse into this. */
+ return -1;
+
+ default:
+ /* This is not a MEM. */
+ return 0;
+ }
+
+ /* See if we've already seen this MEM. */
+ for (i = 0; i < loop_mems_idx; ++i)
+ if (rtx_equal_p (m, loop_mems[i].mem))
+ {
+ if (GET_MODE (m) != GET_MODE (loop_mems[i].mem))
+ /* The modes of the two memory accesses are different. If
+ this happens, something tricky is going on, and we just
+ don't optimize accesses to this MEM. */
+ loop_mems[i].optimize = 0;
+
+ return 0;
+ }
+
+ /* Resize the array, if necessary. */
+ if (loop_mems_idx == loop_mems_allocated)
+ {
+ if (loop_mems_allocated != 0)
+ loop_mems_allocated *= 2;
+ else
+ loop_mems_allocated = 32;
+
+ loop_mems = (loop_mem_info*)
+ xrealloc (loop_mems,
+ loop_mems_allocated * sizeof (loop_mem_info));
+ }
+
+ /* Actually insert the MEM. */
+ loop_mems[loop_mems_idx].mem = m;
+ /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
+ because we can't put it in a register. We still store it in the
+ table, though, so that if we see the same address later, but in a
+ non-BLK mode, we'll not think we can optimize it at that point. */
+ loop_mems[loop_mems_idx].optimize = (GET_MODE (m) != BLKmode);
+ loop_mems[loop_mems_idx].reg = NULL_RTX;
+ ++loop_mems_idx;
+
+ return 0;
+}
+
+/* Like load_mems, but also ensures that SET_IN_LOOP,
+ MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
+ values after load_mems. */
+
+static void
+load_mems_and_recount_loop_regs_set (scan_start, end, loop_top, start,
+ insn_count)
+ rtx scan_start;
+ rtx end;
+ rtx loop_top;
+ rtx start;
+ int *insn_count;
+{
+ int nregs = max_reg_num ();
+
+ load_mems (scan_start, end, loop_top, start);
+
+ /* Recalculate set_in_loop and friends since load_mems may have
+ created new registers. */
+ if (max_reg_num () > nregs)
+ {
+ int i;
+ int old_nregs;
+
+ old_nregs = nregs;
+ nregs = max_reg_num ();
+
+ if ((unsigned) nregs > set_in_loop->num_elements)
+ {
+ /* Grow all the arrays. */
+ VARRAY_GROW (set_in_loop, nregs);
+ VARRAY_GROW (n_times_set, nregs);
+ VARRAY_GROW (may_not_optimize, nregs);
+ VARRAY_GROW (reg_single_usage, nregs);
+ }
+ /* Clear the arrays */
+ bzero ((char *) &set_in_loop->data, nregs * sizeof (int));
+ bzero ((char *) &may_not_optimize->data, nregs * sizeof (char));
+ bzero ((char *) &reg_single_usage->data, nregs * sizeof (rtx));
+
+ count_loop_regs_set (loop_top ? loop_top : start, end,
+ may_not_optimize, reg_single_usage,
+ insn_count, nregs);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ VARRAY_CHAR (may_not_optimize, i) = 1;
+ VARRAY_INT (set_in_loop, i) = 1;
+ }
+
+#ifdef AVOID_CCMODE_COPIES
+ /* Don't try to move insns which set CC registers if we should not
+ create CCmode register copies. */
+ for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
+ if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
+ VARRAY_CHAR (may_not_optimize, i) = 1;
+#endif
+
+ /* Set n_times_set for the new registers. */
+ bcopy ((char *) (&set_in_loop->data.i[0] + old_nregs),
+ (char *) (&n_times_set->data.i[0] + old_nregs),
+ (nregs - old_nregs) * sizeof (int));
+ }
+}
+
+/* Move MEMs into registers for the duration of the loop. SCAN_START
+ is the first instruction in the loop (as it is executed). The
+ other parameters are as for next_insn_in_loop. */
+
+static void
+load_mems (scan_start, end, loop_top, start)
+ rtx scan_start;
+ rtx end;
+ rtx loop_top;
+ rtx start;
+{
+ int maybe_never = 0;
+ int i;
+ rtx p;
+ rtx label = NULL_RTX;
+ rtx end_label;
+
+ if (loop_mems_idx > 0)
+ {
+ /* Nonzero if the next instruction may never be executed. */
+ int next_maybe_never = 0;
+
+ /* Check to see if it's possible that some instructions in the
+ loop are never executed. */
+ for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
+ p != NULL_RTX && !maybe_never;
+ p = next_insn_in_loop (p, scan_start, end, loop_top))
+ {
+ if (GET_CODE (p) == CODE_LABEL)
+ maybe_never = 1;
+ else if (GET_CODE (p) == JUMP_INSN
+ /* If we enter the loop in the middle, and scan
+ around to the beginning, don't set maybe_never
+ for that. This must be an unconditional jump,
+ otherwise the code at the top of the loop might
+ never be executed. Unconditional jumps are
+ followed a by barrier then loop end. */
+ && ! (GET_CODE (p) == JUMP_INSN
+ && JUMP_LABEL (p) == loop_top
+ && NEXT_INSN (NEXT_INSN (p)) == end
+ && simplejump_p (p)))
+ {
+ if (!condjump_p (p))
+ /* Something complicated. */
+ maybe_never = 1;
+ else
+ /* If there are any more instructions in the loop, they
+ might not be reached. */
+ next_maybe_never = 1;
+ }
+ else if (next_maybe_never)
+ maybe_never = 1;
+ }
+
+ /* Actually move the MEMs. */
+ for (i = 0; i < loop_mems_idx; ++i)
+ {
+ int written = 0;
+ rtx reg;
+ rtx mem = loop_mems[i].mem;
+ rtx mem_list_entry;
+
+ if (MEM_VOLATILE_P (mem)
+ || invariant_p (XEXP (mem, 0)) != 1)
+ /* There's no telling whether or not MEM is modified. */
+ loop_mems[i].optimize = 0;
+
+ /* Go through the MEMs written to in the loop to see if this
+ one is aliased by one of them. */
+ mem_list_entry = loop_store_mems;
+ while (mem_list_entry)
+ {
+ if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
+ written = 1;
+ else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
+ mem, rtx_varies_p))
+ {
+ /* MEM is indeed aliased by this store. */
+ loop_mems[i].optimize = 0;
+ break;
+ }
+ mem_list_entry = XEXP (mem_list_entry, 1);
+ }
+
+ /* If this MEM is written to, we must be sure that there
+ are no reads from another MEM that aliases this one. */
+ if (loop_mems[i].optimize && written)
+ {
+ int j;
+
+ for (j = 0; j < loop_mems_idx; ++j)
+ {
+ if (j == i)
+ continue;
+ else if (true_dependence (mem,
+ VOIDmode,
+ loop_mems[j].mem,
+ rtx_varies_p))
+ {
+ /* It's not safe to hoist loop_mems[i] out of
+ the loop because writes to it might not be
+ seen by reads from loop_mems[j]. */
+ loop_mems[i].optimize = 0;
+ break;
+ }
+ }
+ }
+
+ if (maybe_never && may_trap_p (mem))
+ /* We can't access the MEM outside the loop; it might
+ cause a trap that wouldn't have happened otherwise. */
+ loop_mems[i].optimize = 0;
+
+ if (!loop_mems[i].optimize)
+ /* We thought we were going to lift this MEM out of the
+ loop, but later discovered that we could not. */
+ continue;
+
+ /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
+ order to keep scan_loop from moving stores to this MEM
+ out of the loop just because this REG is neither a
+ user-variable nor used in the loop test. */
+ reg = gen_reg_rtx (GET_MODE (mem));
+ REG_USERVAR_P (reg) = 1;
+ loop_mems[i].reg = reg;
+
+ /* Now, replace all references to the MEM with the
+ corresponding pesudos. */
+ for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
+ p != NULL_RTX;
+ p = next_insn_in_loop (p, scan_start, end, loop_top))
+ {
+ rtx_and_int ri;
+ ri.r = p;
+ ri.i = i;
+ for_each_rtx (&p, replace_loop_mem, &ri);
+ }
+
+ if (!apply_change_group ())
+ /* We couldn't replace all occurrences of the MEM. */
+ loop_mems[i].optimize = 0;
+ else
+ {
+ rtx set;
+
+ /* Load the memory immediately before START, which is
+ the NOTE_LOOP_BEG. */
+ set = gen_move_insn (reg, mem);
+ emit_insn_before (set, start);
+
+ if (written)
+ {
+ if (label == NULL_RTX)
+ {
+ /* We must compute the former
+ right-after-the-end label before we insert
+ the new one. */
+ end_label = next_label (end);
+ label = gen_label_rtx ();
+ emit_label_after (label, end);
+ }
+
+ /* Store the memory immediately after END, which is
+ the NOTE_LOOP_END. */
+ set = gen_move_insn (copy_rtx (mem), reg);
+ emit_insn_after (set, label);
+ }
+
+ if (loop_dump_stream)
+ {
+ fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
+ REGNO (reg), (written ? "r/w" : "r/o"));
+ print_rtl (loop_dump_stream, mem);
+ fputc ('\n', loop_dump_stream);
+ }
+ }
+ }
+ }
+
+ if (label != NULL_RTX)
+ {
+ /* Now, we need to replace all references to the previous exit
+ label with the new one. */
+ rtx_pair rr;
+ rr.r1 = end_label;
+ rr.r2 = label;
+
+ for (p = start; p != end; p = NEXT_INSN (p))
+ {
+ for_each_rtx (&p, replace_label, &rr);
+
+ /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
+ field. This is not handled by for_each_rtx because it doesn't
+ handle unprinted ('0') fields. We need to update JUMP_LABEL
+ because the immediately following unroll pass will use it.
+ replace_label would not work anyways, because that only handles
+ LABEL_REFs. */
+ if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
+ JUMP_LABEL (p) = label;
+ }
+ }
+}
+
+/* Replace MEM with its associated pseudo register. This function is
+ called from load_mems via for_each_rtx. DATA is actually an
+ rtx_and_int * describing the instruction currently being scanned
+ and the MEM we are currently replacing. */
+
+static int
+replace_loop_mem (mem, data)
+ rtx *mem;
+ void *data;
+{
+ rtx_and_int *ri;
+ rtx insn;
+ int i;
+ rtx m = *mem;
+
+ if (m == NULL_RTX)
+ return 0;
+
+ switch (GET_CODE (m))
+ {
+ case MEM:
+ break;
+
+ case CONST_DOUBLE:
+ /* We're not interested in the MEM associated with a
+ CONST_DOUBLE, so there's no need to traverse into one. */
+ return -1;
+
+ default:
+ /* This is not a MEM. */
+ return 0;
+ }
+
+ ri = (rtx_and_int*) data;
+ i = ri->i;
+
+ if (!rtx_equal_p (loop_mems[i].mem, m))
+ /* This is not the MEM we are currently replacing. */
+ return 0;
+
+ insn = ri->r;
+
+ /* Actually replace the MEM. */
+ validate_change (insn, mem, loop_mems[i].reg, 1);
+
+ return 0;
+}
+
+/* Replace occurrences of the old exit label for the loop with the new
+ one. DATA is an rtx_pair containing the old and new labels,
+ respectively. */
+
+static int
+replace_label (x, data)
+ rtx *x;
+ void *data;
+{
+ rtx l = *x;
+ rtx old_label = ((rtx_pair*) data)->r1;
+ rtx new_label = ((rtx_pair*) data)->r2;
+
+ if (l == NULL_RTX)
+ return 0;
+
+ if (GET_CODE (l) != LABEL_REF)
+ return 0;
+
+ if (XEXP (l, 0) != old_label)
+ return 0;
+
+ XEXP (l, 0) = new_label;
+ ++LABEL_NUSES (new_label);
+ --LABEL_NUSES (old_label);
+
+ return 0;
+}
+