summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorJoel Sing <jsing@cvs.openbsd.org>2023-03-07 06:19:45 +0000
committerJoel Sing <jsing@cvs.openbsd.org>2023-03-07 06:19:45 +0000
commit271362e225687d1c3d0949b6b1e56cfc66f60a42 (patch)
tree7c620e7b1125dd9c6d8e437b7437e7b49e22630a /lib
parentcf68f5cfb341204883e592700821bd40b4a9eee1 (diff)
Implement bn_montgomery_multiply()
Provide a constant-time-style Montgomery multiplication implementation. Use this in place of the assembly bn_mul_mont() on platforms that either do not have an assembly implementation or have not compiled it in. Also use this as the fallback version for bn_mul_mont(), rather than falling back to a non-constant time implementation. ok beck@ tb@
Diffstat (limited to 'lib')
-rw-r--r--lib/libcrypto/bn/bn_mont.c89
1 files changed, 86 insertions, 3 deletions
diff --git a/lib/libcrypto/bn/bn_mont.c b/lib/libcrypto/bn/bn_mont.c
index d2ca4404f9f..e92ceae5f48 100644
--- a/lib/libcrypto/bn/bn_mont.c
+++ b/lib/libcrypto/bn/bn_mont.c
@@ -1,4 +1,4 @@
-/* $OpenBSD: bn_mont.c,v 1.49 2023/03/07 06:15:09 jsing Exp $ */
+/* $OpenBSD: bn_mont.c,v 1.50 2023/03/07 06:19:44 jsing Exp $ */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
@@ -336,12 +336,95 @@ bn_mod_mul_montgomery_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
return ret;
}
+/*
+ * bn_montgomery_multiply_words() computes r = aR * bR * R^-1 = abR for the
+ * given word arrays. The caller must ensure that rp, ap, bp and np are all
+ * n_len words in length, while tp must be n_len * 2 + 2 words in length.
+ */
+void
+bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
+ const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0, int n_len)
+{
+ BN_ULONG carry, mask;
+ int i;
+
+ for (i = 0; i < n_len * 2 + 2; i++)
+ tp[i] = 0;
+
+ for (i = 0; i < n_len; i++) {
+ carry = bn_mul_add_words(tp, ap, n_len, bp[i]);
+ bn_addw(tp[n_len], carry, &tp[n_len + 1], &tp[n_len]);
+
+ carry = bn_mul_add_words(tp, np, n_len, tp[0] * n0);
+ bn_addw(tp[n_len], carry, &carry, &tp[n_len]);
+ bn_addw(tp[n_len + 1], carry, &carry, &tp[n_len + 1]);
+
+ tp++;
+ }
+
+ /*
+ * The output is now in the range of [0, 2N). Attempt to reduce once by
+ * subtracting the modulus. If the reduction was necessary then the
+ * result is already in r, otherwise copy the value prior to reduction
+ * from tp.
+ */
+ mask = bn_ct_ne_zero(tp[n_len]) - bn_sub_words(rp, tp, np, n_len);
+
+ for (i = 0; i < n_len; i++) {
+ *rp = (*rp & ~mask) | (*tp & mask);
+ rp++;
+ tp++;
+ }
+}
+
+/*
+ * bn_montgomery_multiply() computes r = aR * bR * R^-1 = abR for the given
+ * BIGNUMs. The caller must ensure that the modulus is two or more words in
+ * length and that a and b have the same number of words as the modulus.
+ */
+int
+bn_montgomery_multiply(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
+ BN_MONT_CTX *mctx, BN_CTX *ctx)
+{
+ BIGNUM *t;
+ int ret = 0;
+
+ BN_CTX_start(ctx);
+
+ if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top)
+ goto err;
+ if (!bn_wexpand(r, mctx->N.top))
+ goto err;
+
+ if ((t = BN_CTX_get(ctx)) == NULL)
+ goto err;
+ if (!bn_wexpand(t, mctx->N.top * 2 + 2))
+ goto err;
+
+ bn_montgomery_multiply_words(r->d, a->d, b->d, mctx->N.d, t->d,
+ mctx->n0[0], mctx->N.top);
+
+ r->top = mctx->N.top;
+ bn_correct_top(r);
+
+ BN_set_negative(r, a->neg ^ b->neg);
+
+ ret = 1;
+ err:
+ BN_CTX_end(ctx);
+
+ return ret;
+}
+
#ifndef OPENSSL_BN_ASM_MONT
int
bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_MONT_CTX *mctx, BN_CTX *ctx)
{
- return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx);
+ if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top)
+ return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx);
+
+ return bn_montgomery_multiply(r, a, b, mctx, ctx);
}
#else
@@ -360,7 +443,7 @@ bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
* another implementation.
*/
if (!bn_mul_mont(r->d, a->d, b->d, mctx->N.d, mctx->n0, mctx->N.top))
- return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx);
+ return bn_montgomery_multiply(r, a, b, mctx, ctx);
r->top = mctx->N.top;
bn_correct_top(r);