diff options
author | Joel Sing <jsing@cvs.openbsd.org> | 2023-03-07 06:19:45 +0000 |
---|---|---|
committer | Joel Sing <jsing@cvs.openbsd.org> | 2023-03-07 06:19:45 +0000 |
commit | 271362e225687d1c3d0949b6b1e56cfc66f60a42 (patch) | |
tree | 7c620e7b1125dd9c6d8e437b7437e7b49e22630a /lib | |
parent | cf68f5cfb341204883e592700821bd40b4a9eee1 (diff) |
Implement bn_montgomery_multiply()
Provide a constant-time-style Montgomery multiplication implementation.
Use this in place of the assembly bn_mul_mont() on platforms that either
do not have an assembly implementation or have not compiled it in.
Also use this as the fallback version for bn_mul_mont(), rather than
falling back to a non-constant time implementation.
ok beck@ tb@
Diffstat (limited to 'lib')
-rw-r--r-- | lib/libcrypto/bn/bn_mont.c | 89 |
1 files changed, 86 insertions, 3 deletions
diff --git a/lib/libcrypto/bn/bn_mont.c b/lib/libcrypto/bn/bn_mont.c index d2ca4404f9f..e92ceae5f48 100644 --- a/lib/libcrypto/bn/bn_mont.c +++ b/lib/libcrypto/bn/bn_mont.c @@ -1,4 +1,4 @@ -/* $OpenBSD: bn_mont.c,v 1.49 2023/03/07 06:15:09 jsing Exp $ */ +/* $OpenBSD: bn_mont.c,v 1.50 2023/03/07 06:19:44 jsing Exp $ */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * @@ -336,12 +336,95 @@ bn_mod_mul_montgomery_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, return ret; } +/* + * bn_montgomery_multiply_words() computes r = aR * bR * R^-1 = abR for the + * given word arrays. The caller must ensure that rp, ap, bp and np are all + * n_len words in length, while tp must be n_len * 2 + 2 words in length. + */ +void +bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, + const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0, int n_len) +{ + BN_ULONG carry, mask; + int i; + + for (i = 0; i < n_len * 2 + 2; i++) + tp[i] = 0; + + for (i = 0; i < n_len; i++) { + carry = bn_mul_add_words(tp, ap, n_len, bp[i]); + bn_addw(tp[n_len], carry, &tp[n_len + 1], &tp[n_len]); + + carry = bn_mul_add_words(tp, np, n_len, tp[0] * n0); + bn_addw(tp[n_len], carry, &carry, &tp[n_len]); + bn_addw(tp[n_len + 1], carry, &carry, &tp[n_len + 1]); + + tp++; + } + + /* + * The output is now in the range of [0, 2N). Attempt to reduce once by + * subtracting the modulus. If the reduction was necessary then the + * result is already in r, otherwise copy the value prior to reduction + * from tp. + */ + mask = bn_ct_ne_zero(tp[n_len]) - bn_sub_words(rp, tp, np, n_len); + + for (i = 0; i < n_len; i++) { + *rp = (*rp & ~mask) | (*tp & mask); + rp++; + tp++; + } +} + +/* + * bn_montgomery_multiply() computes r = aR * bR * R^-1 = abR for the given + * BIGNUMs. The caller must ensure that the modulus is two or more words in + * length and that a and b have the same number of words as the modulus. + */ +int +bn_montgomery_multiply(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, + BN_MONT_CTX *mctx, BN_CTX *ctx) +{ + BIGNUM *t; + int ret = 0; + + BN_CTX_start(ctx); + + if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) + goto err; + if (!bn_wexpand(r, mctx->N.top)) + goto err; + + if ((t = BN_CTX_get(ctx)) == NULL) + goto err; + if (!bn_wexpand(t, mctx->N.top * 2 + 2)) + goto err; + + bn_montgomery_multiply_words(r->d, a->d, b->d, mctx->N.d, t->d, + mctx->n0[0], mctx->N.top); + + r->top = mctx->N.top; + bn_correct_top(r); + + BN_set_negative(r, a->neg ^ b->neg); + + ret = 1; + err: + BN_CTX_end(ctx); + + return ret; +} + #ifndef OPENSSL_BN_ASM_MONT int bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mctx, BN_CTX *ctx) { - return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); + if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) + return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); + + return bn_montgomery_multiply(r, a, b, mctx, ctx); } #else @@ -360,7 +443,7 @@ bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, * another implementation. */ if (!bn_mul_mont(r->d, a->d, b->d, mctx->N.d, mctx->n0, mctx->N.top)) - return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); + return bn_montgomery_multiply(r, a, b, mctx, ctx); r->top = mctx->N.top; bn_correct_top(r); |