diff options
author | Theo Buehler <tb@cvs.openbsd.org> | 2023-04-25 19:53:31 +0000 |
---|---|---|
committer | Theo Buehler <tb@cvs.openbsd.org> | 2023-04-25 19:53:31 +0000 |
commit | 4dd90c342bb41771e2b0d90032a1dedd9c0423c2 (patch) | |
tree | 85c781c59ce315bbc96c84af6af9f95e8dab0a1b /lib | |
parent | 7e8456c302be01d1f0f5c364bd241371c88b77c4 (diff) |
GF2m bites the dust. It won't be missed.
Diffstat (limited to 'lib')
-rw-r--r-- | lib/libcrypto/Makefile | 6 | ||||
-rw-r--r-- | lib/libcrypto/bn/bn.h | 63 | ||||
-rw-r--r-- | lib/libcrypto/bn/bn_gf2m.c | 1268 | ||||
-rw-r--r-- | lib/libcrypto/ec/ec.h | 87 | ||||
-rw-r--r-- | lib/libcrypto/ec/ec2_mult.c | 449 | ||||
-rw-r--r-- | lib/libcrypto/ec/ec2_oct.c | 402 | ||||
-rw-r--r-- | lib/libcrypto/ec/ec2_smpl.c | 723 | ||||
-rw-r--r-- | lib/libcrypto/ec/ec_asn1.c | 194 | ||||
-rw-r--r-- | lib/libcrypto/ec/ec_curve.c | 1416 | ||||
-rw-r--r-- | lib/libcrypto/ec/ec_cvt.c | 11 | ||||
-rw-r--r-- | lib/libcrypto/ec/ec_lib.c | 36 | ||||
-rw-r--r-- | lib/libcrypto/ec/ec_oct.c | 11 |
12 files changed, 11 insertions, 4655 deletions
diff --git a/lib/libcrypto/Makefile b/lib/libcrypto/Makefile index 14a22878430..01cf96801d0 100644 --- a/lib/libcrypto/Makefile +++ b/lib/libcrypto/Makefile @@ -1,4 +1,4 @@ -# $OpenBSD: Makefile,v 1.115 2023/04/25 19:01:01 tb Exp $ +# $OpenBSD: Makefile,v 1.116 2023/04/25 19:53:30 tb Exp $ LIB= crypto LIBREBUILD=y @@ -187,7 +187,6 @@ SRCS+= bn_div.c SRCS+= bn_err.c SRCS+= bn_exp.c SRCS+= bn_gcd.c -#SRCS+= bn_gf2m.c SRCS+= bn_isqrt.c SRCS+= bn_kron.c SRCS+= bn_lib.c @@ -333,9 +332,6 @@ SRCS+= dso_null.c SRCS+= dso_openssl.c # ec/ -#SRCS+= ec2_mult.c -#SRCS+= ec2_oct.c -#SRCS+= ec2_smpl.c SRCS+= ec_ameth.c SRCS+= ec_asn1.c SRCS+= ec_check.c diff --git a/lib/libcrypto/bn/bn.h b/lib/libcrypto/bn/bn.h index 52e3d078ab4..b15e6311f94 100644 --- a/lib/libcrypto/bn/bn.h +++ b/lib/libcrypto/bn/bn.h @@ -1,4 +1,4 @@ -/* $OpenBSD: bn.h,v 1.68 2023/04/25 17:42:07 tb Exp $ */ +/* $OpenBSD: bn.h,v 1.69 2023/04/25 19:53:30 tb Exp $ */ /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) * All rights reserved. * @@ -505,67 +505,6 @@ void BN_set_params(int mul, int high, int low, int mont); int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */ #endif -#ifndef OPENSSL_NO_EC2M - -/* Functions for arithmetic over binary polynomials represented by BIGNUMs. - * - * The BIGNUM::neg property of BIGNUMs representing binary polynomials is - * ignored. - * - * Note that input arguments are not const so that their bit arrays can - * be expanded to the appropriate size if needed. - */ - -int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); /*r = a + b*/ -#define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) -int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); /*r=a mod p*/ -int -BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, - const BIGNUM *p, BN_CTX *ctx); /* r = (a * b) mod p */ -int -BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, - BN_CTX *ctx); /* r = (a * a) mod p */ -int -BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, - BN_CTX *ctx); /* r = (1 / b) mod p */ -int -BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, - const BIGNUM *p, BN_CTX *ctx); /* r = (a / b) mod p */ -int -BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, - const BIGNUM *p, BN_CTX *ctx); /* r = (a ^ b) mod p */ -int -BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, - BN_CTX *ctx); /* r = sqrt(a) mod p */ -int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, - BN_CTX *ctx); /* r^2 + r = a mod p */ -#define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) -/* Some functions allow for representation of the irreducible polynomials - * as an unsigned int[], say p. The irreducible f(t) is then of the form: - * t^p[0] + t^p[1] + ... + t^p[k] - * where m = p[0] > p[1] > ... > p[k] = 0. - */ -int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); -/* r = a mod p */ -int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, - const int p[], BN_CTX *ctx); /* r = (a * b) mod p */ -int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], - BN_CTX *ctx); /* r = (a * a) mod p */ -int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], - BN_CTX *ctx); /* r = (1 / b) mod p */ -int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, - const int p[], BN_CTX *ctx); /* r = (a / b) mod p */ -int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, - const int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */ -int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, - const int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */ -int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, - const int p[], BN_CTX *ctx); /* r^2 + r = a mod p */ -int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); -int BN_GF2m_arr2poly(const int p[], BIGNUM *a); - -#endif - /* Primes from RFC 2409 */ BIGNUM *get_rfc2409_prime_768(BIGNUM *bn); BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn); diff --git a/lib/libcrypto/bn/bn_gf2m.c b/lib/libcrypto/bn/bn_gf2m.c deleted file mode 100644 index 62ac2a5151f..00000000000 --- a/lib/libcrypto/bn/bn_gf2m.c +++ /dev/null @@ -1,1268 +0,0 @@ -/* $OpenBSD: bn_gf2m.c,v 1.32 2023/03/27 10:25:02 tb Exp $ */ -/* ==================================================================== - * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. - * - * The Elliptic Curve Public-Key Crypto Library (ECC Code) included - * herein is developed by SUN MICROSYSTEMS, INC., and is contributed - * to the OpenSSL project. - * - * The ECC Code is licensed pursuant to the OpenSSL open source - * license provided below. - * - * In addition, Sun covenants to all licensees who provide a reciprocal - * covenant with respect to their own patents if any, not to sue under - * current and future patent claims necessarily infringed by the making, - * using, practicing, selling, offering for sale and/or otherwise - * disposing of the ECC Code as delivered hereunder (or portions thereof), - * provided that such covenant shall not apply: - * 1) for code that a licensee deletes from the ECC Code; - * 2) separates from the ECC Code; or - * 3) for infringements caused by: - * i) the modification of the ECC Code or - * ii) the combination of the ECC Code with other software or - * devices where such combination causes the infringement. - * - * The software is originally written by Sheueling Chang Shantz and - * Douglas Stebila of Sun Microsystems Laboratories. - * - */ - -/* NOTE: This file is licensed pursuant to the OpenSSL license below - * and may be modified; but after modifications, the above covenant - * may no longer apply! In such cases, the corresponding paragraph - * ["In addition, Sun covenants ... causes the infringement."] and - * this note can be edited out; but please keep the Sun copyright - * notice and attribution. */ - -/* ==================================================================== - * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * 3. All advertising materials mentioning features or use of this - * software must display the following acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" - * - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to - * endorse or promote products derived from this software without - * prior written permission. For written permission, please contact - * openssl-core@openssl.org. - * - * 5. Products derived from this software may not be called "OpenSSL" - * nor may "OpenSSL" appear in their names without prior written - * permission of the OpenSSL Project. - * - * 6. Redistributions of any form whatsoever must retain the following - * acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit (http://www.openssl.org/)" - * - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED - * OF THE POSSIBILITY OF SUCH DAMAGE. - * ==================================================================== - * - * This product includes cryptographic software written by Eric Young - * (eay@cryptsoft.com). This product includes software written by Tim - * Hudson (tjh@cryptsoft.com). - * - */ - -#include <limits.h> -#include <stdio.h> - -#include <openssl/opensslconf.h> - -#include <openssl/err.h> - -#include "bn_local.h" - -#ifndef OPENSSL_NO_EC2M - -/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ -#define MAX_ITERATIONS 50 - -static const BN_ULONG SQR_tb[16] = - { 0, 1, 4, 5, 16, 17, 20, 21, -64, 65, 68, 69, 80, 81, 84, 85 }; -/* Platform-specific macros to accelerate squaring. */ -#ifdef _LP64 -#define SQR1(w) \ - SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ - SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ - SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ - SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] -#define SQR0(w) \ - SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ - SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ - SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ - SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] -#else -#define SQR1(w) \ - SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ - SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] -#define SQR0(w) \ - SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ - SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] -#endif - -#if !defined(OPENSSL_BN_ASM_GF2m) -/* Product of two polynomials a, b each with degree < BN_BITS2 - 1, - * result is a polynomial r with degree < 2 * BN_BITS - 1 - * The caller MUST ensure that the variables have the right amount - * of space allocated. - */ -static void -bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) -{ -#ifndef _LP64 - BN_ULONG h, l, s; - BN_ULONG tab[8], top2b = a >> 30; - BN_ULONG a1, a2, a4; - - a1 = a & (0x3FFFFFFF); - a2 = a1 << 1; - a4 = a2 << 1; - - tab[0] = 0; - tab[1] = a1; - tab[2] = a2; - tab[3] = a1 ^ a2; - tab[4] = a4; - tab[5] = a1 ^ a4; - tab[6] = a2 ^ a4; - tab[7] = a1 ^ a2 ^ a4; - - s = tab[b & 0x7]; - l = s; - s = tab[b >> 3 & 0x7]; - l ^= s << 3; - h = s >> 29; - s = tab[b >> 6 & 0x7]; - l ^= s << 6; - h ^= s >> 26; - s = tab[b >> 9 & 0x7]; - l ^= s << 9; - h ^= s >> 23; - s = tab[b >> 12 & 0x7]; - l ^= s << 12; - h ^= s >> 20; - s = tab[b >> 15 & 0x7]; - l ^= s << 15; - h ^= s >> 17; - s = tab[b >> 18 & 0x7]; - l ^= s << 18; - h ^= s >> 14; - s = tab[b >> 21 & 0x7]; - l ^= s << 21; - h ^= s >> 11; - s = tab[b >> 24 & 0x7]; - l ^= s << 24; - h ^= s >> 8; - s = tab[b >> 27 & 0x7]; - l ^= s << 27; - h ^= s >> 5; - s = tab[b >> 30]; - l ^= s << 30; - h ^= s >> 2; - - /* compensate for the top two bits of a */ - if (top2b & 01) { - l ^= b << 30; - h ^= b >> 2; - } - if (top2b & 02) { - l ^= b << 31; - h ^= b >> 1; - } - - *r1 = h; - *r0 = l; -#else - BN_ULONG h, l, s; - BN_ULONG tab[16], top3b = a >> 61; - BN_ULONG a1, a2, a4, a8; - - a1 = a & (0x1FFFFFFFFFFFFFFFULL); - a2 = a1 << 1; - a4 = a2 << 1; - a8 = a4 << 1; - - tab[0] = 0; - tab[1] = a1; - tab[2] = a2; - tab[3] = a1 ^ a2; - tab[4] = a4; - tab[5] = a1 ^ a4; - tab[6] = a2 ^ a4; - tab[7] = a1 ^ a2 ^ a4; - tab[8] = a8; - tab[9] = a1 ^ a8; - tab[10] = a2 ^ a8; - tab[11] = a1 ^ a2 ^ a8; - tab[12] = a4 ^ a8; - tab[13] = a1 ^ a4 ^ a8; - tab[14] = a2 ^ a4 ^ a8; - tab[15] = a1 ^ a2 ^ a4 ^ a8; - - s = tab[b & 0xF]; - l = s; - s = tab[b >> 4 & 0xF]; - l ^= s << 4; - h = s >> 60; - s = tab[b >> 8 & 0xF]; - l ^= s << 8; - h ^= s >> 56; - s = tab[b >> 12 & 0xF]; - l ^= s << 12; - h ^= s >> 52; - s = tab[b >> 16 & 0xF]; - l ^= s << 16; - h ^= s >> 48; - s = tab[b >> 20 & 0xF]; - l ^= s << 20; - h ^= s >> 44; - s = tab[b >> 24 & 0xF]; - l ^= s << 24; - h ^= s >> 40; - s = tab[b >> 28 & 0xF]; - l ^= s << 28; - h ^= s >> 36; - s = tab[b >> 32 & 0xF]; - l ^= s << 32; - h ^= s >> 32; - s = tab[b >> 36 & 0xF]; - l ^= s << 36; - h ^= s >> 28; - s = tab[b >> 40 & 0xF]; - l ^= s << 40; - h ^= s >> 24; - s = tab[b >> 44 & 0xF]; - l ^= s << 44; - h ^= s >> 20; - s = tab[b >> 48 & 0xF]; - l ^= s << 48; - h ^= s >> 16; - s = tab[b >> 52 & 0xF]; - l ^= s << 52; - h ^= s >> 12; - s = tab[b >> 56 & 0xF]; - l ^= s << 56; - h ^= s >> 8; - s = tab[b >> 60]; - l ^= s << 60; - h ^= s >> 4; - - /* compensate for the top three bits of a */ - if (top3b & 01) { - l ^= b << 61; - h ^= b >> 3; - } - if (top3b & 02) { - l ^= b << 62; - h ^= b >> 2; - } - if (top3b & 04) { - l ^= b << 63; - h ^= b >> 1; - } - - *r1 = h; - *r0 = l; -#endif -} - -/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, - * result is a polynomial r with degree < 4 * BN_BITS2 - 1 - * The caller MUST ensure that the variables have the right amount - * of space allocated. - */ -static void -bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, - const BN_ULONG b1, const BN_ULONG b0) -{ - BN_ULONG m1, m0; - - /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ - bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); - bn_GF2m_mul_1x1(r + 1, r, a0, b0); - bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); - /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ - r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ - r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ -} -#else -void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, - BN_ULONG b0); -#endif - -/* Add polynomials a and b and store result in r; r could be a or b, a and b - * could be equal; r is the bitwise XOR of a and b. - */ -int -BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) -{ - int i; - const BIGNUM *at, *bt; - - - if (a->top < b->top) { - at = b; - bt = a; - } else { - at = a; - bt = b; - } - - if (!bn_wexpand(r, at->top)) - return 0; - - for (i = 0; i < bt->top; i++) { - r->d[i] = at->d[i] ^ bt->d[i]; - } - for (; i < at->top; i++) { - r->d[i] = at->d[i]; - } - - r->top = at->top; - bn_correct_top(r); - - return 1; -} - - -/* Some functions allow for representation of the irreducible polynomials - * as an int[], say p. The irreducible f(t) is then of the form: - * t^p[0] + t^p[1] + ... + t^p[k] - * where m = p[0] > p[1] > ... > p[k] = 0. - */ - - -/* Performs modular reduction of a and store result in r. r could be a. */ -int -BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) -{ - int j, k; - int n, dN, d0, d1; - BN_ULONG zz, *z; - - - if (!p[0]) { - /* reduction mod 1 => return 0 */ - BN_zero(r); - return 1; - } - - /* Since the algorithm does reduction in the r value, if a != r, copy - * the contents of a into r so we can do reduction in r. - */ - if (a != r) { - if (!bn_wexpand(r, a->top)) - return 0; - for (j = 0; j < a->top; j++) { - r->d[j] = a->d[j]; - } - r->top = a->top; - } - z = r->d; - - /* start reduction */ - dN = p[0] / BN_BITS2; - for (j = r->top - 1; j > dN; ) { - zz = z[j]; - if (z[j] == 0) { - j--; - continue; - } - z[j] = 0; - - for (k = 1; p[k] != 0; k++) { - /* reducing component t^p[k] */ - n = p[0] - p[k]; - d0 = n % BN_BITS2; - d1 = BN_BITS2 - d0; - n /= BN_BITS2; - z[j - n] ^= (zz >> d0); - if (d0) - z[j - n - 1] ^= (zz << d1); - } - - /* reducing component t^0 */ - n = dN; - d0 = p[0] % BN_BITS2; - d1 = BN_BITS2 - d0; - z[j - n] ^= (zz >> d0); - if (d0) - z[j - n - 1] ^= (zz << d1); - } - - /* final round of reduction */ - while (j == dN) { - - d0 = p[0] % BN_BITS2; - zz = z[dN] >> d0; - if (zz == 0) - break; - d1 = BN_BITS2 - d0; - - /* clear up the top d1 bits */ - if (d0) - z[dN] = (z[dN] << d1) >> d1; - else - z[dN] = 0; - z[0] ^= zz; /* reduction t^0 component */ - - for (k = 1; p[k] != 0; k++) { - BN_ULONG tmp_ulong; - - /* reducing component t^p[k]*/ - n = p[k] / BN_BITS2; - d0 = p[k] % BN_BITS2; - d1 = BN_BITS2 - d0; - z[n] ^= (zz << d0); - if (d0 && (tmp_ulong = zz >> d1)) - z[n + 1] ^= tmp_ulong; - } - - - } - - bn_correct_top(r); - return 1; -} - -/* Performs modular reduction of a by p and store result in r. r could be a. - * - * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_arr function. - */ -int -BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) -{ - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr = NULL; - - if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) - goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) { - BNerror(BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_arr(r, a, arr); - - err: - free(arr); - return ret; -} - - -/* Compute the product of two polynomials a and b, reduce modulo p, and store - * the result in r. r could be a or b; a could be b. - */ -int -BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], - BN_CTX *ctx) -{ - int zlen, i, j, k, ret = 0; - BIGNUM *s; - BN_ULONG x1, x0, y1, y0, zz[4]; - - - if (a == b) { - return BN_GF2m_mod_sqr_arr(r, a, p, ctx); - } - - BN_CTX_start(ctx); - if ((s = BN_CTX_get(ctx)) == NULL) - goto err; - - zlen = a->top + b->top + 4; - if (!bn_wexpand(s, zlen)) - goto err; - s->top = zlen; - - for (i = 0; i < zlen; i++) - s->d[i] = 0; - - for (j = 0; j < b->top; j += 2) { - y0 = b->d[j]; - y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; - for (i = 0; i < a->top; i += 2) { - x0 = a->d[i]; - x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; - bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); - for (k = 0; k < 4; k++) - s->d[i + j + k] ^= zz[k]; - } - } - - bn_correct_top(s); - if (BN_GF2m_mod_arr(r, s, p)) - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; -} - -/* Compute the product of two polynomials a and b, reduce modulo p, and store - * the result in r. r could be a or b; a could equal b. - * - * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_mul_arr function. - */ -int -BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, - BN_CTX *ctx) -{ - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr = NULL; - - if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) - goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) { - BNerror(BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); - -err: - free(arr); - return ret; -} - - -/* Square a, reduce the result mod p, and store it in a. r could be a. */ -int -BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) -{ - int i, ret = 0; - BIGNUM *s; - - BN_CTX_start(ctx); - if ((s = BN_CTX_get(ctx)) == NULL) - goto err; - if (!bn_wexpand(s, 2 * a->top)) - goto err; - - for (i = a->top - 1; i >= 0; i--) { - s->d[2 * i + 1] = SQR1(a->d[i]); - s->d[2 * i] = SQR0(a->d[i]); - } - - s->top = 2 * a->top; - bn_correct_top(s); - if (!BN_GF2m_mod_arr(r, s, p)) - goto err; - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; -} - -/* Square a, reduce the result mod p, and store it in a. r could be a. - * - * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_sqr_arr function. - */ -int -BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) -{ - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr = NULL; - - if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) - goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) { - BNerror(BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); - -err: - free(arr); - return ret; -} - - -/* Invert a, reduce modulo p, and store the result in r. r could be a. - * Uses Modified Almost Inverse Algorithm (Algorithm 10) from - * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation - * of Elliptic Curve Cryptography Over Binary Fields". - */ -int -BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) -{ - BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; - int ret = 0; - - - BN_CTX_start(ctx); - - if ((b = BN_CTX_get(ctx)) == NULL) - goto err; - if ((c = BN_CTX_get(ctx)) == NULL) - goto err; - if ((u = BN_CTX_get(ctx)) == NULL) - goto err; - if ((v = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_GF2m_mod(u, a, p)) - goto err; - if (BN_is_zero(u)) - goto err; - - if (!bn_copy(v, p)) - goto err; -#if 0 - if (!BN_one(b)) - goto err; - - while (1) { - while (!BN_is_odd(u)) { - if (BN_is_zero(u)) - goto err; - if (!BN_rshift1(u, u)) - goto err; - if (BN_is_odd(b)) { - if (!BN_GF2m_add(b, b, p)) - goto err; - } - if (!BN_rshift1(b, b)) - goto err; - } - - if (BN_abs_is_word(u, 1)) - break; - - if (BN_num_bits(u) < BN_num_bits(v)) { - tmp = u; - u = v; - v = tmp; - tmp = b; - b = c; - c = tmp; - } - - if (!BN_GF2m_add(u, u, v)) - goto err; - if (!BN_GF2m_add(b, b, c)) - goto err; - } -#else - { - int i, ubits = BN_num_bits(u), - vbits = BN_num_bits(v), /* v is copy of p */ - top = p->top; - BN_ULONG *udp, *bdp, *vdp, *cdp; - - if (!bn_wexpand(u, top)) - goto err; - udp = u->d; - for (i = u->top; i < top; i++) - udp[i] = 0; - u->top = top; - if (!bn_wexpand(b, top)) - goto err; - bdp = b->d; - bdp[0] = 1; - for (i = 1; i < top; i++) - bdp[i] = 0; - b->top = top; - if (!bn_wexpand(c, top)) - goto err; - cdp = c->d; - for (i = 0; i < top; i++) - cdp[i] = 0; - c->top = top; - vdp = v->d; /* It pays off to "cache" *->d pointers, because - * it allows optimizer to be more aggressive. - * But we don't have to "cache" p->d, because *p - * is declared 'const'... */ - while (1) { - while (ubits && !(udp[0]&1)) { - BN_ULONG u0, u1, b0, b1, mask; - - u0 = udp[0]; - b0 = bdp[0]; - mask = (BN_ULONG)0 - (b0 & 1); - b0 ^= p->d[0] & mask; - for (i = 0; i < top - 1; i++) { - u1 = udp[i + 1]; - udp[i] = ((u0 >> 1) | - (u1 << (BN_BITS2 - 1))) & BN_MASK2; - u0 = u1; - b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); - bdp[i] = ((b0 >> 1) | - (b1 << (BN_BITS2 - 1))) & BN_MASK2; - b0 = b1; - } - udp[i] = u0 >> 1; - bdp[i] = b0 >> 1; - ubits--; - } - - if (ubits <= BN_BITS2) { - /* See if poly was reducible. */ - if (udp[0] == 0) - goto err; - if (udp[0] == 1) - break; - } - - if (ubits < vbits) { - i = ubits; - ubits = vbits; - vbits = i; - tmp = u; - u = v; - v = tmp; - tmp = b; - b = c; - c = tmp; - udp = vdp; - vdp = v->d; - bdp = cdp; - cdp = c->d; - } - for (i = 0; i < top; i++) { - udp[i] ^= vdp[i]; - bdp[i] ^= cdp[i]; - } - if (ubits == vbits) { - BN_ULONG ul; - int utop = (ubits - 1) / BN_BITS2; - - while ((ul = udp[utop]) == 0 && utop) - utop--; - ubits = utop*BN_BITS2 + BN_num_bits_word(ul); - } - } - bn_correct_top(b); - } -#endif - - if (!bn_copy(r, b)) - goto err; - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; -} - -/* Invert xx, reduce modulo p, and store the result in r. r could be xx. - * - * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_inv function. - */ -int -BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) -{ - BIGNUM *field; - int ret = 0; - - BN_CTX_start(ctx); - if ((field = BN_CTX_get(ctx)) == NULL) - goto err; - if (!BN_GF2m_arr2poly(p, field)) - goto err; - - ret = BN_GF2m_mod_inv(r, xx, field, ctx); - -err: - BN_CTX_end(ctx); - return ret; -} - - -#ifndef OPENSSL_SUN_GF2M_DIV -/* Divide y by x, reduce modulo p, and store the result in r. r could be x - * or y, x could equal y. - */ -int -BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, - BN_CTX *ctx) -{ - BIGNUM *xinv = NULL; - int ret = 0; - - - BN_CTX_start(ctx); - if ((xinv = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) - goto err; - if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) - goto err; - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; -} -#else -/* Divide y by x, reduce modulo p, and store the result in r. r could be x - * or y, x could equal y. - * Uses algorithm Modular_Division_GF(2^m) from - * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to - * the Great Divide". - */ -int -BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, - BN_CTX *ctx) -{ - BIGNUM *a, *b, *u, *v; - int ret = 0; - - - BN_CTX_start(ctx); - - if ((a = BN_CTX_get(ctx)) == NULL) - goto err; - if ((b = BN_CTX_get(ctx)) == NULL) - goto err; - if ((u = BN_CTX_get(ctx)) == NULL) - goto err; - if ((v = BN_CTX_get(ctx)) == NULL) - goto err; - - /* reduce x and y mod p */ - if (!BN_GF2m_mod(u, y, p)) - goto err; - if (!BN_GF2m_mod(a, x, p)) - goto err; - if (!bn_copy(b, p)) - goto err; - - while (!BN_is_odd(a)) { - if (!BN_rshift1(a, a)) - goto err; - if (BN_is_odd(u)) - if (!BN_GF2m_add(u, u, p)) - goto err; - if (!BN_rshift1(u, u)) - goto err; - } - - do { - if (BN_GF2m_cmp(b, a) > 0) { - if (!BN_GF2m_add(b, b, a)) - goto err; - if (!BN_GF2m_add(v, v, u)) - goto err; - do { - if (!BN_rshift1(b, b)) - goto err; - if (BN_is_odd(v)) - if (!BN_GF2m_add(v, v, p)) - goto err; - if (!BN_rshift1(v, v)) - goto err; - } while (!BN_is_odd(b)); - } else if (BN_abs_is_word(a, 1)) - break; - else { - if (!BN_GF2m_add(a, a, b)) - goto err; - if (!BN_GF2m_add(u, u, v)) - goto err; - do { - if (!BN_rshift1(a, a)) - goto err; - if (BN_is_odd(u)) - if (!BN_GF2m_add(u, u, p)) - goto err; - if (!BN_rshift1(u, u)) - goto err; - } while (!BN_is_odd(a)); - } - } while (1); - - if (!bn_copy(r, u)) - goto err; - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; -} -#endif - -/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx - * or yy, xx could equal yy. - * - * This function calls down to the BN_GF2m_mod_div implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_div function. - */ -int -BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, - const int p[], BN_CTX *ctx) -{ - BIGNUM *field; - int ret = 0; - - - BN_CTX_start(ctx); - if ((field = BN_CTX_get(ctx)) == NULL) - goto err; - if (!BN_GF2m_arr2poly(p, field)) - goto err; - - ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); - -err: - BN_CTX_end(ctx); - return ret; -} - - -/* Compute the bth power of a, reduce modulo p, and store - * the result in r. r could be a. - * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. - */ -int -BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], - BN_CTX *ctx) -{ - int ret = 0, i, n; - BIGNUM *u; - - - if (BN_is_zero(b)) - return BN_one(r); - - if (BN_abs_is_word(b, 1)) - return bn_copy(r, a); - - BN_CTX_start(ctx); - if ((u = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_GF2m_mod_arr(u, a, p)) - goto err; - - n = BN_num_bits(b) - 1; - for (i = n - 1; i >= 0; i--) { - if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) - goto err; - if (BN_is_bit_set(b, i)) { - if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) - goto err; - } - } - if (!bn_copy(r, u)) - goto err; - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; -} - -/* Compute the bth power of a, reduce modulo p, and store - * the result in r. r could be a. - * - * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_exp_arr function. - */ -int -BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, - BN_CTX *ctx) -{ - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr = NULL; - - if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) - goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) { - BNerror(BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); - -err: - free(arr); - return ret; -} - -/* Compute the square root of a, reduce modulo p, and store - * the result in r. r could be a. - * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. - */ -int -BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) -{ - int ret = 0; - BIGNUM *u; - - - if (!p[0]) { - /* reduction mod 1 => return 0 */ - BN_zero(r); - return 1; - } - - BN_CTX_start(ctx); - if ((u = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_set_bit(u, p[0] - 1)) - goto err; - ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); - -err: - BN_CTX_end(ctx); - return ret; -} - -/* Compute the square root of a, reduce modulo p, and store - * the result in r. r could be a. - * - * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_sqrt_arr function. - */ -int -BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) -{ - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr = NULL; - if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) - goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) { - BNerror(BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); - -err: - free(arr); - return ret; -} - -/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. - * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. - */ -int -BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], - BN_CTX *ctx) -{ - int ret = 0, count = 0, j; - BIGNUM *a, *z, *rho, *w, *w2, *tmp; - - - if (!p[0]) { - /* reduction mod 1 => return 0 */ - BN_zero(r); - return 1; - } - - BN_CTX_start(ctx); - if ((a = BN_CTX_get(ctx)) == NULL) - goto err; - if ((z = BN_CTX_get(ctx)) == NULL) - goto err; - if ((w = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_GF2m_mod_arr(a, a_, p)) - goto err; - - if (BN_is_zero(a)) { - BN_zero(r); - ret = 1; - goto err; - } - - if (p[0] & 0x1) /* m is odd */ - { - /* compute half-trace of a */ - if (!bn_copy(z, a)) - goto err; - for (j = 1; j <= (p[0] - 1) / 2; j++) { - if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) - goto err; - if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) - goto err; - if (!BN_GF2m_add(z, z, a)) - goto err; - } - - } - else /* m is even */ - { - if ((rho = BN_CTX_get(ctx)) == NULL) - goto err; - if ((w2 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((tmp = BN_CTX_get(ctx)) == NULL) - goto err; - do { - if (!BN_rand(rho, p[0], 0, 0)) - goto err; - if (!BN_GF2m_mod_arr(rho, rho, p)) - goto err; - BN_zero(z); - if (!bn_copy(w, rho)) - goto err; - for (j = 1; j <= p[0] - 1; j++) { - if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) - goto err; - if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) - goto err; - if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) - goto err; - if (!BN_GF2m_add(z, z, tmp)) - goto err; - if (!BN_GF2m_add(w, w2, rho)) - goto err; - } - count++; - } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); - if (BN_is_zero(w)) { - BNerror(BN_R_TOO_MANY_ITERATIONS); - goto err; - } - } - - if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) - goto err; - if (!BN_GF2m_add(w, z, w)) - goto err; - if (BN_GF2m_cmp(w, a)) { - BNerror(BN_R_NO_SOLUTION); - goto err; - } - - if (!bn_copy(r, z)) - goto err; - - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; -} - -/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. - * - * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_solve_quad_arr function. - */ -int -BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) -{ - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr = NULL; - - if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) - goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) { - BNerror(BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); - -err: - free(arr); - return ret; -} - -/* Convert the bit-string representation of a polynomial - * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding - * to the bits with non-zero coefficient. Array is terminated with -1. - * Up to max elements of the array will be filled. Return value is total - * number of array elements that would be filled if array was large enough. - */ -int -BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) -{ - int i, j, k = 0; - BN_ULONG mask; - - if (BN_is_zero(a)) - return 0; - - for (i = a->top - 1; i >= 0; i--) { - if (!a->d[i]) - /* skip word if a->d[i] == 0 */ - continue; - mask = BN_TBIT; - for (j = BN_BITS2 - 1; j >= 0; j--) { - if (a->d[i] & mask) { - if (k < max) - p[k] = BN_BITS2 * i + j; - k++; - } - mask >>= 1; - } - } - - if (k < max) - p[k] = -1; - k++; - - return k; -} - -/* Convert the coefficient array representation of a polynomial to a - * bit-string. The array must be terminated by -1. - */ -int -BN_GF2m_arr2poly(const int p[], BIGNUM *a) -{ - int i; - - BN_zero(a); - for (i = 0; p[i] != -1; i++) { - if (BN_set_bit(a, p[i]) == 0) - return 0; - } - - return 1; -} - -#endif diff --git a/lib/libcrypto/ec/ec.h b/lib/libcrypto/ec/ec.h index a0dbbe6ce7e..1afbe0ad16c 100644 --- a/lib/libcrypto/ec/ec.h +++ b/lib/libcrypto/ec/ec.h @@ -1,4 +1,4 @@ -/* $OpenBSD: ec.h,v 1.37 2023/04/25 19:28:22 tb Exp $ */ +/* $OpenBSD: ec.h,v 1.38 2023/04/25 19:53:30 tb Exp $ */ /* * Originally written by Bodo Moeller for the OpenSSL project. */ @@ -143,18 +143,6 @@ const EC_METHOD *EC_GFp_simple_method(void); */ const EC_METHOD *EC_GFp_mont_method(void); -#ifndef OPENSSL_NO_EC2M -/********************************************************************/ -/* EC_METHOD for curves over GF(2^m) */ -/********************************************************************/ - -/** Returns the basic GF2m ec method - * \return EC_METHOD object - */ -const EC_METHOD *EC_GF2m_simple_method(void); - -#endif - /********************************************************************/ /* EC_GROUP functions */ @@ -284,28 +272,6 @@ int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, co * \return 1 on success and 0 if an error occurred */ int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); - -#ifndef OPENSSL_NO_EC2M -/** Sets the parameter of a ec over GF2m defined by y^2 + x*y = x^3 + a*x^2 + b - * \param group EC_GROUP object - * \param p BIGNUM with the polynomial defining the underlying field - * \param a BIGNUM with parameter a of the equation - * \param b BIGNUM with parameter b of the equation - * \param ctx BN_CTX object (optional) - * \return 1 on success and 0 if an error occurred - */ -int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); - -/** Gets the parameter of the ec over GF2m defined by y^2 + x*y = x^3 + a*x^2 + b - * \param group EC_GROUP object - * \param p BIGNUM for the polynomial defining the underlying field - * \param a BIGNUM for parameter a of the equation - * \param b BIGNUM for parameter b of the equation - * \param ctx BN_CTX object (optional) - * \return 1 on success and 0 if an error occurred - */ -int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); -#endif #endif /** Returns the number of bits needed to represent a field element @@ -348,17 +314,6 @@ int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx); * \return newly created EC_GROUP object with the specified parameters */ EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); -#ifndef OPENSSL_NO_EC2M -/** Creates a new EC_GROUP object with the specified parameters defined - * over GF2m (defined by the equation y^2 + x*y = x^3 + a*x^2 + b) - * \param p BIGNUM with the polynomial defining the underlying field - * \param a BIGNUM with the parameter a of the equation - * \param b BIGNUM with the parameter b of the equation - * \param ctx BN_CTX object (optional) - * \return newly created EC_GROUP object with the specified parameters - */ -EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); -#endif /** Creates a EC_GROUP object with a curve specified by a NID * \param nid NID of the OID of the curve name * \return newly created EC_GROUP object with specified curve or NULL @@ -507,41 +462,6 @@ int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, */ int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *p, const BIGNUM *x, int y_bit, BN_CTX *ctx); - -#ifndef OPENSSL_NO_EC2M -/** Sets the affine coordinates of a EC_POINT over GF2m - * \param group underlying EC_GROUP object - * \param p EC_POINT object - * \param x BIGNUM with the x-coordinate - * \param y BIGNUM with the y-coordinate - * \param ctx BN_CTX object (optional) - * \return 1 on success and 0 if an error occurred - */ -int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *p, - const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx); - -/** Gets the affine coordinates of a EC_POINT over GF2m - * \param group underlying EC_GROUP object - * \param p EC_POINT object - * \param x BIGNUM for the x-coordinate - * \param y BIGNUM for the y-coordinate - * \param ctx BN_CTX object (optional) - * \return 1 on success and 0 if an error occurred - */ -int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, - const EC_POINT *p, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); - -/** Sets the x9.62 compressed coordinates of a EC_POINT over GF2m - * \param group underlying EC_GROUP object - * \param p EC_POINT object - * \param x BIGNUM with x-coordinate - * \param y_bit integer with the y-Bit (either 0 or 1) - * \param ctx BN_CTX object (optional) - * \return 1 on success and 0 if an error occurred - */ -int EC_POINT_set_compressed_coordinates_GF2m(const EC_GROUP *group, EC_POINT *p, - const BIGNUM *x, int y_bit, BN_CTX *ctx); -#endif /* OPENSSL_NO_EC2M */ #endif /* !LIBRESSL_INTERNAL */ /** Encodes a EC_POINT object to a octet string @@ -682,11 +602,6 @@ int EC_GROUP_have_precompute_mult(const EC_GROUP *group); /* EC_GROUP_get_basis_type() returns the NID of the basis type * used to represent the field elements */ int EC_GROUP_get_basis_type(const EC_GROUP *); -#ifndef OPENSSL_NO_EC2M -int EC_GROUP_get_trinomial_basis(const EC_GROUP *, unsigned int *k); -int EC_GROUP_get_pentanomial_basis(const EC_GROUP *, unsigned int *k1, - unsigned int *k2, unsigned int *k3); -#endif #define OPENSSL_EC_EXPLICIT_CURVE 0x000 #define OPENSSL_EC_NAMED_CURVE 0x001 diff --git a/lib/libcrypto/ec/ec2_mult.c b/lib/libcrypto/ec/ec2_mult.c deleted file mode 100644 index d7cbd933f2a..00000000000 --- a/lib/libcrypto/ec/ec2_mult.c +++ /dev/null @@ -1,449 +0,0 @@ -/* $OpenBSD: ec2_mult.c,v 1.17 2023/04/11 18:58:20 jsing Exp $ */ -/* ==================================================================== - * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. - * - * The Elliptic Curve Public-Key Crypto Library (ECC Code) included - * herein is developed by SUN MICROSYSTEMS, INC., and is contributed - * to the OpenSSL project. - * - * The ECC Code is licensed pursuant to the OpenSSL open source - * license provided below. - * - * The software is originally written by Sheueling Chang Shantz and - * Douglas Stebila of Sun Microsystems Laboratories. - * - */ -/* ==================================================================== - * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * 3. All advertising materials mentioning features or use of this - * software must display the following acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" - * - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to - * endorse or promote products derived from this software without - * prior written permission. For written permission, please contact - * openssl-core@openssl.org. - * - * 5. Products derived from this software may not be called "OpenSSL" - * nor may "OpenSSL" appear in their names without prior written - * permission of the OpenSSL Project. - * - * 6. Redistributions of any form whatsoever must retain the following - * acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit (http://www.openssl.org/)" - * - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED - * OF THE POSSIBILITY OF SUCH DAMAGE. - * ==================================================================== - * - * This product includes cryptographic software written by Eric Young - * (eay@cryptsoft.com). This product includes software written by Tim - * Hudson (tjh@cryptsoft.com). - * - */ - -#include <openssl/opensslconf.h> - -#include <openssl/err.h> - -#include "bn_local.h" -#include "ec_local.h" - -#ifndef OPENSSL_NO_EC2M - - -/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective - * coordinates. - * Uses algorithm Mdouble in appendix of - * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation" (CHES '99, LNCS 1717). - * modified to not require precomputation of c=b^{2^{m-1}}. - */ -static int -gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) -{ - BIGNUM *t1; - int ret = 0; - - /* Since Mdouble is static we can guarantee that ctx != NULL. */ - BN_CTX_start(ctx); - if ((t1 = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!group->meth->field_sqr(group, x, x, ctx)) - goto err; - if (!group->meth->field_sqr(group, t1, z, ctx)) - goto err; - if (!group->meth->field_mul(group, z, x, t1, ctx)) - goto err; - if (!group->meth->field_sqr(group, x, x, ctx)) - goto err; - if (!group->meth->field_sqr(group, t1, t1, ctx)) - goto err; - if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) - goto err; - if (!BN_GF2m_add(x, x, t1)) - goto err; - - ret = 1; - - err: - BN_CTX_end(ctx); - return ret; -} - -/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery - * projective coordinates. - * Uses algorithm Madd in appendix of - * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation" (CHES '99, LNCS 1717). - */ -static int -gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, - const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) -{ - BIGNUM *t1, *t2; - int ret = 0; - - /* Since Madd is static we can guarantee that ctx != NULL. */ - BN_CTX_start(ctx); - if ((t1 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((t2 = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!bn_copy(t1, x)) - goto err; - if (!group->meth->field_mul(group, x1, x1, z2, ctx)) - goto err; - if (!group->meth->field_mul(group, z1, z1, x2, ctx)) - goto err; - if (!group->meth->field_mul(group, t2, x1, z1, ctx)) - goto err; - if (!BN_GF2m_add(z1, z1, x1)) - goto err; - if (!group->meth->field_sqr(group, z1, z1, ctx)) - goto err; - if (!group->meth->field_mul(group, x1, z1, t1, ctx)) - goto err; - if (!BN_GF2m_add(x1, x1, t2)) - goto err; - - ret = 1; - - err: - BN_CTX_end(ctx); - return ret; -} - -/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) - * using Montgomery point multiplication algorithm Mxy() in appendix of - * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation" (CHES '99, LNCS 1717). - * Returns: - * 0 on error - * 1 if return value should be the point at infinity - * 2 otherwise - */ -static int -gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, - BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) -{ - BIGNUM *t3, *t4, *t5; - int ret = 0; - - if (BN_is_zero(z1)) { - BN_zero(x2); - BN_zero(z2); - return 1; - } - if (BN_is_zero(z2)) { - if (!bn_copy(x2, x)) - return 0; - if (!BN_GF2m_add(z2, x, y)) - return 0; - return 2; - } - /* Since Mxy is static we can guarantee that ctx != NULL. */ - BN_CTX_start(ctx); - if ((t3 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((t4 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((t5 = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_one(t5)) - goto err; - - if (!group->meth->field_mul(group, t3, z1, z2, ctx)) - goto err; - - if (!group->meth->field_mul(group, z1, z1, x, ctx)) - goto err; - if (!BN_GF2m_add(z1, z1, x1)) - goto err; - if (!group->meth->field_mul(group, z2, z2, x, ctx)) - goto err; - if (!group->meth->field_mul(group, x1, z2, x1, ctx)) - goto err; - if (!BN_GF2m_add(z2, z2, x2)) - goto err; - - if (!group->meth->field_mul(group, z2, z2, z1, ctx)) - goto err; - if (!group->meth->field_sqr(group, t4, x, ctx)) - goto err; - if (!BN_GF2m_add(t4, t4, y)) - goto err; - if (!group->meth->field_mul(group, t4, t4, t3, ctx)) - goto err; - if (!BN_GF2m_add(t4, t4, z2)) - goto err; - - if (!group->meth->field_mul(group, t3, t3, x, ctx)) - goto err; - if (!group->meth->field_div(group, t3, t5, t3, ctx)) - goto err; - if (!group->meth->field_mul(group, t4, t3, t4, ctx)) - goto err; - if (!group->meth->field_mul(group, x2, x1, t3, ctx)) - goto err; - if (!BN_GF2m_add(z2, x2, x)) - goto err; - - if (!group->meth->field_mul(group, z2, z2, t4, ctx)) - goto err; - if (!BN_GF2m_add(z2, z2, y)) - goto err; - - ret = 2; - - err: - BN_CTX_end(ctx); - return ret; -} - - -/* Computes scalar*point and stores the result in r. - * point can not equal r. - * Uses a modified algorithm 2P of - * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation" (CHES '99, LNCS 1717). - * - * To protect against side-channel attack the function uses constant time swap, - * avoiding conditional branches. - */ -static int -ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, - const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) -{ - BIGNUM *x1, *x2, *z1, *z2; - int ret = 0, i; - BN_ULONG mask, word; - - if (r == point) { - ECerror(EC_R_INVALID_ARGUMENT); - return 0; - } - /* if result should be point at infinity */ - if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || - EC_POINT_is_at_infinity(group, point) > 0) { - return EC_POINT_set_to_infinity(group, r); - } - /* only support affine coordinates */ - if (!point->Z_is_one) - return 0; - - /* Since point_multiply is static we can guarantee that ctx != NULL. */ - BN_CTX_start(ctx); - if ((x1 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((z1 = BN_CTX_get(ctx)) == NULL) - goto err; - - x2 = &r->X; - z2 = &r->Y; - - if (!bn_wexpand(x1, group->field.top)) - goto err; - if (!bn_wexpand(z1, group->field.top)) - goto err; - if (!bn_wexpand(x2, group->field.top)) - goto err; - if (!bn_wexpand(z2, group->field.top)) - goto err; - - if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) - goto err; /* x1 = x */ - if (!BN_one(z1)) - goto err; /* z1 = 1 */ - if (!group->meth->field_sqr(group, z2, x1, ctx)) - goto err; /* z2 = x1^2 = x^2 */ - if (!group->meth->field_sqr(group, x2, z2, ctx)) - goto err; - if (!BN_GF2m_add(x2, x2, &group->b)) - goto err; /* x2 = x^4 + b */ - - /* find top most bit and go one past it */ - i = scalar->top - 1; - mask = BN_TBIT; - word = scalar->d[i]; - while (!(word & mask)) - mask >>= 1; - mask >>= 1; - /* if top most bit was at word break, go to next word */ - if (!mask) { - i--; - mask = BN_TBIT; - } - for (; i >= 0; i--) { - word = scalar->d[i]; - while (mask) { - if (!BN_swap_ct(word & mask, x1, x2, group->field.top)) - goto err; - if (!BN_swap_ct(word & mask, z1, z2, group->field.top)) - goto err; - if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) - goto err; - if (!gf2m_Mdouble(group, x1, z1, ctx)) - goto err; - if (!BN_swap_ct(word & mask, x1, x2, group->field.top)) - goto err; - if (!BN_swap_ct(word & mask, z1, z2, group->field.top)) - goto err; - mask >>= 1; - } - mask = BN_TBIT; - } - - /* convert out of "projective" coordinates */ - i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); - if (i == 0) - goto err; - else if (i == 1) { - if (!EC_POINT_set_to_infinity(group, r)) - goto err; - } else { - if (!BN_one(&r->Z)) - goto err; - r->Z_is_one = 1; - } - - /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ - BN_set_negative(&r->X, 0); - BN_set_negative(&r->Y, 0); - - ret = 1; - - err: - BN_CTX_end(ctx); - return ret; -} - - -/* Computes the sum - * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] - * gracefully ignoring NULL scalar values. - */ -int -ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, - size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) -{ - EC_POINT *p = NULL; - EC_POINT *acc = NULL; - size_t i; - int ret = 0; - - /* - * This implementation is more efficient than the wNAF implementation - * for 2 or fewer points. Use the ec_wNAF_mul implementation for 3 - * or more points, or if we can perform a fast multiplication based - * on precomputation. - */ - if ((scalar && (num > 1)) || (num > 2) || - (num == 0 && EC_GROUP_have_precompute_mult(group))) { - ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); - goto err; - } - if ((p = EC_POINT_new(group)) == NULL) - goto err; - if ((acc = EC_POINT_new(group)) == NULL) - goto err; - - if (!EC_POINT_set_to_infinity(group, acc)) - goto err; - - if (scalar) { - if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) - goto err; - if (BN_is_negative(scalar)) - if (!group->meth->invert(group, p, ctx)) - goto err; - if (!group->meth->add(group, acc, acc, p, ctx)) - goto err; - } - for (i = 0; i < num; i++) { - if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) - goto err; - if (BN_is_negative(scalars[i])) - if (!group->meth->invert(group, p, ctx)) - goto err; - if (!group->meth->add(group, acc, acc, p, ctx)) - goto err; - } - - if (!EC_POINT_copy(r, acc)) - goto err; - - ret = 1; - - err: - EC_POINT_free(p); - EC_POINT_free(acc); - - return ret; -} - - -/* Precomputation for point multiplication: fall back to wNAF methods - * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ - -int -ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) -{ - return ec_wNAF_precompute_mult(group, ctx); -} - -int -ec_GF2m_have_precompute_mult(const EC_GROUP *group) -{ - return ec_wNAF_have_precompute_mult(group); -} - -#endif diff --git a/lib/libcrypto/ec/ec2_oct.c b/lib/libcrypto/ec/ec2_oct.c deleted file mode 100644 index 6cb7259824b..00000000000 --- a/lib/libcrypto/ec/ec2_oct.c +++ /dev/null @@ -1,402 +0,0 @@ -/* $OpenBSD: ec2_oct.c,v 1.20 2023/04/11 18:58:20 jsing Exp $ */ -/* ==================================================================== - * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. - * - * The Elliptic Curve Public-Key Crypto Library (ECC Code) included - * herein is developed by SUN MICROSYSTEMS, INC., and is contributed - * to the OpenSSL project. - * - * The ECC Code is licensed pursuant to the OpenSSL open source - * license provided below. - * - * The software is originally written by Sheueling Chang Shantz and - * Douglas Stebila of Sun Microsystems Laboratories. - * - */ -/* ==================================================================== - * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * 3. All advertising materials mentioning features or use of this - * software must display the following acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" - * - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to - * endorse or promote products derived from this software without - * prior written permission. For written permission, please contact - * openssl-core@openssl.org. - * - * 5. Products derived from this software may not be called "OpenSSL" - * nor may "OpenSSL" appear in their names without prior written - * permission of the OpenSSL Project. - * - * 6. Redistributions of any form whatsoever must retain the following - * acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit (http://www.openssl.org/)" - * - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED - * OF THE POSSIBILITY OF SUCH DAMAGE. - * ==================================================================== - * - * This product includes cryptographic software written by Eric Young - * (eay@cryptsoft.com). This product includes software written by Tim - * Hudson (tjh@cryptsoft.com). - * - */ - -#include <openssl/opensslconf.h> - -#include <openssl/err.h> - -#include "ec_local.h" - -#ifndef OPENSSL_NO_EC2M - -/* Calculates and sets the affine coordinates of an EC_POINT from the given - * compressed coordinates. Uses algorithm 2.3.4 of SEC 1. - * Note that the simple implementation only uses affine coordinates. - * - * The method is from the following publication: - * - * Harper, Menezes, Vanstone: - * "Public-Key Cryptosystems with Very Small Key Lengths", - * EUROCRYPT '92, Springer-Verlag LNCS 658, - * published February 1993 - * - * US Patents 6,141,420 and 6,618,483 (Vanstone, Mullin, Agnew) describe - * the same method, but claim no priority date earlier than July 29, 1994 - * (and additionally fail to cite the EUROCRYPT '92 publication as prior art). - */ -int -ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, - const BIGNUM *x_, int y_bit, BN_CTX *ctx) -{ - BIGNUM *tmp, *x, *y, *z; - int z0; - int ret = 0; - - /* clear error queue */ - ERR_clear_error(); - - y_bit = (y_bit != 0) ? 1 : 0; - - BN_CTX_start(ctx); - - if ((tmp = BN_CTX_get(ctx)) == NULL) - goto err; - if ((x = BN_CTX_get(ctx)) == NULL) - goto err; - if ((y = BN_CTX_get(ctx)) == NULL) - goto err; - if ((z = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_GF2m_mod_arr(x, x_, group->poly)) - goto err; - if (BN_is_zero(x)) { - if (y_bit != 0) { - ECerror(EC_R_INVALID_COMPRESSED_POINT); - goto err; - } - if (!BN_GF2m_mod_sqrt_arr(y, &group->b, group->poly, ctx)) - goto err; - } else { - if (!group->meth->field_sqr(group, tmp, x, ctx)) - goto err; - if (!group->meth->field_div(group, tmp, &group->b, tmp, ctx)) - goto err; - if (!BN_GF2m_add(tmp, &group->a, tmp)) - goto err; - if (!BN_GF2m_add(tmp, x, tmp)) - goto err; - if (!BN_GF2m_mod_solve_quad_arr(z, tmp, group->poly, ctx)) { - unsigned long err = ERR_peek_last_error(); - - if (ERR_GET_LIB(err) == ERR_LIB_BN && - ERR_GET_REASON(err) == BN_R_NO_SOLUTION) { - ERR_clear_error(); - ECerror(EC_R_INVALID_COMPRESSED_POINT); - } else - ECerror(ERR_R_BN_LIB); - goto err; - } - z0 = (BN_is_odd(z)) ? 1 : 0; - if (!group->meth->field_mul(group, y, x, z, ctx)) - goto err; - if (z0 != y_bit) { - if (!BN_GF2m_add(y, y, x)) - goto err; - } - } - - if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) - goto err; - - ret = 1; - - err: - BN_CTX_end(ctx); - - return ret; -} - - -/* Converts an EC_POINT to an octet string. - * If buf is NULL, the encoded length will be returned. - * If the length len of buf is smaller than required an error will be returned. - */ -size_t -ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, - point_conversion_form_t form, - unsigned char *buf, size_t len, BN_CTX *ctx) -{ - BIGNUM *x, *y, *yxi; - size_t field_len, i, skip; - size_t ret; - - if (form != POINT_CONVERSION_COMPRESSED && - form != POINT_CONVERSION_UNCOMPRESSED && - form != POINT_CONVERSION_HYBRID) { - ECerror(EC_R_INVALID_FORM); - return 0; - } - - if (EC_POINT_is_at_infinity(group, point) > 0) { - /* encodes to a single 0 octet */ - if (buf != NULL) { - if (len < 1) { - ECerror(EC_R_BUFFER_TOO_SMALL); - return 0; - } - buf[0] = 0; - } - return 1; - } - - BN_CTX_start(ctx); - - /* ret := required output buffer length */ - field_len = (EC_GROUP_get_degree(group) + 7) / 8; - ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : - 1 + 2 * field_len; - - /* if 'buf' is NULL, just return required length */ - if (buf != NULL) { - if (len < ret) { - ECerror(EC_R_BUFFER_TOO_SMALL); - goto err; - } - - if ((x = BN_CTX_get(ctx)) == NULL) - goto err; - if ((y = BN_CTX_get(ctx)) == NULL) - goto err; - if ((yxi = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) - goto err; - - buf[0] = form; - if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) { - if (!group->meth->field_div(group, yxi, y, x, ctx)) - goto err; - if (BN_is_odd(yxi)) - buf[0]++; - } - i = 1; - - skip = field_len - BN_num_bytes(x); - if (skip > field_len) { - ECerror(ERR_R_INTERNAL_ERROR); - goto err; - } - while (skip > 0) { - buf[i++] = 0; - skip--; - } - skip = BN_bn2bin(x, buf + i); - i += skip; - if (i != 1 + field_len) { - ECerror(ERR_R_INTERNAL_ERROR); - goto err; - } - if (form == POINT_CONVERSION_UNCOMPRESSED || - form == POINT_CONVERSION_HYBRID) { - skip = field_len - BN_num_bytes(y); - if (skip > field_len) { - ECerror(ERR_R_INTERNAL_ERROR); - goto err; - } - while (skip > 0) { - buf[i++] = 0; - skip--; - } - skip = BN_bn2bin(y, buf + i); - i += skip; - } - if (i != ret) { - ECerror(ERR_R_INTERNAL_ERROR); - goto err; - } - } - - err: - BN_CTX_end(ctx); - - return ret; -} - -/* - * Converts an octet string representation to an EC_POINT. - * Note that the simple implementation only uses affine coordinates. - */ -int -ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point, - const unsigned char *buf, size_t len, BN_CTX *ctx) -{ - point_conversion_form_t form; - int y_bit; - BIGNUM *x, *y, *yxi; - size_t field_len, enc_len; - int ret = 0; - - if (len == 0) { - ECerror(EC_R_BUFFER_TOO_SMALL); - return 0; - } - - /* - * The first octet is the point conversion octet PC, see X9.62, page 4 - * and section 4.4.2. It must be: - * 0x00 for the point at infinity - * 0x02 or 0x03 for compressed form - * 0x04 for uncompressed form - * 0x06 or 0x07 for hybrid form. - * For compressed or hybrid forms, we store the last bit of buf[0] as - * y_bit and clear it from buf[0] so as to obtain a POINT_CONVERSION_*. - * We error if buf[0] contains any but the above values. - */ - y_bit = buf[0] & 1; - form = buf[0] & ~1U; - - if (form != 0 && form != POINT_CONVERSION_COMPRESSED && - form != POINT_CONVERSION_UNCOMPRESSED && - form != POINT_CONVERSION_HYBRID) { - ECerror(EC_R_INVALID_ENCODING); - return 0; - } - if (form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) { - if (y_bit != 0) { - ECerror(EC_R_INVALID_ENCODING); - return 0; - } - } - - /* The point at infinity is represented by a single zero octet. */ - if (form == 0) { - if (len != 1) { - ECerror(EC_R_INVALID_ENCODING); - return 0; - } - return EC_POINT_set_to_infinity(group, point); - } - - field_len = (EC_GROUP_get_degree(group) + 7) / 8; - enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : - 1 + 2 * field_len; - - if (len != enc_len) { - ECerror(EC_R_INVALID_ENCODING); - return 0; - } - - BN_CTX_start(ctx); - - if ((x = BN_CTX_get(ctx)) == NULL) - goto err; - if ((y = BN_CTX_get(ctx)) == NULL) - goto err; - if ((yxi = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_bin2bn(buf + 1, field_len, x)) - goto err; - if (BN_ucmp(x, &group->field) >= 0) { - ECerror(EC_R_INVALID_ENCODING); - goto err; - } - if (form == POINT_CONVERSION_COMPRESSED) { - /* - * EC_POINT_set_compressed_coordinates checks that the - * point is on the curve as required by X9.62. - */ - if (!EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx)) - goto err; - } else { - if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) - goto err; - if (BN_ucmp(y, &group->field) >= 0) { - ECerror(EC_R_INVALID_ENCODING); - goto err; - } - if (form == POINT_CONVERSION_HYBRID) { - /* - * Check that the form in the encoding was set - * correctly according to X9.62 4.4.2.a, 4(c), - * see also first paragraph of X9.62 4.4.1.b. - */ - if (BN_is_zero(x)) { - if (y_bit != 0) { - ECerror(EC_R_INVALID_ENCODING); - goto err; - } - } else { - if (!group->meth->field_div(group, yxi, y, x, - ctx)) - goto err; - if (y_bit != BN_is_odd(yxi)) { - ECerror(EC_R_INVALID_ENCODING); - goto err; - } - } - } - /* - * EC_POINT_set_affine_coordinates checks that the - * point is on the curve as required by X9.62. - */ - if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) - goto err; - } - - ret = 1; - - err: - BN_CTX_end(ctx); - - return ret; -} -#endif diff --git a/lib/libcrypto/ec/ec2_smpl.c b/lib/libcrypto/ec/ec2_smpl.c deleted file mode 100644 index 850159cb25a..00000000000 --- a/lib/libcrypto/ec/ec2_smpl.c +++ /dev/null @@ -1,723 +0,0 @@ -/* $OpenBSD: ec2_smpl.c,v 1.35 2023/04/11 18:58:20 jsing Exp $ */ -/* ==================================================================== - * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. - * - * The Elliptic Curve Public-Key Crypto Library (ECC Code) included - * herein is developed by SUN MICROSYSTEMS, INC., and is contributed - * to the OpenSSL project. - * - * The ECC Code is licensed pursuant to the OpenSSL open source - * license provided below. - * - * The software is originally written by Sheueling Chang Shantz and - * Douglas Stebila of Sun Microsystems Laboratories. - * - */ -/* ==================================================================== - * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * 3. All advertising materials mentioning features or use of this - * software must display the following acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" - * - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to - * endorse or promote products derived from this software without - * prior written permission. For written permission, please contact - * openssl-core@openssl.org. - * - * 5. Products derived from this software may not be called "OpenSSL" - * nor may "OpenSSL" appear in their names without prior written - * permission of the OpenSSL Project. - * - * 6. Redistributions of any form whatsoever must retain the following - * acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit (http://www.openssl.org/)" - * - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED - * OF THE POSSIBILITY OF SUCH DAMAGE. - * ==================================================================== - * - * This product includes cryptographic software written by Eric Young - * (eay@cryptsoft.com). This product includes software written by Tim - * Hudson (tjh@cryptsoft.com). - * - */ - -#include <openssl/opensslconf.h> - -#include <openssl/err.h> - -#include "ec_local.h" - -#ifndef OPENSSL_NO_EC2M - -/* - * Initialize a GF(2^m)-based EC_GROUP structure. - * Note that all other members are handled by EC_GROUP_new. - */ -static int -ec_GF2m_simple_group_init(EC_GROUP *group) -{ - BN_init(&group->field); - BN_init(&group->a); - BN_init(&group->b); - return 1; -} - -/* - * Clear and free a GF(2^m)-based EC_GROUP structure. - * Note that all other members are handled by EC_GROUP_free. - */ -static void -ec_GF2m_simple_group_finish(EC_GROUP *group) -{ - BN_free(&group->field); - BN_free(&group->a); - BN_free(&group->b); - group->poly[0] = 0; - group->poly[1] = 0; - group->poly[2] = 0; - group->poly[3] = 0; - group->poly[4] = 0; - group->poly[5] = -1; -} - -/* - * Copy a GF(2^m)-based EC_GROUP structure. - * Note that all other members are handled by EC_GROUP_copy. - */ -static int -ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) -{ - int i; - - if (!bn_copy(&dest->field, &src->field)) - return 0; - if (!bn_copy(&dest->a, &src->a)) - return 0; - if (!bn_copy(&dest->b, &src->b)) - return 0; - dest->poly[0] = src->poly[0]; - dest->poly[1] = src->poly[1]; - dest->poly[2] = src->poly[2]; - dest->poly[3] = src->poly[3]; - dest->poly[4] = src->poly[4]; - dest->poly[5] = src->poly[5]; - if (!bn_expand(&dest->a, dest->poly[0])) - return 0; - if (!bn_expand(&dest->b, dest->poly[0])) - return 0; - for (i = dest->a.top; i < dest->a.dmax; i++) - dest->a.d[i] = 0; - for (i = dest->b.top; i < dest->b.dmax; i++) - dest->b.d[i] = 0; - return 1; -} - -/* Set the curve parameters of an EC_GROUP structure. */ -static int -ec_GF2m_simple_group_set_curve(EC_GROUP *group, - const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) -{ - int ret = 0, i; - - /* group->field */ - if (!bn_copy(&group->field, p)) - goto err; - i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; - if ((i != 5) && (i != 3)) { - ECerror(EC_R_UNSUPPORTED_FIELD); - goto err; - } - /* group->a */ - if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) - goto err; - if (!bn_expand(&group->a, group->poly[0])) - goto err; - for (i = group->a.top; i < group->a.dmax; i++) - group->a.d[i] = 0; - - /* group->b */ - if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) - goto err; - if (!bn_expand(&group->b, group->poly[0])) - goto err; - for (i = group->b.top; i < group->b.dmax; i++) - group->b.d[i] = 0; - - ret = 1; - err: - return ret; -} - -/* - * Get the curve parameters of an EC_GROUP structure. - * If p, a, or b are NULL then there values will not be set but the method will return with success. - */ -static int -ec_GF2m_simple_group_get_curve(const EC_GROUP *group, - BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) -{ - int ret = 0; - - if (p != NULL) { - if (!bn_copy(p, &group->field)) - return 0; - } - if (a != NULL) { - if (!bn_copy(a, &group->a)) - goto err; - } - if (b != NULL) { - if (!bn_copy(b, &group->b)) - goto err; - } - ret = 1; - - err: - return ret; -} - -/* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ -static int -ec_GF2m_simple_group_get_degree(const EC_GROUP *group) -{ - return BN_num_bits(&group->field) - 1; -} - -/* - * Checks the discriminant of the curve. - * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) - */ -static int -ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) -{ - BIGNUM *b; - int ret = 0; - - BN_CTX_start(ctx); - - if ((b = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) - goto err; - - /* - * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic - * curve <=> b != 0 (mod p) - */ - if (BN_is_zero(b)) - goto err; - - ret = 1; - - err: - BN_CTX_end(ctx); - - return ret; -} - -/* Initializes an EC_POINT. */ -static int -ec_GF2m_simple_point_init(EC_POINT *point) -{ - BN_init(&point->X); - BN_init(&point->Y); - BN_init(&point->Z); - return 1; -} - -/* Clears and frees an EC_POINT. */ -static void -ec_GF2m_simple_point_finish(EC_POINT *point) -{ - BN_free(&point->X); - BN_free(&point->Y); - BN_free(&point->Z); - point->Z_is_one = 0; -} - -/* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ -static int -ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) -{ - if (!bn_copy(&dest->X, &src->X)) - return 0; - if (!bn_copy(&dest->Y, &src->Y)) - return 0; - if (!bn_copy(&dest->Z, &src->Z)) - return 0; - dest->Z_is_one = src->Z_is_one; - - return 1; -} - -/* - * Set an EC_POINT to the point at infinity. - * A point at infinity is represented by having Z=0. - */ -static int -ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) -{ - point->Z_is_one = 0; - BN_zero(&point->Z); - return 1; -} - -/* - * Set the coordinates of an EC_POINT using affine coordinates. - * Note that the simple implementation only uses affine coordinates. - */ -static int -ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, - const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) -{ - int ret = 0; - if (x == NULL || y == NULL) { - ECerror(ERR_R_PASSED_NULL_PARAMETER); - return 0; - } - if (!bn_copy(&point->X, x)) - goto err; - BN_set_negative(&point->X, 0); - if (!bn_copy(&point->Y, y)) - goto err; - BN_set_negative(&point->Y, 0); - if (!bn_copy(&point->Z, BN_value_one())) - goto err; - BN_set_negative(&point->Z, 0); - point->Z_is_one = 1; - ret = 1; - - err: - return ret; -} - -/* - * Gets the affine coordinates of an EC_POINT. - * Note that the simple implementation only uses affine coordinates. - */ -static int -ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, - const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) -{ - int ret = 0; - - if (EC_POINT_is_at_infinity(group, point) > 0) { - ECerror(EC_R_POINT_AT_INFINITY); - return 0; - } - if (BN_cmp(&point->Z, BN_value_one())) { - ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); - return 0; - } - if (x != NULL) { - if (!bn_copy(x, &point->X)) - goto err; - BN_set_negative(x, 0); - } - if (y != NULL) { - if (!bn_copy(y, &point->Y)) - goto err; - BN_set_negative(y, 0); - } - ret = 1; - - err: - return ret; -} - -/* - * Computes a + b and stores the result in r. r could be a or b, a could be b. - * Uses algorithm A.10.2 of IEEE P1363. - */ -static int -ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, - const EC_POINT *b, BN_CTX *ctx) -{ - BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; - int ret = 0; - - if (EC_POINT_is_at_infinity(group, a) > 0) { - if (!EC_POINT_copy(r, b)) - return 0; - return 1; - } - if (EC_POINT_is_at_infinity(group, b) > 0) { - if (!EC_POINT_copy(r, a)) - return 0; - return 1; - } - - BN_CTX_start(ctx); - - if ((x0 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((y0 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((x1 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((y1 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((x2 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((y2 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((s = BN_CTX_get(ctx)) == NULL) - goto err; - if ((t = BN_CTX_get(ctx)) == NULL) - goto err; - - if (a->Z_is_one) { - if (!bn_copy(x0, &a->X)) - goto err; - if (!bn_copy(y0, &a->Y)) - goto err; - } else { - if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx)) - goto err; - } - if (b->Z_is_one) { - if (!bn_copy(x1, &b->X)) - goto err; - if (!bn_copy(y1, &b->Y)) - goto err; - } else { - if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx)) - goto err; - } - - if (BN_GF2m_cmp(x0, x1)) { - if (!BN_GF2m_add(t, x0, x1)) - goto err; - if (!BN_GF2m_add(s, y0, y1)) - goto err; - if (!group->meth->field_div(group, s, s, t, ctx)) - goto err; - if (!group->meth->field_sqr(group, x2, s, ctx)) - goto err; - if (!BN_GF2m_add(x2, x2, &group->a)) - goto err; - if (!BN_GF2m_add(x2, x2, s)) - goto err; - if (!BN_GF2m_add(x2, x2, t)) - goto err; - } else { - if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { - if (!EC_POINT_set_to_infinity(group, r)) - goto err; - ret = 1; - goto err; - } - if (!group->meth->field_div(group, s, y1, x1, ctx)) - goto err; - if (!BN_GF2m_add(s, s, x1)) - goto err; - - if (!group->meth->field_sqr(group, x2, s, ctx)) - goto err; - if (!BN_GF2m_add(x2, x2, s)) - goto err; - if (!BN_GF2m_add(x2, x2, &group->a)) - goto err; - } - - if (!BN_GF2m_add(y2, x1, x2)) - goto err; - if (!group->meth->field_mul(group, y2, y2, s, ctx)) - goto err; - if (!BN_GF2m_add(y2, y2, x2)) - goto err; - if (!BN_GF2m_add(y2, y2, y1)) - goto err; - - if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx)) - goto err; - - ret = 1; - - err: - BN_CTX_end(ctx); - - return ret; -} - -/* - * Computes 2 * a and stores the result in r. r could be a. - * Uses algorithm A.10.2 of IEEE P1363. - */ -static int -ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, - BN_CTX *ctx) -{ - return ec_GF2m_simple_add(group, r, a, a, ctx); -} - -static int -ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) -{ - if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) - /* point is its own inverse */ - return 1; - - if (!EC_POINT_make_affine(group, point, ctx)) - return 0; - return BN_GF2m_add(&point->Y, &point->X, &point->Y); -} - -/* Indicates whether the given point is the point at infinity. */ -static int -ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) -{ - return BN_is_zero(&point->Z); -} - -/* - * Determines whether the given EC_POINT is an actual point on the curve defined - * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: - * y^2 + x*y = x^3 + a*x^2 + b. - */ -static int -ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) -{ - int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); - BIGNUM *lh, *y2; - int ret = -1; - - if (EC_POINT_is_at_infinity(group, point) > 0) - return 1; - - field_mul = group->meth->field_mul; - field_sqr = group->meth->field_sqr; - - /* only support affine coordinates */ - if (!point->Z_is_one) - return -1; - - BN_CTX_start(ctx); - - if ((y2 = BN_CTX_get(ctx)) == NULL) - goto err; - if ((lh = BN_CTX_get(ctx)) == NULL) - goto err; - - /* - * We have a curve defined by a Weierstrass equation y^2 + x*y = x^3 - * + a*x^2 + b. <=> x^3 + a*x^2 + x*y + b + y^2 = 0 <=> ((x + a) * x - * + y ) * x + b + y^2 = 0 - */ - if (!BN_GF2m_add(lh, &point->X, &group->a)) - goto err; - if (!field_mul(group, lh, lh, &point->X, ctx)) - goto err; - if (!BN_GF2m_add(lh, lh, &point->Y)) - goto err; - if (!field_mul(group, lh, lh, &point->X, ctx)) - goto err; - if (!BN_GF2m_add(lh, lh, &group->b)) - goto err; - if (!field_sqr(group, y2, &point->Y, ctx)) - goto err; - if (!BN_GF2m_add(lh, lh, y2)) - goto err; - - ret = BN_is_zero(lh); - - err: - BN_CTX_end(ctx); - - return ret; -} - -/* - * Indicates whether two points are equal. - * Return values: - * -1 error - * 0 equal (in affine coordinates) - * 1 not equal - */ -static int -ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, - const EC_POINT *b, BN_CTX *ctx) -{ - BIGNUM *aX, *aY, *bX, *bY; - int ret = -1; - - if (EC_POINT_is_at_infinity(group, a) > 0) - return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1; - - if (EC_POINT_is_at_infinity(group, b) > 0) - return 1; - - if (a->Z_is_one && b->Z_is_one) - return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; - - BN_CTX_start(ctx); - - if ((aX = BN_CTX_get(ctx)) == NULL) - goto err; - if ((aY = BN_CTX_get(ctx)) == NULL) - goto err; - if ((bX = BN_CTX_get(ctx)) == NULL) - goto err; - if ((bY = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx)) - goto err; - if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx)) - goto err; - ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; - - err: - BN_CTX_end(ctx); - - return ret; -} - -/* Forces the given EC_POINT to internally use affine coordinates. */ -static int -ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) -{ - BIGNUM *x, *y; - int ret = 0; - - if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0) - return 1; - - BN_CTX_start(ctx); - - if ((x = BN_CTX_get(ctx)) == NULL) - goto err; - if ((y = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) - goto err; - if (!bn_copy(&point->X, x)) - goto err; - if (!bn_copy(&point->Y, y)) - goto err; - if (!BN_one(&point->Z)) - goto err; - - ret = 1; - - err: - BN_CTX_end(ctx); - - return ret; -} - -/* Forces each of the EC_POINTs in the given array to use affine coordinates. */ -static int -ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, - EC_POINT *points[], BN_CTX *ctx) -{ - size_t i; - - for (i = 0; i < num; i++) { - if (!group->meth->make_affine(group, points[i], ctx)) - return 0; - } - - return 1; -} - -/* Wrapper to simple binary polynomial field multiplication implementation. */ -static int -ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, - const BIGNUM *b, BN_CTX *ctx) -{ - return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); -} - -/* Wrapper to simple binary polynomial field squaring implementation. */ -static int -ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, - BN_CTX *ctx) -{ - return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); -} - -/* Wrapper to simple binary polynomial field division implementation. */ -static int -ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, - const BIGNUM *b, BN_CTX *ctx) -{ - return BN_GF2m_mod_div(r, a, b, &group->field, ctx); -} - -static const EC_METHOD ec_GF2m_simple_method = { - .field_type = NID_X9_62_characteristic_two_field, - .group_init = ec_GF2m_simple_group_init, - .group_finish = ec_GF2m_simple_group_finish, - .group_copy = ec_GF2m_simple_group_copy, - .group_set_curve = ec_GF2m_simple_group_set_curve, - .group_get_curve = ec_GF2m_simple_group_get_curve, - .group_get_degree = ec_GF2m_simple_group_get_degree, - .group_order_bits = ec_group_simple_order_bits, - .group_check_discriminant = ec_GF2m_simple_group_check_discriminant, - .point_init = ec_GF2m_simple_point_init, - .point_finish = ec_GF2m_simple_point_finish, - .point_copy = ec_GF2m_simple_point_copy, - .point_set_to_infinity = ec_GF2m_simple_point_set_to_infinity, - .point_set_affine_coordinates = - ec_GF2m_simple_point_set_affine_coordinates, - .point_get_affine_coordinates = - ec_GF2m_simple_point_get_affine_coordinates, - .point_set_compressed_coordinates = - ec_GF2m_simple_set_compressed_coordinates, - .point2oct = ec_GF2m_simple_point2oct, - .oct2point = ec_GF2m_simple_oct2point, - .add = ec_GF2m_simple_add, - .dbl = ec_GF2m_simple_dbl, - .invert = ec_GF2m_simple_invert, - .is_at_infinity = ec_GF2m_simple_is_at_infinity, - .is_on_curve = ec_GF2m_simple_is_on_curve, - .point_cmp = ec_GF2m_simple_cmp, - .make_affine = ec_GF2m_simple_make_affine, - .points_make_affine = ec_GF2m_simple_points_make_affine, - .mul_generator_ct = ec_GFp_simple_mul_generator_ct, - .mul_single_ct = ec_GFp_simple_mul_single_ct, - .mul_double_nonct = ec_GFp_simple_mul_double_nonct, - .precompute_mult = ec_GF2m_precompute_mult, - .have_precompute_mult = ec_GF2m_have_precompute_mult, - .field_mul = ec_GF2m_simple_field_mul, - .field_sqr = ec_GF2m_simple_field_sqr, - .field_div = ec_GF2m_simple_field_div, - .blind_coordinates = NULL, -}; - -const EC_METHOD * -EC_GF2m_simple_method(void) -{ - return &ec_GF2m_simple_method; -} -#endif diff --git a/lib/libcrypto/ec/ec_asn1.c b/lib/libcrypto/ec/ec_asn1.c index fb6a8e84c19..c62ba226f05 100644 --- a/lib/libcrypto/ec/ec_asn1.c +++ b/lib/libcrypto/ec/ec_asn1.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ec_asn1.c,v 1.41 2023/03/08 05:45:31 jsing Exp $ */ +/* $OpenBSD: ec_asn1.c,v 1.42 2023/04/25 19:53:30 tb Exp $ */ /* * Written by Nils Larsch for the OpenSSL project. */ @@ -89,49 +89,6 @@ EC_GROUP_get_basis_type(const EC_GROUP *group) return 0; } -#ifndef OPENSSL_NO_EC2M -int -EC_GROUP_get_trinomial_basis(const EC_GROUP *group, unsigned int *k) -{ - if (group == NULL) - return 0; - - if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != - NID_X9_62_characteristic_two_field - || !((group->poly[0] != 0) && (group->poly[1] != 0) && (group->poly[2] == 0))) { - ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); - return 0; - } - if (k) - *k = group->poly[1]; - - return 1; -} - -int -EC_GROUP_get_pentanomial_basis(const EC_GROUP *group, unsigned int *k1, - unsigned int *k2, unsigned int *k3) -{ - if (group == NULL) - return 0; - - if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != - NID_X9_62_characteristic_two_field - || !((group->poly[0] != 0) && (group->poly[1] != 0) && (group->poly[2] != 0) && (group->poly[3] != 0) && (group->poly[4] == 0))) { - ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); - return 0; - } - if (k1) - *k1 = group->poly[3]; - if (k2) - *k2 = group->poly[2]; - if (k3) - *k3 = group->poly[1]; - - return 1; -} -#endif - /* some structures needed for the asn1 encoding */ typedef struct x9_62_pentanomial_st { long k1; @@ -719,77 +676,10 @@ ec_asn1_group2fieldid(const EC_GROUP *group, X9_62_FIELDID *field) ECerror(ERR_R_ASN1_LIB); goto err; } - } else /* nid == NID_X9_62_characteristic_two_field */ -#ifdef OPENSSL_NO_EC2M - { + } else { ECerror(EC_R_GF2M_NOT_SUPPORTED); goto err; } -#else - { - int field_type; - X9_62_CHARACTERISTIC_TWO *char_two; - - field->p.char_two = X9_62_CHARACTERISTIC_TWO_new(); - char_two = field->p.char_two; - - if (char_two == NULL) { - ECerror(ERR_R_MALLOC_FAILURE); - goto err; - } - char_two->m = (long) EC_GROUP_get_degree(group); - - field_type = EC_GROUP_get_basis_type(group); - - if (field_type == 0) { - ECerror(ERR_R_EC_LIB); - goto err; - } - /* set base type OID */ - if ((char_two->type = OBJ_nid2obj(field_type)) == NULL) { - ECerror(ERR_R_OBJ_LIB); - goto err; - } - if (field_type == NID_X9_62_tpBasis) { - unsigned int k; - - if (!EC_GROUP_get_trinomial_basis(group, &k)) - goto err; - - char_two->p.tpBasis = ASN1_INTEGER_new(); - if (!char_two->p.tpBasis) { - ECerror(ERR_R_MALLOC_FAILURE); - goto err; - } - if (!ASN1_INTEGER_set(char_two->p.tpBasis, (long) k)) { - ECerror(ERR_R_ASN1_LIB); - goto err; - } - } else if (field_type == NID_X9_62_ppBasis) { - unsigned int k1, k2, k3; - - if (!EC_GROUP_get_pentanomial_basis(group, &k1, &k2, &k3)) - goto err; - - char_two->p.ppBasis = X9_62_PENTANOMIAL_new(); - if (!char_two->p.ppBasis) { - ECerror(ERR_R_MALLOC_FAILURE); - goto err; - } - /* set k? values */ - char_two->p.ppBasis->k1 = (long) k1; - char_two->p.ppBasis->k2 = (long) k2; - char_two->p.ppBasis->k3 = (long) k3; - } else { /* field_type == NID_X9_62_onBasis */ - /* for ONB the parameters are (asn1) NULL */ - char_two->p.onBasis = ASN1_NULL_new(); - if (!char_two->p.onBasis) { - ECerror(ERR_R_MALLOC_FAILURE); - goto err; - } - } - } -#endif ok = 1; @@ -1067,86 +957,10 @@ ec_asn1_parameters2group(const ECPARAMETERS *params) } /* get the field parameters */ tmp = OBJ_obj2nid(params->fieldID->fieldType); - if (tmp == NID_X9_62_characteristic_two_field) -#ifdef OPENSSL_NO_EC2M - { + if (tmp == NID_X9_62_characteristic_two_field) { ECerror(EC_R_GF2M_NOT_SUPPORTED); goto err; - } -#else - { - X9_62_CHARACTERISTIC_TWO *char_two; - - char_two = params->fieldID->p.char_two; - - field_bits = char_two->m; - if (field_bits > OPENSSL_ECC_MAX_FIELD_BITS) { - ECerror(EC_R_FIELD_TOO_LARGE); - goto err; - } - if ((p = BN_new()) == NULL) { - ECerror(ERR_R_MALLOC_FAILURE); - goto err; - } - /* get the base type */ - tmp = OBJ_obj2nid(char_two->type); - - if (tmp == NID_X9_62_tpBasis) { - long tmp_long; - - if (!char_two->p.tpBasis) { - ECerror(EC_R_ASN1_ERROR); - goto err; - } - tmp_long = ASN1_INTEGER_get(char_two->p.tpBasis); - - if (!(char_two->m > tmp_long && tmp_long > 0)) { - ECerror(EC_R_INVALID_TRINOMIAL_BASIS); - goto err; - } - /* create the polynomial */ - if (!BN_set_bit(p, (int) char_two->m)) - goto err; - if (!BN_set_bit(p, (int) tmp_long)) - goto err; - if (!BN_set_bit(p, 0)) - goto err; - } else if (tmp == NID_X9_62_ppBasis) { - X9_62_PENTANOMIAL *penta; - - penta = char_two->p.ppBasis; - if (!penta) { - ECerror(EC_R_ASN1_ERROR); - goto err; - } - if (!(char_two->m > penta->k3 && penta->k3 > penta->k2 && penta->k2 > penta->k1 && penta->k1 > 0)) { - ECerror(EC_R_INVALID_PENTANOMIAL_BASIS); - goto err; - } - /* create the polynomial */ - if (!BN_set_bit(p, (int) char_two->m)) - goto err; - if (!BN_set_bit(p, (int) penta->k1)) - goto err; - if (!BN_set_bit(p, (int) penta->k2)) - goto err; - if (!BN_set_bit(p, (int) penta->k3)) - goto err; - if (!BN_set_bit(p, 0)) - goto err; - } else if (tmp == NID_X9_62_onBasis) { - ECerror(EC_R_NOT_IMPLEMENTED); - goto err; - } else { /* error */ - ECerror(EC_R_ASN1_ERROR); - goto err; - } - - /* create the EC_GROUP structure */ - ret = EC_GROUP_new_curve_GF2m(p, a, b, NULL); - } -#endif - else if (tmp == NID_X9_62_prime_field) { + } else if (tmp == NID_X9_62_prime_field) { /* we have a curve over a prime field */ /* extract the prime number */ if (!params->fieldID->p.prime) { diff --git a/lib/libcrypto/ec/ec_curve.c b/lib/libcrypto/ec/ec_curve.c index 324abe8ee1c..898e2334292 100644 --- a/lib/libcrypto/ec/ec_curve.c +++ b/lib/libcrypto/ec/ec_curve.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ec_curve.c,v 1.26 2023/03/04 14:53:23 jsing Exp $ */ +/* $OpenBSD: ec_curve.c,v 1.27 2023/04/25 19:53:30 tb Exp $ */ /* * Written by Nils Larsch for the OpenSSL project. */ @@ -861,1353 +861,6 @@ static const struct { } }; -#ifndef OPENSSL_NO_EC2M - -/* characteristic two curves */ -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 15 * 6]; -} - _EC_SECG_CHAR2_113R1 = { - { - NID_X9_62_characteristic_two_field, 20, 15, 2 - }, - { - 0x10, 0xE7, 0x23, 0xAB, 0x14, 0xD6, 0x96, 0xE6, 0x76, 0x87, /* seed */ - 0x56, 0x15, 0x17, 0x56, 0xFE, 0xBF, 0x8F, 0xCB, 0x49, 0xA9, - - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x02, 0x01, - 0x00, 0x30, 0x88, 0x25, 0x0C, 0xA6, 0xE7, 0xC7, 0xFE, 0x64, /* a */ - 0x9C, 0xE8, 0x58, 0x20, 0xF7, - 0x00, 0xE8, 0xBE, 0xE4, 0xD3, 0xE2, 0x26, 0x07, 0x44, 0x18, /* b */ - 0x8B, 0xE0, 0xE9, 0xC7, 0x23, - 0x00, 0x9D, 0x73, 0x61, 0x6F, 0x35, 0xF4, 0xAB, 0x14, 0x07, /* x */ - 0xD7, 0x35, 0x62, 0xC1, 0x0F, - 0x00, 0xA5, 0x28, 0x30, 0x27, 0x79, 0x58, 0xEE, 0x84, 0xD1, /* y */ - 0x31, 0x5E, 0xD3, 0x18, 0x86, - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD9, 0xCC, /* order */ - 0xEC, 0x8A, 0x39, 0xE5, 0x6F - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 15 * 6]; -} - _EC_SECG_CHAR2_113R2 = { - { - NID_X9_62_characteristic_two_field, 20, 15, 2 - }, - { - 0x10, 0xC0, 0xFB, 0x15, 0x76, 0x08, 0x60, 0xDE, 0xF1, 0xEE, /* seed */ - 0xF4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x5D, - - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x02, 0x01, - 0x00, 0x68, 0x99, 0x18, 0xDB, 0xEC, 0x7E, 0x5A, 0x0D, 0xD6, /* a */ - 0xDF, 0xC0, 0xAA, 0x55, 0xC7, - 0x00, 0x95, 0xE9, 0xA9, 0xEC, 0x9B, 0x29, 0x7B, 0xD4, 0xBF, /* b */ - 0x36, 0xE0, 0x59, 0x18, 0x4F, - 0x01, 0xA5, 0x7A, 0x6A, 0x7B, 0x26, 0xCA, 0x5E, 0xF5, 0x2F, /* x */ - 0xCD, 0xB8, 0x16, 0x47, 0x97, - 0x00, 0xB3, 0xAD, 0xC9, 0x4E, 0xD1, 0xFE, 0x67, 0x4C, 0x06, /* y */ - 0xE6, 0x95, 0xBA, 0xBA, 0x1D, - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x08, 0x78, /* order */ - 0x9B, 0x24, 0x96, 0xAF, 0x93 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 17 * 6]; -} - _EC_SECG_CHAR2_131R1 = { - { - NID_X9_62_characteristic_two_field, 20, 17, 2 - }, - { - 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0x98, /* seed */ - 0x5B, 0xD3, 0xAD, 0xBA, 0xDA, 0x21, 0xB4, 0x3A, 0x97, 0xE2, - - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x0D, - 0x07, 0xA1, 0x1B, 0x09, 0xA7, 0x6B, 0x56, 0x21, 0x44, 0x41, /* a */ - 0x8F, 0xF3, 0xFF, 0x8C, 0x25, 0x70, 0xB8, - 0x02, 0x17, 0xC0, 0x56, 0x10, 0x88, 0x4B, 0x63, 0xB9, 0xC6, /* b */ - 0xC7, 0x29, 0x16, 0x78, 0xF9, 0xD3, 0x41, - 0x00, 0x81, 0xBA, 0xF9, 0x1F, 0xDF, 0x98, 0x33, 0xC4, 0x0F, /* x */ - 0x9C, 0x18, 0x13, 0x43, 0x63, 0x83, 0x99, - 0x07, 0x8C, 0x6E, 0x7E, 0xA3, 0x8C, 0x00, 0x1F, 0x73, 0xC8, /* y */ - 0x13, 0x4B, 0x1B, 0x4E, 0xF9, 0xE1, 0x50, - 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x31, /* order */ - 0x23, 0x95, 0x3A, 0x94, 0x64, 0xB5, 0x4D - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 17 * 6]; -} - _EC_SECG_CHAR2_131R2 = { - { - NID_X9_62_characteristic_two_field, 20, 17, 2 - }, - { - 0x98, 0x5B, 0xD3, 0xAD, 0xBA, 0xD4, 0xD6, 0x96, 0xE6, 0x76, /* seed */ - 0x87, 0x56, 0x15, 0x17, 0x5A, 0x21, 0xB4, 0x3A, 0x97, 0xE3, - - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x0D, - 0x03, 0xE5, 0xA8, 0x89, 0x19, 0xD7, 0xCA, 0xFC, 0xBF, 0x41, /* a */ - 0x5F, 0x07, 0xC2, 0x17, 0x65, 0x73, 0xB2, - 0x04, 0xB8, 0x26, 0x6A, 0x46, 0xC5, 0x56, 0x57, 0xAC, 0x73, /* b */ - 0x4C, 0xE3, 0x8F, 0x01, 0x8F, 0x21, 0x92, - 0x03, 0x56, 0xDC, 0xD8, 0xF2, 0xF9, 0x50, 0x31, 0xAD, 0x65, /* x */ - 0x2D, 0x23, 0x95, 0x1B, 0xB3, 0x66, 0xA8, - 0x06, 0x48, 0xF0, 0x6D, 0x86, 0x79, 0x40, 0xA5, 0x36, 0x6D, /* y */ - 0x9E, 0x26, 0x5D, 0xE9, 0xEB, 0x24, 0x0F, - 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x69, /* order */ - 0x54, 0xA2, 0x33, 0x04, 0x9B, 0xA9, 0x8F - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 21 * 6]; -} - _EC_NIST_CHAR2_163K = { - { - NID_X9_62_characteristic_two_field, 0, 21, 2 - }, - { /* no seed */ - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0xC9, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x01, - 0x02, 0xFE, 0x13, 0xC0, 0x53, 0x7B, 0xBC, 0x11, 0xAC, 0xAA, /* x */ - 0x07, 0xD7, 0x93, 0xDE, 0x4E, 0x6D, 0x5E, 0x5C, 0x94, 0xEE, - 0xE8, - 0x02, 0x89, 0x07, 0x0F, 0xB0, 0x5D, 0x38, 0xFF, 0x58, 0x32, /* y */ - 0x1F, 0x2E, 0x80, 0x05, 0x36, 0xD5, 0x38, 0xCC, 0xDA, 0xA3, - 0xD9, - 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x02, 0x01, 0x08, 0xA2, 0xE0, 0xCC, 0x0D, 0x99, 0xF8, 0xA5, - 0xEF - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 21 * 6]; -} - _EC_SECG_CHAR2_163R1 = { - { - NID_X9_62_characteristic_two_field, 0, 21, 2 - }, - { /* no seed */ - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0xC9, - 0x07, 0xB6, 0x88, 0x2C, 0xAA, 0xEF, 0xA8, 0x4F, 0x95, 0x54, /* a */ - 0xFF, 0x84, 0x28, 0xBD, 0x88, 0xE2, 0x46, 0xD2, 0x78, 0x2A, - 0xE2, - 0x07, 0x13, 0x61, 0x2D, 0xCD, 0xDC, 0xB4, 0x0A, 0xAB, 0x94, /* b */ - 0x6B, 0xDA, 0x29, 0xCA, 0x91, 0xF7, 0x3A, 0xF9, 0x58, 0xAF, - 0xD9, - 0x03, 0x69, 0x97, 0x96, 0x97, 0xAB, 0x43, 0x89, 0x77, 0x89, /* x */ - 0x56, 0x67, 0x89, 0x56, 0x7F, 0x78, 0x7A, 0x78, 0x76, 0xA6, - 0x54, - 0x00, 0x43, 0x5E, 0xDB, 0x42, 0xEF, 0xAF, 0xB2, 0x98, 0x9D, /* y */ - 0x51, 0xFE, 0xFC, 0xE3, 0xC8, 0x09, 0x88, 0xF4, 0x1F, 0xF8, - 0x83, - 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ - 0xFF, 0x48, 0xAA, 0xB6, 0x89, 0xC2, 0x9C, 0xA7, 0x10, 0x27, - 0x9B - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 21 * 6]; -} - _EC_NIST_CHAR2_163B = { - { - NID_X9_62_characteristic_two_field, 0, 21, 2 - }, - { /* no seed */ - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0xC9, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x01, - 0x02, 0x0A, 0x60, 0x19, 0x07, 0xB8, 0xC9, 0x53, 0xCA, 0x14, /* b */ - 0x81, 0xEB, 0x10, 0x51, 0x2F, 0x78, 0x74, 0x4A, 0x32, 0x05, - 0xFD, - 0x03, 0xF0, 0xEB, 0xA1, 0x62, 0x86, 0xA2, 0xD5, 0x7E, 0xA0, /* x */ - 0x99, 0x11, 0x68, 0xD4, 0x99, 0x46, 0x37, 0xE8, 0x34, 0x3E, - 0x36, - 0x00, 0xD5, 0x1F, 0xBC, 0x6C, 0x71, 0xA0, 0x09, 0x4F, 0xA2, /* y */ - 0xCD, 0xD5, 0x45, 0xB1, 0x1C, 0x5C, 0x0C, 0x79, 0x73, 0x24, - 0xF1, - 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x02, 0x92, 0xFE, 0x77, 0xE7, 0x0C, 0x12, 0xA4, 0x23, 0x4C, - 0x33 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 25 * 6]; -} - _EC_SECG_CHAR2_193R1 = { - { - NID_X9_62_characteristic_two_field, 20, 25, 2 - }, - { - 0x10, 0x3F, 0xAE, 0xC7, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, /* seed */ - 0x61, 0x51, 0x75, 0x77, 0x7F, 0xC5, 0xB1, 0x91, 0xEF, 0x30, - - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x80, 0x01, - 0x00, 0x17, 0x85, 0x8F, 0xEB, 0x7A, 0x98, 0x97, 0x51, 0x69, /* a */ - 0xE1, 0x71, 0xF7, 0x7B, 0x40, 0x87, 0xDE, 0x09, 0x8A, 0xC8, - 0xA9, 0x11, 0xDF, 0x7B, 0x01, - 0x00, 0xFD, 0xFB, 0x49, 0xBF, 0xE6, 0xC3, 0xA8, 0x9F, 0xAC, /* b */ - 0xAD, 0xAA, 0x7A, 0x1E, 0x5B, 0xBC, 0x7C, 0xC1, 0xC2, 0xE5, - 0xD8, 0x31, 0x47, 0x88, 0x14, - 0x01, 0xF4, 0x81, 0xBC, 0x5F, 0x0F, 0xF8, 0x4A, 0x74, 0xAD, /* x */ - 0x6C, 0xDF, 0x6F, 0xDE, 0xF4, 0xBF, 0x61, 0x79, 0x62, 0x53, - 0x72, 0xD8, 0xC0, 0xC5, 0xE1, - 0x00, 0x25, 0xE3, 0x99, 0xF2, 0x90, 0x37, 0x12, 0xCC, 0xF3, /* y */ - 0xEA, 0x9E, 0x3A, 0x1A, 0xD1, 0x7F, 0xB0, 0xB3, 0x20, 0x1B, - 0x6A, 0xF7, 0xCE, 0x1B, 0x05, - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x00, 0xC7, 0xF3, 0x4A, 0x77, 0x8F, 0x44, 0x3A, - 0xCC, 0x92, 0x0E, 0xBA, 0x49 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 25 * 6]; -} - _EC_SECG_CHAR2_193R2 = { - { - NID_X9_62_characteristic_two_field, 20, 25, 2 - }, - { - 0x10, 0xB7, 0xB4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, /* seed */ - 0x17, 0x51, 0x37, 0xC8, 0xA1, 0x6F, 0xD0, 0xDA, 0x22, 0x11, - - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x80, 0x01, - 0x01, 0x63, 0xF3, 0x5A, 0x51, 0x37, 0xC2, 0xCE, 0x3E, 0xA6, /* a */ - 0xED, 0x86, 0x67, 0x19, 0x0B, 0x0B, 0xC4, 0x3E, 0xCD, 0x69, - 0x97, 0x77, 0x02, 0x70, 0x9B, - 0x00, 0xC9, 0xBB, 0x9E, 0x89, 0x27, 0xD4, 0xD6, 0x4C, 0x37, /* b */ - 0x7E, 0x2A, 0xB2, 0x85, 0x6A, 0x5B, 0x16, 0xE3, 0xEF, 0xB7, - 0xF6, 0x1D, 0x43, 0x16, 0xAE, - 0x00, 0xD9, 0xB6, 0x7D, 0x19, 0x2E, 0x03, 0x67, 0xC8, 0x03, /* x */ - 0xF3, 0x9E, 0x1A, 0x7E, 0x82, 0xCA, 0x14, 0xA6, 0x51, 0x35, - 0x0A, 0xAE, 0x61, 0x7E, 0x8F, - 0x01, 0xCE, 0x94, 0x33, 0x56, 0x07, 0xC3, 0x04, 0xAC, 0x29, /* y */ - 0xE7, 0xDE, 0xFB, 0xD9, 0xCA, 0x01, 0xF5, 0x96, 0xF9, 0x27, - 0x22, 0x4C, 0xDE, 0xCF, 0x6C, - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x01, 0x5A, 0xAB, 0x56, 0x1B, 0x00, 0x54, 0x13, - 0xCC, 0xD4, 0xEE, 0x99, 0xD5 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 30 * 6]; -} - _EC_NIST_CHAR2_233K = { - { - NID_X9_62_characteristic_two_field, 0, 30, 4 - }, - { /* no seed */ - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - - 0x01, 0x72, 0x32, 0xBA, 0x85, 0x3A, 0x7E, 0x73, 0x1A, 0xF1, /* x */ - 0x29, 0xF2, 0x2F, 0xF4, 0x14, 0x95, 0x63, 0xA4, 0x19, 0xC2, - 0x6B, 0xF5, 0x0A, 0x4C, 0x9D, 0x6E, 0xEF, 0xAD, 0x61, 0x26, - - 0x01, 0xDB, 0x53, 0x7D, 0xEC, 0xE8, 0x19, 0xB7, 0xF7, 0x0F, /* y */ - 0x55, 0x5A, 0x67, 0xC4, 0x27, 0xA8, 0xCD, 0x9B, 0xF1, 0x8A, - 0xEB, 0x9B, 0x56, 0xE0, 0xC1, 0x10, 0x56, 0xFA, 0xE6, 0xA3, - - 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x9D, 0x5B, 0xB9, 0x15, - 0xBC, 0xD4, 0x6E, 0xFB, 0x1A, 0xD5, 0xF1, 0x73, 0xAB, 0xDF - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 30 * 6]; -} - _EC_NIST_CHAR2_233B = { - { - NID_X9_62_characteristic_two_field, 20, 30, 2 - }, - { - 0x74, 0xD5, 0x9F, 0xF0, 0x7F, 0x6B, 0x41, 0x3D, 0x0E, 0xA1, /* seed */ - 0x4B, 0x34, 0x4B, 0x20, 0xA2, 0xDB, 0x04, 0x9B, 0x50, 0xC3, - - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - - 0x00, 0x66, 0x64, 0x7E, 0xDE, 0x6C, 0x33, 0x2C, 0x7F, 0x8C, /* b */ - 0x09, 0x23, 0xBB, 0x58, 0x21, 0x3B, 0x33, 0x3B, 0x20, 0xE9, - 0xCE, 0x42, 0x81, 0xFE, 0x11, 0x5F, 0x7D, 0x8F, 0x90, 0xAD, - - 0x00, 0xFA, 0xC9, 0xDF, 0xCB, 0xAC, 0x83, 0x13, 0xBB, 0x21, /* x */ - 0x39, 0xF1, 0xBB, 0x75, 0x5F, 0xEF, 0x65, 0xBC, 0x39, 0x1F, - 0x8B, 0x36, 0xF8, 0xF8, 0xEB, 0x73, 0x71, 0xFD, 0x55, 0x8B, - - 0x01, 0x00, 0x6A, 0x08, 0xA4, 0x19, 0x03, 0x35, 0x06, 0x78, /* y */ - 0xE5, 0x85, 0x28, 0xBE, 0xBF, 0x8A, 0x0B, 0xEF, 0xF8, 0x67, - 0xA7, 0xCA, 0x36, 0x71, 0x6F, 0x7E, 0x01, 0xF8, 0x10, 0x52, - - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0xE9, 0x74, 0xE7, 0x2F, - 0x8A, 0x69, 0x22, 0x03, 0x1D, 0x26, 0x03, 0xCF, 0xE0, 0xD7 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 30 * 6]; -} - _EC_SECG_CHAR2_239K1 = { - { - NID_X9_62_characteristic_two_field, 0, 30, 4 - }, - { /* no seed */ - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - - 0x29, 0xA0, 0xB6, 0xA8, 0x87, 0xA9, 0x83, 0xE9, 0x73, 0x09, /* x */ - 0x88, 0xA6, 0x87, 0x27, 0xA8, 0xB2, 0xD1, 0x26, 0xC4, 0x4C, - 0xC2, 0xCC, 0x7B, 0x2A, 0x65, 0x55, 0x19, 0x30, 0x35, 0xDC, - - 0x76, 0x31, 0x08, 0x04, 0xF1, 0x2E, 0x54, 0x9B, 0xDB, 0x01, /* y */ - 0x1C, 0x10, 0x30, 0x89, 0xE7, 0x35, 0x10, 0xAC, 0xB2, 0x75, - 0xFC, 0x31, 0x2A, 0x5D, 0xC6, 0xB7, 0x65, 0x53, 0xF0, 0xCA, - - 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x5A, 0x79, 0xFE, 0xC6, 0x7C, - 0xB6, 0xE9, 0x1F, 0x1C, 0x1D, 0xA8, 0x00, 0xE4, 0x78, 0xA5 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 36 * 6]; -} - _EC_NIST_CHAR2_283K = { - { - NID_X9_62_characteristic_two_field, 0, 36, 4 - }, - { /* no seed */ - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x10, 0xA1, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x05, 0x03, 0x21, 0x3F, 0x78, 0xCA, 0x44, 0x88, 0x3F, 0x1A, /* x */ - 0x3B, 0x81, 0x62, 0xF1, 0x88, 0xE5, 0x53, 0xCD, 0x26, 0x5F, - 0x23, 0xC1, 0x56, 0x7A, 0x16, 0x87, 0x69, 0x13, 0xB0, 0xC2, - 0xAC, 0x24, 0x58, 0x49, 0x28, 0x36, - 0x01, 0xCC, 0xDA, 0x38, 0x0F, 0x1C, 0x9E, 0x31, 0x8D, 0x90, /* y */ - 0xF9, 0x5D, 0x07, 0xE5, 0x42, 0x6F, 0xE8, 0x7E, 0x45, 0xC0, - 0xE8, 0x18, 0x46, 0x98, 0xE4, 0x59, 0x62, 0x36, 0x4E, 0x34, - 0x11, 0x61, 0x77, 0xDD, 0x22, 0x59, - 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE9, 0xAE, - 0x2E, 0xD0, 0x75, 0x77, 0x26, 0x5D, 0xFF, 0x7F, 0x94, 0x45, - 0x1E, 0x06, 0x1E, 0x16, 0x3C, 0x61 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 36 * 6]; -} - _EC_NIST_CHAR2_283B = { - { - NID_X9_62_characteristic_two_field, 20, 36, 2 - }, - { - 0x77, 0xE2, 0xB0, 0x73, 0x70, 0xEB, 0x0F, 0x83, 0x2A, 0x6D, /* no seed */ - 0xD5, 0xB6, 0x2D, 0xFC, 0x88, 0xCD, 0x06, 0xBB, 0x84, 0xBE, - - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x10, 0xA1, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x02, 0x7B, 0x68, 0x0A, 0xC8, 0xB8, 0x59, 0x6D, 0xA5, 0xA4, /* b */ - 0xAF, 0x8A, 0x19, 0xA0, 0x30, 0x3F, 0xCA, 0x97, 0xFD, 0x76, - 0x45, 0x30, 0x9F, 0xA2, 0xA5, 0x81, 0x48, 0x5A, 0xF6, 0x26, - 0x3E, 0x31, 0x3B, 0x79, 0xA2, 0xF5, - 0x05, 0xF9, 0x39, 0x25, 0x8D, 0xB7, 0xDD, 0x90, 0xE1, 0x93, /* x */ - 0x4F, 0x8C, 0x70, 0xB0, 0xDF, 0xEC, 0x2E, 0xED, 0x25, 0xB8, - 0x55, 0x7E, 0xAC, 0x9C, 0x80, 0xE2, 0xE1, 0x98, 0xF8, 0xCD, - 0xBE, 0xCD, 0x86, 0xB1, 0x20, 0x53, - 0x03, 0x67, 0x68, 0x54, 0xFE, 0x24, 0x14, 0x1C, 0xB9, 0x8F, /* y */ - 0xE6, 0xD4, 0xB2, 0x0D, 0x02, 0xB4, 0x51, 0x6F, 0xF7, 0x02, - 0x35, 0x0E, 0xDD, 0xB0, 0x82, 0x67, 0x79, 0xC8, 0x13, 0xF0, - 0xDF, 0x45, 0xBE, 0x81, 0x12, 0xF4, - 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEF, 0x90, - 0x39, 0x96, 0x60, 0xFC, 0x93, 0x8A, 0x90, 0x16, 0x5B, 0x04, - 0x2A, 0x7C, 0xEF, 0xAD, 0xB3, 0x07 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 52 * 6]; -} - _EC_NIST_CHAR2_409K = { - { - NID_X9_62_characteristic_two_field, 0, 52, 4 - }, - { /* no seed */ - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x01, - 0x00, 0x60, 0xF0, 0x5F, 0x65, 0x8F, 0x49, 0xC1, 0xAD, 0x3A, /* x */ - 0xB1, 0x89, 0x0F, 0x71, 0x84, 0x21, 0x0E, 0xFD, 0x09, 0x87, - 0xE3, 0x07, 0xC8, 0x4C, 0x27, 0xAC, 0xCF, 0xB8, 0xF9, 0xF6, - 0x7C, 0xC2, 0xC4, 0x60, 0x18, 0x9E, 0xB5, 0xAA, 0xAA, 0x62, - 0xEE, 0x22, 0x2E, 0xB1, 0xB3, 0x55, 0x40, 0xCF, 0xE9, 0x02, - 0x37, 0x46, - 0x01, 0xE3, 0x69, 0x05, 0x0B, 0x7C, 0x4E, 0x42, 0xAC, 0xBA, /* y */ - 0x1D, 0xAC, 0xBF, 0x04, 0x29, 0x9C, 0x34, 0x60, 0x78, 0x2F, - 0x91, 0x8E, 0xA4, 0x27, 0xE6, 0x32, 0x51, 0x65, 0xE9, 0xEA, - 0x10, 0xE3, 0xDA, 0x5F, 0x6C, 0x42, 0xE9, 0xC5, 0x52, 0x15, - 0xAA, 0x9C, 0xA2, 0x7A, 0x58, 0x63, 0xEC, 0x48, 0xD8, 0xE0, - 0x28, 0x6B, - 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0x5F, 0x83, 0xB2, - 0xD4, 0xEA, 0x20, 0x40, 0x0E, 0xC4, 0x55, 0x7D, 0x5E, 0xD3, - 0xE3, 0xE7, 0xCA, 0x5B, 0x4B, 0x5C, 0x83, 0xB8, 0xE0, 0x1E, - 0x5F, 0xCF - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 52 * 6]; -} - _EC_NIST_CHAR2_409B = { - { - NID_X9_62_characteristic_two_field, 20, 52, 2 - }, - { - 0x40, 0x99, 0xB5, 0xA4, 0x57, 0xF9, 0xD6, 0x9F, 0x79, 0x21, /* seed */ - 0x3D, 0x09, 0x4C, 0x4B, 0xCD, 0x4D, 0x42, 0x62, 0x21, 0x0B, - - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x01, - 0x00, 0x21, 0xA5, 0xC2, 0xC8, 0xEE, 0x9F, 0xEB, 0x5C, 0x4B, /* b */ - 0x9A, 0x75, 0x3B, 0x7B, 0x47, 0x6B, 0x7F, 0xD6, 0x42, 0x2E, - 0xF1, 0xF3, 0xDD, 0x67, 0x47, 0x61, 0xFA, 0x99, 0xD6, 0xAC, - 0x27, 0xC8, 0xA9, 0xA1, 0x97, 0xB2, 0x72, 0x82, 0x2F, 0x6C, - 0xD5, 0x7A, 0x55, 0xAA, 0x4F, 0x50, 0xAE, 0x31, 0x7B, 0x13, - 0x54, 0x5F, - 0x01, 0x5D, 0x48, 0x60, 0xD0, 0x88, 0xDD, 0xB3, 0x49, 0x6B, /* x */ - 0x0C, 0x60, 0x64, 0x75, 0x62, 0x60, 0x44, 0x1C, 0xDE, 0x4A, - 0xF1, 0x77, 0x1D, 0x4D, 0xB0, 0x1F, 0xFE, 0x5B, 0x34, 0xE5, - 0x97, 0x03, 0xDC, 0x25, 0x5A, 0x86, 0x8A, 0x11, 0x80, 0x51, - 0x56, 0x03, 0xAE, 0xAB, 0x60, 0x79, 0x4E, 0x54, 0xBB, 0x79, - 0x96, 0xA7, - 0x00, 0x61, 0xB1, 0xCF, 0xAB, 0x6B, 0xE5, 0xF3, 0x2B, 0xBF, /* y */ - 0xA7, 0x83, 0x24, 0xED, 0x10, 0x6A, 0x76, 0x36, 0xB9, 0xC5, - 0xA7, 0xBD, 0x19, 0x8D, 0x01, 0x58, 0xAA, 0x4F, 0x54, 0x88, - 0xD0, 0x8F, 0x38, 0x51, 0x4F, 0x1F, 0xDF, 0x4B, 0x4F, 0x40, - 0xD2, 0x18, 0x1B, 0x36, 0x81, 0xC3, 0x64, 0xBA, 0x02, 0x73, - 0xC7, 0x06, - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xE2, 0xAA, 0xD6, - 0xA6, 0x12, 0xF3, 0x33, 0x07, 0xBE, 0x5F, 0xA4, 0x7C, 0x3C, - 0x9E, 0x05, 0x2F, 0x83, 0x81, 0x64, 0xCD, 0x37, 0xD9, 0xA2, - 0x11, 0x73 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 72 * 6]; -} - _EC_NIST_CHAR2_571K = { - { - NID_X9_62_characteristic_two_field, 0, 72, 4 - }, - { /* no seed */ - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x04, 0x25, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x01, - 0x02, 0x6E, 0xB7, 0xA8, 0x59, 0x92, 0x3F, 0xBC, 0x82, 0x18, /* x */ - 0x96, 0x31, 0xF8, 0x10, 0x3F, 0xE4, 0xAC, 0x9C, 0xA2, 0x97, - 0x00, 0x12, 0xD5, 0xD4, 0x60, 0x24, 0x80, 0x48, 0x01, 0x84, - 0x1C, 0xA4, 0x43, 0x70, 0x95, 0x84, 0x93, 0xB2, 0x05, 0xE6, - 0x47, 0xDA, 0x30, 0x4D, 0xB4, 0xCE, 0xB0, 0x8C, 0xBB, 0xD1, - 0xBA, 0x39, 0x49, 0x47, 0x76, 0xFB, 0x98, 0x8B, 0x47, 0x17, - 0x4D, 0xCA, 0x88, 0xC7, 0xE2, 0x94, 0x52, 0x83, 0xA0, 0x1C, - 0x89, 0x72, - 0x03, 0x49, 0xDC, 0x80, 0x7F, 0x4F, 0xBF, 0x37, 0x4F, 0x4A, /* y */ - 0xEA, 0xDE, 0x3B, 0xCA, 0x95, 0x31, 0x4D, 0xD5, 0x8C, 0xEC, - 0x9F, 0x30, 0x7A, 0x54, 0xFF, 0xC6, 0x1E, 0xFC, 0x00, 0x6D, - 0x8A, 0x2C, 0x9D, 0x49, 0x79, 0xC0, 0xAC, 0x44, 0xAE, 0xA7, - 0x4F, 0xBE, 0xBB, 0xB9, 0xF7, 0x72, 0xAE, 0xDC, 0xB6, 0x20, - 0xB0, 0x1A, 0x7B, 0xA7, 0xAF, 0x1B, 0x32, 0x04, 0x30, 0xC8, - 0x59, 0x19, 0x84, 0xF6, 0x01, 0xCD, 0x4C, 0x14, 0x3E, 0xF1, - 0xC7, 0xA3, - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x18, 0x50, 0xE1, - 0xF1, 0x9A, 0x63, 0xE4, 0xB3, 0x91, 0xA8, 0xDB, 0x91, 0x7F, - 0x41, 0x38, 0xB6, 0x30, 0xD8, 0x4B, 0xE5, 0xD6, 0x39, 0x38, - 0x1E, 0x91, 0xDE, 0xB4, 0x5C, 0xFE, 0x77, 0x8F, 0x63, 0x7C, - 0x10, 0x01 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 72 * 6]; -} - _EC_NIST_CHAR2_571B = { - { - NID_X9_62_characteristic_two_field, 20, 72, 2 - }, - { - 0x2A, 0xA0, 0x58, 0xF7, 0x3A, 0x0E, 0x33, 0xAB, 0x48, 0x6B, /* seed */ - 0x0F, 0x61, 0x04, 0x10, 0xC5, 0x3A, 0x7F, 0x13, 0x23, 0x10, - - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x04, 0x25, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x01, - 0x02, 0xF4, 0x0E, 0x7E, 0x22, 0x21, 0xF2, 0x95, 0xDE, 0x29, /* b */ - 0x71, 0x17, 0xB7, 0xF3, 0xD6, 0x2F, 0x5C, 0x6A, 0x97, 0xFF, - 0xCB, 0x8C, 0xEF, 0xF1, 0xCD, 0x6B, 0xA8, 0xCE, 0x4A, 0x9A, - 0x18, 0xAD, 0x84, 0xFF, 0xAB, 0xBD, 0x8E, 0xFA, 0x59, 0x33, - 0x2B, 0xE7, 0xAD, 0x67, 0x56, 0xA6, 0x6E, 0x29, 0x4A, 0xFD, - 0x18, 0x5A, 0x78, 0xFF, 0x12, 0xAA, 0x52, 0x0E, 0x4D, 0xE7, - 0x39, 0xBA, 0xCA, 0x0C, 0x7F, 0xFE, 0xFF, 0x7F, 0x29, 0x55, - 0x72, 0x7A, - 0x03, 0x03, 0x00, 0x1D, 0x34, 0xB8, 0x56, 0x29, 0x6C, 0x16, /* x */ - 0xC0, 0xD4, 0x0D, 0x3C, 0xD7, 0x75, 0x0A, 0x93, 0xD1, 0xD2, - 0x95, 0x5F, 0xA8, 0x0A, 0xA5, 0xF4, 0x0F, 0xC8, 0xDB, 0x7B, - 0x2A, 0xBD, 0xBD, 0xE5, 0x39, 0x50, 0xF4, 0xC0, 0xD2, 0x93, - 0xCD, 0xD7, 0x11, 0xA3, 0x5B, 0x67, 0xFB, 0x14, 0x99, 0xAE, - 0x60, 0x03, 0x86, 0x14, 0xF1, 0x39, 0x4A, 0xBF, 0xA3, 0xB4, - 0xC8, 0x50, 0xD9, 0x27, 0xE1, 0xE7, 0x76, 0x9C, 0x8E, 0xEC, - 0x2D, 0x19, - 0x03, 0x7B, 0xF2, 0x73, 0x42, 0xDA, 0x63, 0x9B, 0x6D, 0xCC, /* y */ - 0xFF, 0xFE, 0xB7, 0x3D, 0x69, 0xD7, 0x8C, 0x6C, 0x27, 0xA6, - 0x00, 0x9C, 0xBB, 0xCA, 0x19, 0x80, 0xF8, 0x53, 0x39, 0x21, - 0xE8, 0xA6, 0x84, 0x42, 0x3E, 0x43, 0xBA, 0xB0, 0x8A, 0x57, - 0x62, 0x91, 0xAF, 0x8F, 0x46, 0x1B, 0xB2, 0xA8, 0xB3, 0x53, - 0x1D, 0x2F, 0x04, 0x85, 0xC1, 0x9B, 0x16, 0xE2, 0xF1, 0x51, - 0x6E, 0x23, 0xDD, 0x3C, 0x1A, 0x48, 0x27, 0xAF, 0x1B, 0x8A, - 0xC1, 0x5B, - 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE6, 0x61, 0xCE, 0x18, - 0xFF, 0x55, 0x98, 0x73, 0x08, 0x05, 0x9B, 0x18, 0x68, 0x23, - 0x85, 0x1E, 0xC7, 0xDD, 0x9C, 0xA1, 0x16, 0x1D, 0xE9, 0x3D, - 0x51, 0x74, 0xD6, 0x6E, 0x83, 0x82, 0xE9, 0xBB, 0x2F, 0xE8, - 0x4E, 0x47 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 21 * 6]; -} - _EC_X9_62_CHAR2_163V1 = { - { - NID_X9_62_characteristic_two_field, 20, 21, 2 - }, - { - 0xD2, 0xC0, 0xFB, 0x15, 0x76, 0x08, 0x60, 0xDE, 0xF1, 0xEE, - 0xF4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x54, /* seed */ - - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x07, - 0x07, 0x25, 0x46, 0xB5, 0x43, 0x52, 0x34, 0xA4, 0x22, 0xE0, /* a */ - 0x78, 0x96, 0x75, 0xF4, 0x32, 0xC8, 0x94, 0x35, 0xDE, 0x52, - 0x42, - 0x00, 0xC9, 0x51, 0x7D, 0x06, 0xD5, 0x24, 0x0D, 0x3C, 0xFF, /* b */ - 0x38, 0xC7, 0x4B, 0x20, 0xB6, 0xCD, 0x4D, 0x6F, 0x9D, 0xD4, - 0xD9, - 0x07, 0xAF, 0x69, 0x98, 0x95, 0x46, 0x10, 0x3D, 0x79, 0x32, /* x */ - 0x9F, 0xCC, 0x3D, 0x74, 0x88, 0x0F, 0x33, 0xBB, 0xE8, 0x03, - 0xCB, - 0x01, 0xEC, 0x23, 0x21, 0x1B, 0x59, 0x66, 0xAD, 0xEA, 0x1D, /* y */ - 0x3F, 0x87, 0xF7, 0xEA, 0x58, 0x48, 0xAE, 0xF0, 0xB7, 0xCA, - 0x9F, - 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x01, 0xE6, 0x0F, 0xC8, 0x82, 0x1C, 0xC7, 0x4D, 0xAE, 0xAF, - 0xC1 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 21 * 6]; -} - _EC_X9_62_CHAR2_163V2 = { - { - NID_X9_62_characteristic_two_field, 20, 21, 2 - }, - { - 0x53, 0x81, 0x4C, 0x05, 0x0D, 0x44, 0xD6, 0x96, 0xE6, 0x76, /* seed */ - 0x87, 0x56, 0x15, 0x17, 0x58, 0x0C, 0xA4, 0xE2, 0x9F, 0xFD, - - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x07, - 0x01, 0x08, 0xB3, 0x9E, 0x77, 0xC4, 0xB1, 0x08, 0xBE, 0xD9, /* a */ - 0x81, 0xED, 0x0E, 0x89, 0x0E, 0x11, 0x7C, 0x51, 0x1C, 0xF0, - 0x72, - 0x06, 0x67, 0xAC, 0xEB, 0x38, 0xAF, 0x4E, 0x48, 0x8C, 0x40, /* b */ - 0x74, 0x33, 0xFF, 0xAE, 0x4F, 0x1C, 0x81, 0x16, 0x38, 0xDF, - 0x20, - 0x00, 0x24, 0x26, 0x6E, 0x4E, 0xB5, 0x10, 0x6D, 0x0A, 0x96, /* x */ - 0x4D, 0x92, 0xC4, 0x86, 0x0E, 0x26, 0x71, 0xDB, 0x9B, 0x6C, - 0xC5, - 0x07, 0x9F, 0x68, 0x4D, 0xDF, 0x66, 0x84, 0xC5, 0xCD, 0x25, /* y */ - 0x8B, 0x38, 0x90, 0x02, 0x1B, 0x23, 0x86, 0xDF, 0xD1, 0x9F, - 0xC5, - 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ - 0xFD, 0xF6, 0x4D, 0xE1, 0x15, 0x1A, 0xDB, 0xB7, 0x8F, 0x10, - 0xA7 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 21 * 6]; -} - _EC_X9_62_CHAR2_163V3 = { - { - NID_X9_62_characteristic_two_field, 20, 21, 2 - }, - { - 0x50, 0xCB, 0xF1, 0xD9, 0x5C, 0xA9, 0x4D, 0x69, 0x6E, 0x67, /* seed */ - 0x68, 0x75, 0x61, 0x51, 0x75, 0xF1, 0x6A, 0x36, 0xA3, 0xB8, - - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x07, - 0x07, 0xA5, 0x26, 0xC6, 0x3D, 0x3E, 0x25, 0xA2, 0x56, 0xA0, /* a */ - 0x07, 0x69, 0x9F, 0x54, 0x47, 0xE3, 0x2A, 0xE4, 0x56, 0xB5, - 0x0E, - 0x03, 0xF7, 0x06, 0x17, 0x98, 0xEB, 0x99, 0xE2, 0x38, 0xFD, /* b */ - 0x6F, 0x1B, 0xF9, 0x5B, 0x48, 0xFE, 0xEB, 0x48, 0x54, 0x25, - 0x2B, - 0x02, 0xF9, 0xF8, 0x7B, 0x7C, 0x57, 0x4D, 0x0B, 0xDE, 0xCF, /* x */ - 0x8A, 0x22, 0xE6, 0x52, 0x47, 0x75, 0xF9, 0x8C, 0xDE, 0xBD, - 0xCB, - 0x05, 0xB9, 0x35, 0x59, 0x0C, 0x15, 0x5E, 0x17, 0xEA, 0x48, /* y */ - 0xEB, 0x3F, 0xF3, 0x71, 0x8B, 0x89, 0x3D, 0xF5, 0x9A, 0x05, - 0xD0, - 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ - 0xFE, 0x1A, 0xEE, 0x14, 0x0F, 0x11, 0x0A, 0xFF, 0x96, 0x13, - 0x09 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 23 * 6]; -} - _EC_X9_62_CHAR2_176V1 = { - { - NID_X9_62_characteristic_two_field, 0, 23, 0xFF6E - }, - { /* no seed */ - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, - 0x00, 0x00, 0x07, - 0x00, 0xE4, 0xE6, 0xDB, 0x29, 0x95, 0x06, 0x5C, 0x40, 0x7D, /* a */ - 0x9D, 0x39, 0xB8, 0xD0, 0x96, 0x7B, 0x96, 0x70, 0x4B, 0xA8, - 0xE9, 0xC9, 0x0B, - 0x00, 0x5D, 0xDA, 0x47, 0x0A, 0xBE, 0x64, 0x14, 0xDE, 0x8E, /* b */ - 0xC1, 0x33, 0xAE, 0x28, 0xE9, 0xBB, 0xD7, 0xFC, 0xEC, 0x0A, - 0xE0, 0xFF, 0xF2, - 0x00, 0x8D, 0x16, 0xC2, 0x86, 0x67, 0x98, 0xB6, 0x00, 0xF9, /* x */ - 0xF0, 0x8B, 0xB4, 0xA8, 0xE8, 0x60, 0xF3, 0x29, 0x8C, 0xE0, - 0x4A, 0x57, 0x98, - 0x00, 0x6F, 0xA4, 0x53, 0x9C, 0x2D, 0xAD, 0xDD, 0xD6, 0xBA, /* y */ - 0xB5, 0x16, 0x7D, 0x61, 0xB4, 0x36, 0xE1, 0xD9, 0x2B, 0xB1, - 0x6A, 0x56, 0x2C, - 0x00, 0x00, 0x01, 0x00, 0x92, 0x53, 0x73, 0x97, 0xEC, 0xA4, /* order */ - 0xF6, 0x14, 0x57, 0x99, 0xD6, 0x2B, 0x0A, 0x19, 0xCE, 0x06, - 0xFE, 0x26, 0xAD - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 24 * 6]; -} - _EC_X9_62_CHAR2_191V1 = { - { - NID_X9_62_characteristic_two_field, 20, 24, 2 - }, - { - 0x4E, 0x13, 0xCA, 0x54, 0x27, 0x44, 0xD6, 0x96, 0xE6, 0x76, /* seed */ - 0x87, 0x56, 0x15, 0x17, 0x55, 0x2F, 0x27, 0x9A, 0x8C, 0x84, - - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x02, 0x01, - 0x28, 0x66, 0x53, 0x7B, 0x67, 0x67, 0x52, 0x63, 0x6A, 0x68, /* a */ - 0xF5, 0x65, 0x54, 0xE1, 0x26, 0x40, 0x27, 0x6B, 0x64, 0x9E, - 0xF7, 0x52, 0x62, 0x67, - 0x2E, 0x45, 0xEF, 0x57, 0x1F, 0x00, 0x78, 0x6F, 0x67, 0xB0, /* b */ - 0x08, 0x1B, 0x94, 0x95, 0xA3, 0xD9, 0x54, 0x62, 0xF5, 0xDE, - 0x0A, 0xA1, 0x85, 0xEC, - 0x36, 0xB3, 0xDA, 0xF8, 0xA2, 0x32, 0x06, 0xF9, 0xC4, 0xF2, /* x */ - 0x99, 0xD7, 0xB2, 0x1A, 0x9C, 0x36, 0x91, 0x37, 0xF2, 0xC8, - 0x4A, 0xE1, 0xAA, 0x0D, - 0x76, 0x5B, 0xE7, 0x34, 0x33, 0xB3, 0xF9, 0x5E, 0x33, 0x29, /* y */ - 0x32, 0xE7, 0x0E, 0xA2, 0x45, 0xCA, 0x24, 0x18, 0xEA, 0x0E, - 0xF9, 0x80, 0x18, 0xFB, - 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x04, 0xA2, 0x0E, 0x90, 0xC3, 0x90, 0x67, 0xC8, - 0x93, 0xBB, 0xB9, 0xA5 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 24 * 6]; -} - _EC_X9_62_CHAR2_191V2 = { - { - NID_X9_62_characteristic_two_field, 20, 24, 4 - }, - { - 0x08, 0x71, 0xEF, 0x2F, 0xEF, 0x24, 0xD6, 0x96, 0xE6, 0x76, /* seed */ - 0x87, 0x56, 0x15, 0x17, 0x58, 0xBE, 0xE0, 0xD9, 0x5C, 0x15, - - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x02, 0x01, - 0x40, 0x10, 0x28, 0x77, 0x4D, 0x77, 0x77, 0xC7, 0xB7, 0x66, /* a */ - 0x6D, 0x13, 0x66, 0xEA, 0x43, 0x20, 0x71, 0x27, 0x4F, 0x89, - 0xFF, 0x01, 0xE7, 0x18, - 0x06, 0x20, 0x04, 0x8D, 0x28, 0xBC, 0xBD, 0x03, 0xB6, 0x24, /* b */ - 0x9C, 0x99, 0x18, 0x2B, 0x7C, 0x8C, 0xD1, 0x97, 0x00, 0xC3, - 0x62, 0xC4, 0x6A, 0x01, - 0x38, 0x09, 0xB2, 0xB7, 0xCC, 0x1B, 0x28, 0xCC, 0x5A, 0x87, /* x */ - 0x92, 0x6A, 0xAD, 0x83, 0xFD, 0x28, 0x78, 0x9E, 0x81, 0xE2, - 0xC9, 0xE3, 0xBF, 0x10, - 0x17, 0x43, 0x43, 0x86, 0x62, 0x6D, 0x14, 0xF3, 0xDB, 0xF0, /* y */ - 0x17, 0x60, 0xD9, 0x21, 0x3A, 0x3E, 0x1C, 0xF3, 0x7A, 0xEC, - 0x43, 0x7D, 0x66, 0x8A, - 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x50, 0x50, 0x8C, 0xB8, 0x9F, 0x65, 0x28, 0x24, - 0xE0, 0x6B, 0x81, 0x73 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 24 * 6]; -} - _EC_X9_62_CHAR2_191V3 = { - { - NID_X9_62_characteristic_two_field, 20, 24, 6 - }, - { - 0xE0, 0x53, 0x51, 0x2D, 0xC6, 0x84, 0xD6, 0x96, 0xE6, 0x76, /* seed */ - 0x87, 0x56, 0x15, 0x17, 0x50, 0x67, 0xAE, 0x78, 0x6D, 0x1F, - - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x02, 0x01, - 0x6C, 0x01, 0x07, 0x47, 0x56, 0x09, 0x91, 0x22, 0x22, 0x10, /* a */ - 0x56, 0x91, 0x1C, 0x77, 0xD7, 0x7E, 0x77, 0xA7, 0x77, 0xE7, - 0xE7, 0xE7, 0x7F, 0xCB, - 0x71, 0xFE, 0x1A, 0xF9, 0x26, 0xCF, 0x84, 0x79, 0x89, 0xEF, /* b */ - 0xEF, 0x8D, 0xB4, 0x59, 0xF6, 0x63, 0x94, 0xD9, 0x0F, 0x32, - 0xAD, 0x3F, 0x15, 0xE8, - 0x37, 0x5D, 0x4C, 0xE2, 0x4F, 0xDE, 0x43, 0x44, 0x89, 0xDE, /* x */ - 0x87, 0x46, 0xE7, 0x17, 0x86, 0x01, 0x50, 0x09, 0xE6, 0x6E, - 0x38, 0xA9, 0x26, 0xDD, - 0x54, 0x5A, 0x39, 0x17, 0x61, 0x96, 0x57, 0x5D, 0x98, 0x59, /* y */ - 0x99, 0x36, 0x6E, 0x6A, 0xD3, 0x4C, 0xE0, 0xA7, 0x7C, 0xD7, - 0x12, 0x7B, 0x06, 0xBE, - 0x15, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, /* order */ - 0x55, 0x55, 0x61, 0x0C, 0x0B, 0x19, 0x68, 0x12, 0xBF, 0xB6, - 0x28, 0x8A, 0x3E, 0xA3 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 27 * 6]; -} - _EC_X9_62_CHAR2_208W1 = { - { - NID_X9_62_characteristic_two_field, 0, 27, 0xFE48 - }, - { /* no seed */ - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0xC8, 0x61, 0x9E, 0xD4, 0x5A, 0x62, 0xE6, 0x21, 0x2E, /* b */ - 0x11, 0x60, 0x34, 0x9E, 0x2B, 0xFA, 0x84, 0x44, 0x39, 0xFA, - 0xFC, 0x2A, 0x3F, 0xD1, 0x63, 0x8F, 0x9E, - 0x00, 0x89, 0xFD, 0xFB, 0xE4, 0xAB, 0xE1, 0x93, 0xDF, 0x95, /* x */ - 0x59, 0xEC, 0xF0, 0x7A, 0xC0, 0xCE, 0x78, 0x55, 0x4E, 0x27, - 0x84, 0xEB, 0x8C, 0x1E, 0xD1, 0xA5, 0x7A, - 0x00, 0x0F, 0x55, 0xB5, 0x1A, 0x06, 0xE7, 0x8E, 0x9A, 0xC3, /* y */ - 0x8A, 0x03, 0x5F, 0xF5, 0x20, 0xD8, 0xB0, 0x17, 0x81, 0xBE, - 0xB1, 0xA6, 0xBB, 0x08, 0x61, 0x7D, 0xE3, - 0x00, 0x00, 0x01, 0x01, 0xBA, 0xF9, 0x5C, 0x97, 0x23, 0xC5, /* order */ - 0x7B, 0x6C, 0x21, 0xDA, 0x2E, 0xFF, 0x2D, 0x5E, 0xD5, 0x88, - 0xBD, 0xD5, 0x71, 0x7E, 0x21, 0x2F, 0x9D - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 30 * 6]; -} - _EC_X9_62_CHAR2_239V1 = { - { - NID_X9_62_characteristic_two_field, 20, 30, 4 - }, - { - 0xD3, 0x4B, 0x9A, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, /* seed */ - 0x51, 0x75, 0xCA, 0x71, 0xB9, 0x20, 0xBF, 0xEF, 0xB0, 0x5D, - - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, - - 0x32, 0x01, 0x08, 0x57, 0x07, 0x7C, 0x54, 0x31, 0x12, 0x3A, /* a */ - 0x46, 0xB8, 0x08, 0x90, 0x67, 0x56, 0xF5, 0x43, 0x42, 0x3E, - 0x8D, 0x27, 0x87, 0x75, 0x78, 0x12, 0x57, 0x78, 0xAC, 0x76, - - 0x79, 0x04, 0x08, 0xF2, 0xEE, 0xDA, 0xF3, 0x92, 0xB0, 0x12, /* b */ - 0xED, 0xEF, 0xB3, 0x39, 0x2F, 0x30, 0xF4, 0x32, 0x7C, 0x0C, - 0xA3, 0xF3, 0x1F, 0xC3, 0x83, 0xC4, 0x22, 0xAA, 0x8C, 0x16, - - 0x57, 0x92, 0x70, 0x98, 0xFA, 0x93, 0x2E, 0x7C, 0x0A, 0x96, /* x */ - 0xD3, 0xFD, 0x5B, 0x70, 0x6E, 0xF7, 0xE5, 0xF5, 0xC1, 0x56, - 0xE1, 0x6B, 0x7E, 0x7C, 0x86, 0x03, 0x85, 0x52, 0xE9, 0x1D, - - 0x61, 0xD8, 0xEE, 0x50, 0x77, 0xC3, 0x3F, 0xEC, 0xF6, 0xF1, /* y */ - 0xA1, 0x6B, 0x26, 0x8D, 0xE4, 0x69, 0xC3, 0xC7, 0x74, 0x4E, - 0xA9, 0xA9, 0x71, 0x64, 0x9F, 0xC7, 0xA9, 0x61, 0x63, 0x05, - - 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x4D, 0x42, 0xFF, 0xE1, - 0x49, 0x2A, 0x49, 0x93, 0xF1, 0xCA, 0xD6, 0x66, 0xE4, 0x47 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 30 * 6]; -} - _EC_X9_62_CHAR2_239V2 = { - { - NID_X9_62_characteristic_two_field, 20, 30, 6 - }, - { - 0x2A, 0xA6, 0x98, 0x2F, 0xDF, 0xA4, 0xD6, 0x96, 0xE6, 0x76, /* seed */ - 0x87, 0x56, 0x15, 0x17, 0x5D, 0x26, 0x67, 0x27, 0x27, 0x7D, - - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, - - 0x42, 0x30, 0x01, 0x77, 0x57, 0xA7, 0x67, 0xFA, 0xE4, 0x23, /* a */ - 0x98, 0x56, 0x9B, 0x74, 0x63, 0x25, 0xD4, 0x53, 0x13, 0xAF, - 0x07, 0x66, 0x26, 0x64, 0x79, 0xB7, 0x56, 0x54, 0xE6, 0x5F, - - 0x50, 0x37, 0xEA, 0x65, 0x41, 0x96, 0xCF, 0xF0, 0xCD, 0x82, /* b */ - 0xB2, 0xC1, 0x4A, 0x2F, 0xCF, 0x2E, 0x3F, 0xF8, 0x77, 0x52, - 0x85, 0xB5, 0x45, 0x72, 0x2F, 0x03, 0xEA, 0xCD, 0xB7, 0x4B, - - 0x28, 0xF9, 0xD0, 0x4E, 0x90, 0x00, 0x69, 0xC8, 0xDC, 0x47, /* x */ - 0xA0, 0x85, 0x34, 0xFE, 0x76, 0xD2, 0xB9, 0x00, 0xB7, 0xD7, - 0xEF, 0x31, 0xF5, 0x70, 0x9F, 0x20, 0x0C, 0x4C, 0xA2, 0x05, - - 0x56, 0x67, 0x33, 0x4C, 0x45, 0xAF, 0xF3, 0xB5, 0xA0, 0x3B, /* y */ - 0xAD, 0x9D, 0xD7, 0x5E, 0x2C, 0x71, 0xA9, 0x93, 0x62, 0x56, - 0x7D, 0x54, 0x53, 0xF7, 0xFA, 0x6E, 0x22, 0x7E, 0xC8, 0x33, - - 0x15, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, /* order */ - 0x55, 0x55, 0x55, 0x55, 0x55, 0x3C, 0x6F, 0x28, 0x85, 0x25, - 0x9C, 0x31, 0xE3, 0xFC, 0xDF, 0x15, 0x46, 0x24, 0x52, 0x2D - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 30 * 6]; -} - _EC_X9_62_CHAR2_239V3 = { - { - NID_X9_62_characteristic_two_field, 20, 30, 0xA - }, - { - 0x9E, 0x07, 0x6F, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, /* seed */ - 0x51, 0x75, 0xE1, 0x1E, 0x9F, 0xDD, 0x77, 0xF9, 0x20, 0x41, - - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, - - 0x01, 0x23, 0x87, 0x74, 0x66, 0x6A, 0x67, 0x76, 0x6D, 0x66, /* a */ - 0x76, 0xF7, 0x78, 0xE6, 0x76, 0xB6, 0x69, 0x99, 0x17, 0x66, - 0x66, 0xE6, 0x87, 0x66, 0x6D, 0x87, 0x66, 0xC6, 0x6A, 0x9F, - - 0x6A, 0x94, 0x19, 0x77, 0xBA, 0x9F, 0x6A, 0x43, 0x51, 0x99, /* b */ - 0xAC, 0xFC, 0x51, 0x06, 0x7E, 0xD5, 0x87, 0xF5, 0x19, 0xC5, - 0xEC, 0xB5, 0x41, 0xB8, 0xE4, 0x41, 0x11, 0xDE, 0x1D, 0x40, - - 0x70, 0xF6, 0xE9, 0xD0, 0x4D, 0x28, 0x9C, 0x4E, 0x89, 0x91, /* x */ - 0x3C, 0xE3, 0x53, 0x0B, 0xFD, 0xE9, 0x03, 0x97, 0x7D, 0x42, - 0xB1, 0x46, 0xD5, 0x39, 0xBF, 0x1B, 0xDE, 0x4E, 0x9C, 0x92, - - 0x2E, 0x5A, 0x0E, 0xAF, 0x6E, 0x5E, 0x13, 0x05, 0xB9, 0x00, /* y */ - 0x4D, 0xCE, 0x5C, 0x0E, 0xD7, 0xFE, 0x59, 0xA3, 0x56, 0x08, - 0xF3, 0x38, 0x37, 0xC8, 0x16, 0xD8, 0x0B, 0x79, 0xF4, 0x61, - - 0x0C, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, /* order */ - 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xAC, 0x49, 0x12, 0xD2, 0xD9, - 0xDF, 0x90, 0x3E, 0xF9, 0x88, 0x8B, 0x8A, 0x0E, 0x4C, 0xFF - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 35 * 6]; -} - _EC_X9_62_CHAR2_272W1 = { - { - NID_X9_62_characteristic_two_field, 0, 35, 0xFF06 - }, - { /* no seed */ - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x0B, - 0x00, 0x91, 0xA0, 0x91, 0xF0, 0x3B, 0x5F, 0xBA, 0x4A, 0xB2, /* a */ - 0xCC, 0xF4, 0x9C, 0x4E, 0xDD, 0x22, 0x0F, 0xB0, 0x28, 0x71, - 0x2D, 0x42, 0xBE, 0x75, 0x2B, 0x2C, 0x40, 0x09, 0x4D, 0xBA, - 0xCD, 0xB5, 0x86, 0xFB, 0x20, - 0x00, 0x71, 0x67, 0xEF, 0xC9, 0x2B, 0xB2, 0xE3, 0xCE, 0x7C, /* b */ - 0x8A, 0xAA, 0xFF, 0x34, 0xE1, 0x2A, 0x9C, 0x55, 0x70, 0x03, - 0xD7, 0xC7, 0x3A, 0x6F, 0xAF, 0x00, 0x3F, 0x99, 0xF6, 0xCC, - 0x84, 0x82, 0xE5, 0x40, 0xF7, - 0x00, 0x61, 0x08, 0xBA, 0xBB, 0x2C, 0xEE, 0xBC, 0xF7, 0x87, /* x */ - 0x05, 0x8A, 0x05, 0x6C, 0xBE, 0x0C, 0xFE, 0x62, 0x2D, 0x77, - 0x23, 0xA2, 0x89, 0xE0, 0x8A, 0x07, 0xAE, 0x13, 0xEF, 0x0D, - 0x10, 0xD1, 0x71, 0xDD, 0x8D, - 0x00, 0x10, 0xC7, 0x69, 0x57, 0x16, 0x85, 0x1E, 0xEF, 0x6B, /* y */ - 0xA7, 0xF6, 0x87, 0x2E, 0x61, 0x42, 0xFB, 0xD2, 0x41, 0xB8, - 0x30, 0xFF, 0x5E, 0xFC, 0xAC, 0xEC, 0xCA, 0xB0, 0x5E, 0x02, - 0x00, 0x5D, 0xDE, 0x9D, 0x23, - 0x00, 0x00, 0x01, 0x00, 0xFA, 0xF5, 0x13, 0x54, 0xE0, 0xE3, /* order */ - 0x9E, 0x48, 0x92, 0xDF, 0x6E, 0x31, 0x9C, 0x72, 0xC8, 0x16, - 0x16, 0x03, 0xFA, 0x45, 0xAA, 0x7B, 0x99, 0x8A, 0x16, 0x7B, - 0x8F, 0x1E, 0x62, 0x95, 0x21 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 39 * 6]; -} - _EC_X9_62_CHAR2_304W1 = { - { - NID_X9_62_characteristic_two_field, 0, 39, 0xFE2E - }, - { /* no seed */ - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x07, - 0x00, 0xFD, 0x0D, 0x69, 0x31, 0x49, 0xA1, 0x18, 0xF6, 0x51, /* a */ - 0xE6, 0xDC, 0xE6, 0x80, 0x20, 0x85, 0x37, 0x7E, 0x5F, 0x88, - 0x2D, 0x1B, 0x51, 0x0B, 0x44, 0x16, 0x00, 0x74, 0xC1, 0x28, - 0x80, 0x78, 0x36, 0x5A, 0x03, 0x96, 0xC8, 0xE6, 0x81, - 0x00, 0xBD, 0xDB, 0x97, 0xE5, 0x55, 0xA5, 0x0A, 0x90, 0x8E, /* b */ - 0x43, 0xB0, 0x1C, 0x79, 0x8E, 0xA5, 0xDA, 0xA6, 0x78, 0x8F, - 0x1E, 0xA2, 0x79, 0x4E, 0xFC, 0xF5, 0x71, 0x66, 0xB8, 0xC1, - 0x40, 0x39, 0x60, 0x1E, 0x55, 0x82, 0x73, 0x40, 0xBE, - 0x00, 0x19, 0x7B, 0x07, 0x84, 0x5E, 0x9B, 0xE2, 0xD9, 0x6A, /* x */ - 0xDB, 0x0F, 0x5F, 0x3C, 0x7F, 0x2C, 0xFF, 0xBD, 0x7A, 0x3E, - 0xB8, 0xB6, 0xFE, 0xC3, 0x5C, 0x7F, 0xD6, 0x7F, 0x26, 0xDD, - 0xF6, 0x28, 0x5A, 0x64, 0x4F, 0x74, 0x0A, 0x26, 0x14, - 0x00, 0xE1, 0x9F, 0xBE, 0xB7, 0x6E, 0x0D, 0xA1, 0x71, 0x51, /* y */ - 0x7E, 0xCF, 0x40, 0x1B, 0x50, 0x28, 0x9B, 0xF0, 0x14, 0x10, - 0x32, 0x88, 0x52, 0x7A, 0x9B, 0x41, 0x6A, 0x10, 0x5E, 0x80, - 0x26, 0x0B, 0x54, 0x9F, 0xDC, 0x1B, 0x92, 0xC0, 0x3B, - 0x00, 0x00, 0x01, 0x01, 0xD5, 0x56, 0x57, 0x2A, 0xAB, 0xAC, /* order */ - 0x80, 0x01, 0x01, 0xD5, 0x56, 0x57, 0x2A, 0xAB, 0xAC, 0x80, - 0x01, 0x02, 0x2D, 0x5C, 0x91, 0xDD, 0x17, 0x3F, 0x8F, 0xB5, - 0x61, 0xDA, 0x68, 0x99, 0x16, 0x44, 0x43, 0x05, 0x1D - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[20 + 45 * 6]; -} - _EC_X9_62_CHAR2_359V1 = { - { - NID_X9_62_characteristic_two_field, 20, 45, 0x4C - }, - { - 0x2B, 0x35, 0x49, 0x20, 0xB7, 0x24, 0xD6, 0x96, 0xE6, 0x76, /* seed */ - 0x87, 0x56, 0x15, 0x17, 0x58, 0x5B, 0xA1, 0x33, 0x2D, 0xC6, - - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x01, - 0x56, 0x67, 0x67, 0x6A, 0x65, 0x4B, 0x20, 0x75, 0x4F, 0x35, /* a */ - 0x6E, 0xA9, 0x20, 0x17, 0xD9, 0x46, 0x56, 0x7C, 0x46, 0x67, - 0x55, 0x56, 0xF1, 0x95, 0x56, 0xA0, 0x46, 0x16, 0xB5, 0x67, - 0xD2, 0x23, 0xA5, 0xE0, 0x56, 0x56, 0xFB, 0x54, 0x90, 0x16, - 0xA9, 0x66, 0x56, 0xA5, 0x57, - 0x24, 0x72, 0xE2, 0xD0, 0x19, 0x7C, 0x49, 0x36, 0x3F, 0x1F, /* b */ - 0xE7, 0xF5, 0xB6, 0xDB, 0x07, 0x5D, 0x52, 0xB6, 0x94, 0x7D, - 0x13, 0x5D, 0x8C, 0xA4, 0x45, 0x80, 0x5D, 0x39, 0xBC, 0x34, - 0x56, 0x26, 0x08, 0x96, 0x87, 0x74, 0x2B, 0x63, 0x29, 0xE7, - 0x06, 0x80, 0x23, 0x19, 0x88, - 0x3C, 0x25, 0x8E, 0xF3, 0x04, 0x77, 0x67, 0xE7, 0xED, 0xE0, /* x */ - 0xF1, 0xFD, 0xAA, 0x79, 0xDA, 0xEE, 0x38, 0x41, 0x36, 0x6A, - 0x13, 0x2E, 0x16, 0x3A, 0xCE, 0xD4, 0xED, 0x24, 0x01, 0xDF, - 0x9C, 0x6B, 0xDC, 0xDE, 0x98, 0xE8, 0xE7, 0x07, 0xC0, 0x7A, - 0x22, 0x39, 0xB1, 0xB0, 0x97, - 0x53, 0xD7, 0xE0, 0x85, 0x29, 0x54, 0x70, 0x48, 0x12, 0x1E, /* y */ - 0x9C, 0x95, 0xF3, 0x79, 0x1D, 0xD8, 0x04, 0x96, 0x39, 0x48, - 0xF3, 0x4F, 0xAE, 0x7B, 0xF4, 0x4E, 0xA8, 0x23, 0x65, 0xDC, - 0x78, 0x68, 0xFE, 0x57, 0xE4, 0xAE, 0x2D, 0xE2, 0x11, 0x30, - 0x5A, 0x40, 0x71, 0x04, 0xBD, - 0x01, 0xAF, 0x28, 0x6B, 0xCA, 0x1A, 0xF2, 0x86, 0xBC, 0xA1, /* order */ - 0xAF, 0x28, 0x6B, 0xCA, 0x1A, 0xF2, 0x86, 0xBC, 0xA1, 0xAF, - 0x28, 0x6B, 0xC9, 0xFB, 0x8F, 0x6B, 0x85, 0xC5, 0x56, 0x89, - 0x2C, 0x20, 0xA7, 0xEB, 0x96, 0x4F, 0xE7, 0x71, 0x9E, 0x74, - 0xF4, 0x90, 0x75, 0x8D, 0x3B - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 47 * 6]; -} - _EC_X9_62_CHAR2_368W1 = { - { - NID_X9_62_characteristic_two_field, 0, 47, 0xFF70 - }, - { /* no seed */ - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, - 0x00, 0xE0, 0xD2, 0xEE, 0x25, 0x09, 0x52, 0x06, 0xF5, 0xE2, /* a */ - 0xA4, 0xF9, 0xED, 0x22, 0x9F, 0x1F, 0x25, 0x6E, 0x79, 0xA0, - 0xE2, 0xB4, 0x55, 0x97, 0x0D, 0x8D, 0x0D, 0x86, 0x5B, 0xD9, - 0x47, 0x78, 0xC5, 0x76, 0xD6, 0x2F, 0x0A, 0xB7, 0x51, 0x9C, - 0xCD, 0x2A, 0x1A, 0x90, 0x6A, 0xE3, 0x0D, - 0x00, 0xFC, 0x12, 0x17, 0xD4, 0x32, 0x0A, 0x90, 0x45, 0x2C, /* b */ - 0x76, 0x0A, 0x58, 0xED, 0xCD, 0x30, 0xC8, 0xDD, 0x06, 0x9B, - 0x3C, 0x34, 0x45, 0x38, 0x37, 0xA3, 0x4E, 0xD5, 0x0C, 0xB5, - 0x49, 0x17, 0xE1, 0xC2, 0x11, 0x2D, 0x84, 0xD1, 0x64, 0xF4, - 0x44, 0xF8, 0xF7, 0x47, 0x86, 0x04, 0x6A, - 0x00, 0x10, 0x85, 0xE2, 0x75, 0x53, 0x81, 0xDC, 0xCC, 0xE3, /* x */ - 0xC1, 0x55, 0x7A, 0xFA, 0x10, 0xC2, 0xF0, 0xC0, 0xC2, 0x82, - 0x56, 0x46, 0xC5, 0xB3, 0x4A, 0x39, 0x4C, 0xBC, 0xFA, 0x8B, - 0xC1, 0x6B, 0x22, 0xE7, 0xE7, 0x89, 0xE9, 0x27, 0xBE, 0x21, - 0x6F, 0x02, 0xE1, 0xFB, 0x13, 0x6A, 0x5F, - 0x00, 0x7B, 0x3E, 0xB1, 0xBD, 0xDC, 0xBA, 0x62, 0xD5, 0xD8, /* y */ - 0xB2, 0x05, 0x9B, 0x52, 0x57, 0x97, 0xFC, 0x73, 0x82, 0x2C, - 0x59, 0x05, 0x9C, 0x62, 0x3A, 0x45, 0xFF, 0x38, 0x43, 0xCE, - 0xE8, 0xF8, 0x7C, 0xD1, 0x85, 0x5A, 0xDA, 0xA8, 0x1E, 0x2A, - 0x07, 0x50, 0xB8, 0x0F, 0xDA, 0x23, 0x10, - 0x00, 0x00, 0x01, 0x00, 0x90, 0x51, 0x2D, 0xA9, 0xAF, 0x72, /* order */ - 0xB0, 0x83, 0x49, 0xD9, 0x8A, 0x5D, 0xD4, 0xC7, 0xB0, 0x53, - 0x2E, 0xCA, 0x51, 0xCE, 0x03, 0xE2, 0xD1, 0x0F, 0x3B, 0x7A, - 0xC5, 0x79, 0xBD, 0x87, 0xE9, 0x09, 0xAE, 0x40, 0xA6, 0xF1, - 0x31, 0xE9, 0xCF, 0xCE, 0x5B, 0xD9, 0x67 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 54 * 6]; -} - _EC_X9_62_CHAR2_431R1 = { - { - NID_X9_62_characteristic_two_field, 0, 54, 0x2760 - }, - { /* no seed */ - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x01, - 0x1A, 0x82, 0x7E, 0xF0, 0x0D, 0xD6, 0xFC, 0x0E, 0x23, 0x4C, /* a */ - 0xAF, 0x04, 0x6C, 0x6A, 0x5D, 0x8A, 0x85, 0x39, 0x5B, 0x23, - 0x6C, 0xC4, 0xAD, 0x2C, 0xF3, 0x2A, 0x0C, 0xAD, 0xBD, 0xC9, - 0xDD, 0xF6, 0x20, 0xB0, 0xEB, 0x99, 0x06, 0xD0, 0x95, 0x7F, - 0x6C, 0x6F, 0xEA, 0xCD, 0x61, 0x54, 0x68, 0xDF, 0x10, 0x4D, - 0xE2, 0x96, 0xCD, 0x8F, - 0x10, 0xD9, 0xB4, 0xA3, 0xD9, 0x04, 0x7D, 0x8B, 0x15, 0x43, /* b */ - 0x59, 0xAB, 0xFB, 0x1B, 0x7F, 0x54, 0x85, 0xB0, 0x4C, 0xEB, - 0x86, 0x82, 0x37, 0xDD, 0xC9, 0xDE, 0xDA, 0x98, 0x2A, 0x67, - 0x9A, 0x5A, 0x91, 0x9B, 0x62, 0x6D, 0x4E, 0x50, 0xA8, 0xDD, - 0x73, 0x1B, 0x10, 0x7A, 0x99, 0x62, 0x38, 0x1F, 0xB5, 0xD8, - 0x07, 0xBF, 0x26, 0x18, - 0x12, 0x0F, 0xC0, 0x5D, 0x3C, 0x67, 0xA9, 0x9D, 0xE1, 0x61, /* x */ - 0xD2, 0xF4, 0x09, 0x26, 0x22, 0xFE, 0xCA, 0x70, 0x1B, 0xE4, - 0xF5, 0x0F, 0x47, 0x58, 0x71, 0x4E, 0x8A, 0x87, 0xBB, 0xF2, - 0xA6, 0x58, 0xEF, 0x8C, 0x21, 0xE7, 0xC5, 0xEF, 0xE9, 0x65, - 0x36, 0x1F, 0x6C, 0x29, 0x99, 0xC0, 0xC2, 0x47, 0xB0, 0xDB, - 0xD7, 0x0C, 0xE6, 0xB7, - 0x20, 0xD0, 0xAF, 0x89, 0x03, 0xA9, 0x6F, 0x8D, 0x5F, 0xA2, /* y */ - 0xC2, 0x55, 0x74, 0x5D, 0x3C, 0x45, 0x1B, 0x30, 0x2C, 0x93, - 0x46, 0xD9, 0xB7, 0xE4, 0x85, 0xE7, 0xBC, 0xE4, 0x1F, 0x6B, - 0x59, 0x1F, 0x3E, 0x8F, 0x6A, 0xDD, 0xCB, 0xB0, 0xBC, 0x4C, - 0x2F, 0x94, 0x7A, 0x7D, 0xE1, 0xA8, 0x9B, 0x62, 0x5D, 0x6A, - 0x59, 0x8B, 0x37, 0x60, - 0x00, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, /* order */ - 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, - 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x23, - 0xC3, 0x13, 0xFA, 0xB5, 0x05, 0x89, 0x70, 0x3B, 0x5E, 0xC6, - 0x8D, 0x35, 0x87, 0xFE, 0xC6, 0x0D, 0x16, 0x1C, 0xC1, 0x49, - 0xC1, 0xAD, 0x4A, 0x91 - } -}; - -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 15 * 6]; -} - _EC_WTLS_1 = { - { - NID_X9_62_characteristic_two_field, 0, 15, 2 - }, - { /* no seed */ - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x02, 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ - 0x00, 0x00, 0x00, 0x00, 0x01, - 0x01, 0x66, 0x79, 0x79, 0xA4, 0x0B, 0xA4, 0x97, 0xE5, 0xD5, /* x */ - 0xC2, 0x70, 0x78, 0x06, 0x17, - 0x00, 0xF4, 0x4B, 0x4A, 0xF1, 0xEC, 0xC2, 0x63, 0x0E, 0x08, /* y */ - 0x78, 0x5C, 0xEB, 0xCC, 0x15, - 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFD, 0xBF, /* order */ - 0x91, 0xAF, 0x6D, 0xEA, 0x73 - } -}; - -/* IPsec curves */ -/* NOTE: The of curves over a extension field of non prime degree - * is not recommended (Weil-descent). - * As the group order is not a prime this curve is not suitable - * for ECDSA. - */ -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 20 * 6]; -} - _EC_IPSEC_155_ID3 = { - { - NID_X9_62_characteristic_two_field, 0, 20, 3 - }, - { /* no seed */ - 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x33, 0x8f, - - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7b, - - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* y */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xc8, - - 0x02, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, /* order */ - 0xC7, 0xF3, 0xC7, 0x88, 0x1B, 0xD0, 0x86, 0x8F, 0xA8, 0x6C - } -}; - -/* NOTE: The of curves over a extension field of non prime degree - * is not recommended (Weil-descent). - * As the group order is not a prime this curve is not suitable - * for ECDSA. - */ -static const struct { - EC_CURVE_DATA h; - unsigned char data[0 + 24 * 6]; -} - _EC_IPSEC_185_ID4 = { - { - NID_X9_62_characteristic_two_field, 0, 24, 2 - }, - { /* no seed */ - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x1e, 0xe9, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x18, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* y */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x0d, - 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ - 0xFF, 0xFF, 0xED, 0xF9, 0x7C, 0x44, 0xDB, 0x9F, 0x24, 0x20, - 0xBA, 0xFC, 0xA7, 0x5E - } -}; - -#endif - /* These curves were added by Annie Yousar <a.yousar@informatik.hu-berlin.de> * For the definition of RFC 5639 curves see * https://www.ietf.org/rfc/rfc5639.txt @@ -3196,69 +1849,11 @@ static const ec_list_element curve_list[] = { {NID_X9_62_prime239v2, &_EC_X9_62_PRIME_239V2.h, 0, "X9.62 curve over a 239 bit prime field"}, {NID_X9_62_prime239v3, &_EC_X9_62_PRIME_239V3.h, 0, "X9.62 curve over a 239 bit prime field"}, {NID_X9_62_prime256v1, &_EC_X9_62_PRIME_256V1.h, 0, "X9.62/SECG curve over a 256 bit prime field"}, -#ifndef OPENSSL_NO_EC2M - /* characteristic two field curves */ - /* NIST/SECG curves */ - {NID_sect113r1, &_EC_SECG_CHAR2_113R1.h, 0, "SECG curve over a 113 bit binary field"}, - {NID_sect113r2, &_EC_SECG_CHAR2_113R2.h, 0, "SECG curve over a 113 bit binary field"}, - {NID_sect131r1, &_EC_SECG_CHAR2_131R1.h, 0, "SECG/WTLS curve over a 131 bit binary field"}, - {NID_sect131r2, &_EC_SECG_CHAR2_131R2.h, 0, "SECG curve over a 131 bit binary field"}, - {NID_sect163k1, &_EC_NIST_CHAR2_163K.h, 0, "NIST/SECG/WTLS curve over a 163 bit binary field"}, - {NID_sect163r1, &_EC_SECG_CHAR2_163R1.h, 0, "SECG curve over a 163 bit binary field"}, - {NID_sect163r2, &_EC_NIST_CHAR2_163B.h, 0, "NIST/SECG curve over a 163 bit binary field"}, - {NID_sect193r1, &_EC_SECG_CHAR2_193R1.h, 0, "SECG curve over a 193 bit binary field"}, - {NID_sect193r2, &_EC_SECG_CHAR2_193R2.h, 0, "SECG curve over a 193 bit binary field"}, - {NID_sect233k1, &_EC_NIST_CHAR2_233K.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, - {NID_sect233r1, &_EC_NIST_CHAR2_233B.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, - {NID_sect239k1, &_EC_SECG_CHAR2_239K1.h, 0, "SECG curve over a 239 bit binary field"}, - {NID_sect283k1, &_EC_NIST_CHAR2_283K.h, 0, "NIST/SECG curve over a 283 bit binary field"}, - {NID_sect283r1, &_EC_NIST_CHAR2_283B.h, 0, "NIST/SECG curve over a 283 bit binary field"}, - {NID_sect409k1, &_EC_NIST_CHAR2_409K.h, 0, "NIST/SECG curve over a 409 bit binary field"}, - {NID_sect409r1, &_EC_NIST_CHAR2_409B.h, 0, "NIST/SECG curve over a 409 bit binary field"}, - {NID_sect571k1, &_EC_NIST_CHAR2_571K.h, 0, "NIST/SECG curve over a 571 bit binary field"}, - {NID_sect571r1, &_EC_NIST_CHAR2_571B.h, 0, "NIST/SECG curve over a 571 bit binary field"}, - /* X9.62 curves */ - {NID_X9_62_c2pnb163v1, &_EC_X9_62_CHAR2_163V1.h, 0, "X9.62 curve over a 163 bit binary field"}, - {NID_X9_62_c2pnb163v2, &_EC_X9_62_CHAR2_163V2.h, 0, "X9.62 curve over a 163 bit binary field"}, - {NID_X9_62_c2pnb163v3, &_EC_X9_62_CHAR2_163V3.h, 0, "X9.62 curve over a 163 bit binary field"}, - {NID_X9_62_c2pnb176v1, &_EC_X9_62_CHAR2_176V1.h, 0, "X9.62 curve over a 176 bit binary field"}, - {NID_X9_62_c2tnb191v1, &_EC_X9_62_CHAR2_191V1.h, 0, "X9.62 curve over a 191 bit binary field"}, - {NID_X9_62_c2tnb191v2, &_EC_X9_62_CHAR2_191V2.h, 0, "X9.62 curve over a 191 bit binary field"}, - {NID_X9_62_c2tnb191v3, &_EC_X9_62_CHAR2_191V3.h, 0, "X9.62 curve over a 191 bit binary field"}, - {NID_X9_62_c2pnb208w1, &_EC_X9_62_CHAR2_208W1.h, 0, "X9.62 curve over a 208 bit binary field"}, - {NID_X9_62_c2tnb239v1, &_EC_X9_62_CHAR2_239V1.h, 0, "X9.62 curve over a 239 bit binary field"}, - {NID_X9_62_c2tnb239v2, &_EC_X9_62_CHAR2_239V2.h, 0, "X9.62 curve over a 239 bit binary field"}, - {NID_X9_62_c2tnb239v3, &_EC_X9_62_CHAR2_239V3.h, 0, "X9.62 curve over a 239 bit binary field"}, - {NID_X9_62_c2pnb272w1, &_EC_X9_62_CHAR2_272W1.h, 0, "X9.62 curve over a 272 bit binary field"}, - {NID_X9_62_c2pnb304w1, &_EC_X9_62_CHAR2_304W1.h, 0, "X9.62 curve over a 304 bit binary field"}, - {NID_X9_62_c2tnb359v1, &_EC_X9_62_CHAR2_359V1.h, 0, "X9.62 curve over a 359 bit binary field"}, - {NID_X9_62_c2pnb368w1, &_EC_X9_62_CHAR2_368W1.h, 0, "X9.62 curve over a 368 bit binary field"}, - {NID_X9_62_c2tnb431r1, &_EC_X9_62_CHAR2_431R1.h, 0, "X9.62 curve over a 431 bit binary field"}, - /* - * the WAP/WTLS curves [unlike SECG, spec has its own OIDs for curves - * from X9.62] - */ - {NID_wap_wsg_idm_ecid_wtls1, &_EC_WTLS_1.h, 0, "WTLS curve over a 113 bit binary field"}, - {NID_wap_wsg_idm_ecid_wtls3, &_EC_NIST_CHAR2_163K.h, 0, "NIST/SECG/WTLS curve over a 163 bit binary field"}, - {NID_wap_wsg_idm_ecid_wtls4, &_EC_SECG_CHAR2_113R1.h, 0, "SECG curve over a 113 bit binary field"}, - {NID_wap_wsg_idm_ecid_wtls5, &_EC_X9_62_CHAR2_163V1.h, 0, "X9.62 curve over a 163 bit binary field"}, -#endif {NID_wap_wsg_idm_ecid_wtls6, &_EC_SECG_PRIME_112R1.h, 0, "SECG/WTLS curve over a 112 bit prime field"}, {NID_wap_wsg_idm_ecid_wtls7, &_EC_SECG_PRIME_160R2.h, 0, "SECG/WTLS curve over a 160 bit prime field"}, {NID_wap_wsg_idm_ecid_wtls8, &_EC_WTLS_8.h, 0, "WTLS curve over a 112 bit prime field"}, {NID_wap_wsg_idm_ecid_wtls9, &_EC_WTLS_9.h, 0, "WTLS curve over a 160 bit prime field"}, -#ifndef OPENSSL_NO_EC2M - {NID_wap_wsg_idm_ecid_wtls10, &_EC_NIST_CHAR2_233K.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, - {NID_wap_wsg_idm_ecid_wtls11, &_EC_NIST_CHAR2_233B.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, -#endif {NID_wap_wsg_idm_ecid_wtls12, &_EC_WTLS_12.h, 0, "WTLS curve over a 224 bit prime field"}, -#ifndef OPENSSL_NO_EC2M - /* IPSec curves */ - {NID_ipsec3, &_EC_IPSEC_155_ID3.h, 0, "\n\tIPSec/IKE/Oakley curve #3 over a 155 bit binary field.\n" - "\tNot suitable for ECDSA.\n\tQuestionable extension field!"}, - {NID_ipsec4, &_EC_IPSEC_185_ID4.h, 0, "\n\tIPSec/IKE/Oakley curve #4 over a 185 bit binary field.\n" - "\tNot suitable for ECDSA.\n\tQuestionable extension field!"}, -#endif /* RFC 5639 curves */ {NID_brainpoolP160r1, &_EC_brainpoolP160r1.h, 0, "RFC 5639 curve over a 160 bit prime field"}, {NID_brainpoolP160t1, &_EC_brainpoolP160t1.h, 0, "RFC 5639 curve over a 160 bit prime field"}, @@ -3339,15 +1934,6 @@ ec_group_new_from_data(const ec_list_element curve) goto err; } } -#ifndef OPENSSL_NO_EC2M - else { /* field_type == - * NID_X9_62_characteristic_two_field */ - if ((group = EC_GROUP_new_curve_GF2m(p, a, b, ctx)) == NULL) { - ECerror(ERR_R_EC_LIB); - goto err; - } - } -#endif if ((P = EC_POINT_new(group)) == NULL) { ECerror(ERR_R_EC_LIB); diff --git a/lib/libcrypto/ec/ec_cvt.c b/lib/libcrypto/ec/ec_cvt.c index 30e843e6825..90e74007399 100644 --- a/lib/libcrypto/ec/ec_cvt.c +++ b/lib/libcrypto/ec/ec_cvt.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ec_cvt.c,v 1.10 2023/03/08 07:15:42 jsing Exp $ */ +/* $OpenBSD: ec_cvt.c,v 1.11 2023/04/25 19:53:30 tb Exp $ */ /* * Originally written by Bodo Moeller for the OpenSSL project. */ @@ -100,12 +100,3 @@ EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, { return ec_group_new_curve(EC_GFp_mont_method(), p, a, b, ctx); } - -#ifndef OPENSSL_NO_EC2M -EC_GROUP * -EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, - BN_CTX *ctx) -{ - return ec_group_new_curve(EC_GF2m_simple_method(), p, a, b, ctx); -} -#endif diff --git a/lib/libcrypto/ec/ec_lib.c b/lib/libcrypto/ec/ec_lib.c index 683c49fef72..f560aa9991f 100644 --- a/lib/libcrypto/ec/ec_lib.c +++ b/lib/libcrypto/ec/ec_lib.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ec_lib.c,v 1.55 2023/04/13 07:44:12 tb Exp $ */ +/* $OpenBSD: ec_lib.c,v 1.56 2023/04/25 19:53:30 tb Exp $ */ /* * Originally written by Bodo Moeller for the OpenSSL project. */ @@ -549,22 +549,6 @@ EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, return EC_GROUP_get_curve(group, p, a, b, ctx); } -#ifndef OPENSSL_NO_EC2M -int -EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, - const BIGNUM *b, BN_CTX *ctx) -{ - return EC_GROUP_set_curve(group, p, a, b, ctx); -} - -int -EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, - BIGNUM *b, BN_CTX *ctx) -{ - return EC_GROUP_get_curve(group, p, a, b, ctx); -} -#endif - int EC_GROUP_get_degree(const EC_GROUP *group) { @@ -1072,15 +1056,6 @@ EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); } -#ifndef OPENSSL_NO_EC2M -int -EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *point, - const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) -{ - return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); -} -#endif - int EC_POINT_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx_in) @@ -1117,15 +1092,6 @@ EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); } -#ifndef OPENSSL_NO_EC2M -int -EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, const EC_POINT *point, - BIGNUM *x, BIGNUM *y, BN_CTX *ctx) -{ - return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); -} -#endif - int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx_in) diff --git a/lib/libcrypto/ec/ec_oct.c b/lib/libcrypto/ec/ec_oct.c index b1c9e6a6340..ee2ae0f4fc3 100644 --- a/lib/libcrypto/ec/ec_oct.c +++ b/lib/libcrypto/ec/ec_oct.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ec_oct.c,v 1.11 2023/04/11 18:58:20 jsing Exp $ */ +/* $OpenBSD: ec_oct.c,v 1.12 2023/04/25 19:53:30 tb Exp $ */ /* * Originally written by Bodo Moeller for the OpenSSL project. */ @@ -107,15 +107,6 @@ EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, return EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx); } -#ifndef OPENSSL_NO_EC2M -int -EC_POINT_set_compressed_coordinates_GF2m(const EC_GROUP *group, EC_POINT *point, - const BIGNUM *x, int y_bit, BN_CTX *ctx) -{ - return EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx); -} -#endif - size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, unsigned char *buf, size_t len, |