diff options
author | Damien Miller <djm@cvs.openbsd.org> | 2008-09-06 12:17:55 +0000 |
---|---|---|
committer | Damien Miller <djm@cvs.openbsd.org> | 2008-09-06 12:17:55 +0000 |
commit | 96de7a4399a8c71cbb70d6252fa77acfd76b3f09 (patch) | |
tree | e6f6e4aad1952944ccd27e9eb47ea48b9a78dde7 /lib/libcrypto/bn/bn_sqrt.c | |
parent | ec7710fe8f10fb624fbc33c0bbad2474e0c26979 (diff) |
resolve conflicts
Diffstat (limited to 'lib/libcrypto/bn/bn_sqrt.c')
-rw-r--r-- | lib/libcrypto/bn/bn_sqrt.c | 76 |
1 files changed, 41 insertions, 35 deletions
diff --git a/lib/libcrypto/bn/bn_sqrt.c b/lib/libcrypto/bn/bn_sqrt.c index e2a1105dc83..6beaf9e5e5d 100644 --- a/lib/libcrypto/bn/bn_sqrt.c +++ b/lib/libcrypto/bn/bn_sqrt.c @@ -1,4 +1,4 @@ -/* crypto/bn/bn_mod.c */ +/* crypto/bn/bn_sqrt.c */ /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> * and Bodo Moeller for the OpenSSL project. */ /* ==================================================================== @@ -65,14 +65,12 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course * in Algebraic Computational Number Theory", algorithm 1.5.1). * 'p' must be prime! - * If 'a' is not a square, this is not necessarily detected by - * the algorithms; a bogus result must be expected in this case. */ { BIGNUM *ret = in; int err = 1; int r; - BIGNUM *b, *q, *t, *x, *y; + BIGNUM *A, *b, *q, *t, *x, *y; int e, i, j; if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) @@ -85,9 +83,11 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) goto end; if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { - BN_free(ret); + if (ret != in) + BN_free(ret); return NULL; } + bn_check_top(ret); return ret; } @@ -103,23 +103,16 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) goto end; if (!BN_set_word(ret, BN_is_one(a))) { - BN_free(ret); + if (ret != in) + BN_free(ret); return NULL; } + bn_check_top(ret); return ret; } -#if 0 /* if BN_mod_sqrt is used with correct input, this just wastes time */ - r = BN_kronecker(a, p, ctx); - if (r < -1) return NULL; - if (r == -1) - { - BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); - return(NULL); - } -#endif - BN_CTX_start(ctx); + A = BN_CTX_get(ctx); b = BN_CTX_get(ctx); q = BN_CTX_get(ctx); t = BN_CTX_get(ctx); @@ -131,6 +124,9 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) ret = BN_new(); if (ret == NULL) goto end; + /* A = a mod p */ + if (!BN_nnmod(A, a, p, ctx)) goto end; + /* now write |p| - 1 as 2^e*q where q is odd */ e = 1; while (!BN_is_bit_set(p, e)) @@ -149,9 +145,9 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) if (!BN_rshift(q, p, 2)) goto end; q->neg = 0; if (!BN_add_word(q, 1)) goto end; - if (!BN_mod_exp(ret, a, q, p, ctx)) goto end; + if (!BN_mod_exp(ret, A, q, p, ctx)) goto end; err = 0; - goto end; + goto vrfy; } if (e == 2) @@ -182,15 +178,8 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) * November 1992.) */ - /* make sure that a is reduced modulo p */ - if (a->neg || BN_ucmp(a, p) >= 0) - { - if (!BN_nnmod(x, a, p, ctx)) goto end; - a = x; /* use x as temporary variable */ - } - /* t := 2*a */ - if (!BN_mod_lshift1_quick(t, a, p)) goto end; + if (!BN_mod_lshift1_quick(t, A, p)) goto end; /* b := (2*a)^((|p|-5)/8) */ if (!BN_rshift(q, p, 3)) goto end; @@ -205,12 +194,12 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) if (!BN_sub_word(t, 1)) goto end; /* x = a*b*t */ - if (!BN_mod_mul(x, a, b, p, ctx)) goto end; + if (!BN_mod_mul(x, A, b, p, ctx)) goto end; if (!BN_mod_mul(x, x, t, p, ctx)) goto end; if (!BN_copy(ret, x)) goto end; err = 0; - goto end; + goto vrfy; } /* e > 2, so we really have to use the Tonelli/Shanks algorithm. @@ -297,11 +286,11 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) /* x := a^((q-1)/2) */ if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ { - if (!BN_nnmod(t, a, p, ctx)) goto end; + if (!BN_nnmod(t, A, p, ctx)) goto end; if (BN_is_zero(t)) { /* special case: a == 0 (mod p) */ - if (!BN_zero(ret)) goto end; + BN_zero(ret); err = 0; goto end; } @@ -310,11 +299,11 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) } else { - if (!BN_mod_exp(x, a, t, p, ctx)) goto end; + if (!BN_mod_exp(x, A, t, p, ctx)) goto end; if (BN_is_zero(x)) { /* special case: a == 0 (mod p) */ - if (!BN_zero(ret)) goto end; + BN_zero(ret); err = 0; goto end; } @@ -322,10 +311,10 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) /* b := a*x^2 (= a^q) */ if (!BN_mod_sqr(b, x, p, ctx)) goto end; - if (!BN_mod_mul(b, b, a, p, ctx)) goto end; + if (!BN_mod_mul(b, b, A, p, ctx)) goto end; /* x := a*x (= a^((q+1)/2)) */ - if (!BN_mod_mul(x, x, a, p, ctx)) goto end; + if (!BN_mod_mul(x, x, A, p, ctx)) goto end; while (1) { @@ -342,7 +331,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { if (!BN_copy(ret, x)) goto end; err = 0; - goto end; + goto vrfy; } @@ -373,6 +362,22 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) e = i; } + vrfy: + if (!err) + { + /* verify the result -- the input might have been not a square + * (test added in 0.9.8) */ + + if (!BN_mod_sqr(x, ret, p, ctx)) + err = 1; + + if (!err && 0 != BN_cmp(x, A)) + { + BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); + err = 1; + } + } + end: if (err) { @@ -383,5 +388,6 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) ret = NULL; } BN_CTX_end(ctx); + bn_check_top(ret); return ret; } |