diff options
author | Brent Cook <bcook@cvs.openbsd.org> | 2016-09-03 17:32:07 +0000 |
---|---|---|
committer | Brent Cook <bcook@cvs.openbsd.org> | 2016-09-03 17:32:07 +0000 |
commit | 182bf145fb3c47aaa16ebd080d9aeb711ebf6e5e (patch) | |
tree | 492cd1539d01464ebd3e09e4af8c0d50a83ef4f4 /regress | |
parent | 6ea7e5c89aa1586e70530967b8ca4701bf898aa8 (diff) |
import new BN tests from OpenSSL
New tests that various BIGNUM methods behave correctly on zero/even inputs.
from OpenSSL
ok beck@
Diffstat (limited to 'regress')
-rw-r--r-- | regress/lib/libcrypto/bn/general/bntest.c | 342 | ||||
-rw-r--r-- | regress/lib/libcrypto/exp/exptest.c | 259 |
2 files changed, 434 insertions, 167 deletions
diff --git a/regress/lib/libcrypto/bn/general/bntest.c b/regress/lib/libcrypto/bn/general/bntest.c index e1ef1445c6b..c5ec3cdc13f 100644 --- a/regress/lib/libcrypto/bn/general/bntest.c +++ b/regress/lib/libcrypto/bn/general/bntest.c @@ -104,6 +104,8 @@ int test_mod(BIO *bp, BN_CTX *ctx); int test_mod_mul(BIO *bp, BN_CTX *ctx); int test_mod_exp(BIO *bp, BN_CTX *ctx); int test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx); +int test_mod_exp_mont5(BIO *bp, BN_CTX *ctx); +int test_mod_exp_sizes(BIO *bp, BN_CTX *ctx); int test_exp(BIO *bp, BN_CTX *ctx); int test_gf2m_add(BIO *bp); int test_gf2m_mod(BIO *bp); @@ -116,12 +118,12 @@ int test_gf2m_mod_sqrt(BIO *bp, BN_CTX *ctx); int test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx); int test_kron(BIO *bp, BN_CTX *ctx); int test_sqrt(BIO *bp, BN_CTX *ctx); -int test_mod_exp_sizes(BIO *bp, BN_CTX *ctx); int rand_neg(void); static int results = 0; -static const unsigned char lst[]="\xC6\x4F\x43\x04\x2A\xEA\xCA\x6E\x58\x36\x80\x5B\xE8\xC9" -"\x9B\x04\x5D\x48\x36\xC2\xFD\x16\xC9\x64\xF0"; +static unsigned char lst[] = + "\xC6\x4F\x43\x04\x2A\xEA\xCA\x6E\x58\x36\x80\x5B\xE8\xC9" + "\x9B\x04\x5D\x48\x36\xC2\xFD\x16\xC9\x64\xF0"; static void message(BIO *out, char *m) @@ -260,6 +262,11 @@ main(int argc, char *argv[]) goto err; (void)BIO_flush(out); + message(out, "BN_mod_exp_mont5"); + if (!test_mod_exp_mont5(out, ctx)) + goto err; + (void)BIO_flush(out); + message(out, "BN_exp"); if (!test_exp(out, ctx)) goto err; @@ -329,11 +336,11 @@ main(int argc, char *argv[]) BN_CTX_free(ctx); BIO_free(out); - exit(0); err: - BIO_puts(out,"1\n"); /* make sure the Perl script fed by bc notices - * the failure, see test_bn in test/Makefile.ssl*/ + BIO_puts(out, "1\n"); /* make sure the Perl script fed by bc notices + * the failure, see test_bn in test/Makefile.ssl*/ + (void)BIO_flush(out); ERR_load_crypto_strings(); ERR_print_errors_fp(stderr); @@ -367,8 +374,8 @@ test_add(BIO *bp) BN_print(bp, &c); BIO_puts(bp, "\n"); } - a.neg=!a.neg; - b.neg=!b.neg; + a.neg = !a.neg; + b.neg = !b.neg; BN_add(&c, &c, &b); BN_add(&c, &c, &a); if (!BN_is_zero(&c)) { @@ -436,7 +443,7 @@ test_sub(BIO *bp) int test_div(BIO *bp, BN_CTX *ctx) { - BIGNUM a, b,c, d, e; + BIGNUM a, b, c, d, e; int i; int rc = 1; @@ -446,6 +453,14 @@ test_div(BIO *bp, BN_CTX *ctx) BN_init(&d); BN_init(&e); + BN_one(&a); + BN_zero(&b); + + if (BN_div(&d, &c, &a, &b, ctx)) { + fprintf(stderr, "Division by zero succeeded!\n"); + return (0); + } + for (i = 0; i < num0 + num1; i++) { if (i < num1) { BN_bntest_rand(&a, 400, 0, 0); @@ -453,7 +468,7 @@ test_div(BIO *bp, BN_CTX *ctx) BN_lshift(&a, &a, i); BN_add_word(&a, i); } else - BN_bntest_rand(&b, 50 + 3*(i - num1), 0, 0); + BN_bntest_rand(&b, 50 + 3 * (i - num1), 0, 0); a.neg = rand_neg(); b.neg = rand_neg(); BN_div(&d, &c, &a, &b, ctx); @@ -501,9 +516,9 @@ print_word(BIO *bp, BN_ULONG w) unsigned long h = (unsigned long)(w >> 32), l = (unsigned long)(w); if (h) - BIO_printf(bp, "%lX%08lX",h,l); + BIO_printf(bp, "%lX%08lX", h, l); else - BIO_printf(bp, "%lX",l); + BIO_printf(bp, "%lX", l); return; } #endif @@ -513,7 +528,7 @@ print_word(BIO *bp, BN_ULONG w) int test_div_word(BIO *bp) { - BIGNUM a, b; + BIGNUM a, b; BN_ULONG r, rmod, s = 0; int i; int rc = 1; @@ -586,7 +601,7 @@ test_div_word(BIO *bp) int test_div_recp(BIO *bp, BN_CTX *ctx) { - BIGNUM a, b,c, d, e; + BIGNUM a, b, c, d, e; BN_RECP_CTX recp; int i; int rc = 1; @@ -605,7 +620,7 @@ test_div_recp(BIO *bp, BN_CTX *ctx) BN_lshift(&a, &a, i); BN_add_word(&a, i); } else - BN_bntest_rand(&b, 50 + 3*(i - num1), 0, 0); + BN_bntest_rand(&b, 50 + 3 * (i - num1), 0, 0); a.neg = rand_neg(); b.neg = rand_neg(); BN_RECP_CTX_set(&recp, &b, ctx); @@ -655,7 +670,7 @@ test_div_recp(BIO *bp, BN_CTX *ctx) int test_mul(BIO *bp) { - BIGNUM a, b,c, d, e; + BIGNUM a, b, c, d, e; int i; int rc = 1; BN_CTX *ctx; @@ -788,7 +803,7 @@ test_sqr(BIO *bp, BN_CTX *ctx) goto err; } ret = 1; - err: +err: BN_free(a); BN_free(c); BN_free(d); @@ -799,7 +814,7 @@ test_sqr(BIO *bp, BN_CTX *ctx) int test_mont(BIO *bp, BN_CTX *ctx) { - BIGNUM a, b,c, d,A, B; + BIGNUM a, b, c, d, A, B; BIGNUM n; int i; int rc = 1; @@ -817,10 +832,22 @@ test_mont(BIO *bp, BN_CTX *ctx) BN_init(&B); BN_init(&n); - BN_bntest_rand(&a,100,0,0); - BN_bntest_rand(&b,100,0,0); + BN_zero(&n); + if (BN_MONT_CTX_set(mont, &n, ctx)) { + fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n"); + return (0); + } + + BN_set_word(&n, 16); + if (BN_MONT_CTX_set(mont, &n, ctx)) { + fprintf(stderr, "BN_MONT_CTX_set succeeded for even modulus!\n"); + return (0); + } + + BN_bntest_rand(&a, 100, 0, 0); + BN_bntest_rand(&b, 100, 0, 0); for (i = 0; i < num2; i++) { - int bits = (200*(i + 1))/num2; + int bits = (200 * (i + 1)) / num2; if (bits == 0) continue; @@ -833,8 +860,8 @@ test_mont(BIO *bp, BN_CTX *ctx) BN_to_montgomery(&A, &a, mont, ctx); BN_to_montgomery(&B, &b, mont, ctx); - BN_mod_mul_montgomery(&c,&A,&B,mont,ctx); - BN_from_montgomery(&A,&c,mont,ctx); + BN_mod_mul_montgomery(&c, &A, &B, mont, ctx); + BN_from_montgomery(&A, &c, mont, ctx); if (bp != NULL) { if (!results) { BN_print(bp, &a); @@ -879,12 +906,12 @@ test_mod(BIO *bp, BN_CTX *ctx) d = BN_new(); e = BN_new(); - BN_bntest_rand(a,1024,0,0); + BN_bntest_rand(a, 1024, 0, 0); for (i = 0; i < num0; i++) { - BN_bntest_rand(b,450+i*10,0,0); + BN_bntest_rand(b, 450 + i * 10, 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); - BN_mod(c,a,b,ctx); + BN_mod(c, a, b, ctx); if (bp != NULL) { if (!results) { BN_print(bp, a); @@ -895,7 +922,7 @@ test_mod(BIO *bp, BN_CTX *ctx) BN_print(bp, c); BIO_puts(bp, "\n"); } - BN_div(d, e,a, b, ctx); + BN_div(d, e, a, b, ctx); BN_sub(e, e, c); if (!BN_is_zero(e)) { fprintf(stderr, "Modulo test failed!\n"); @@ -924,14 +951,22 @@ test_mod_mul(BIO *bp, BN_CTX *ctx) d = BN_new(); e = BN_new(); + BN_one(a); + BN_one(b); + BN_zero(c); + if (BN_mod_mul(e, a, b, c, ctx)) { + fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n"); + return (0); + } + for (j = 0; j < 3; j++) { - BN_bntest_rand(c,1024,0,0); + BN_bntest_rand(c, 1024, 0, 0); for (i = 0; i < num0; i++) { - BN_bntest_rand(a,475+i*10,0,0); - BN_bntest_rand(b,425+i*11,0,0); + BN_bntest_rand(a, 475 + i * 10, 0, 0); + BN_bntest_rand(b, 425 + i * 11, 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); - if (!BN_mod_mul(e, a,b, c, ctx)) { + if (!BN_mod_mul(e, a, b, c, ctx)) { unsigned long l; while ((l = ERR_get_error())) @@ -960,9 +995,9 @@ test_mod_mul(BIO *bp, BN_CTX *ctx) BN_print(bp, e); BIO_puts(bp, "\n"); } - BN_mul(d, a,b, ctx); + BN_mul(d, a, b, ctx); BN_sub(d, d, e); - BN_div(a, b,d, c, ctx); + BN_div(a, b, d, c, ctx); if (!BN_is_zero(b)) { fprintf(stderr, "Modulo multiply test failed!\n"); ERR_print_errors_fp(stderr); @@ -993,12 +1028,20 @@ test_mod_exp(BIO *bp, BN_CTX *ctx) d = BN_new(); e = BN_new(); - BN_bntest_rand(c,30,0,1); /* must be odd for montgomery */ + BN_one(a); + BN_one(b); + BN_zero(c); + if (BN_mod_exp(d, a, b, c, ctx)) { + fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n"); + return (0); + } + + BN_bntest_rand(c, 30, 0, 1); /* must be odd for montgomery */ for (i = 0; i < num2; i++) { - BN_bntest_rand(a,20+i*5,0,0); - BN_bntest_rand(b,2+i,0,0); + BN_bntest_rand(a, 20 + i * 5, 0, 0); + BN_bntest_rand(b, 2 + i, 0, 0); - if (!BN_mod_exp(d, a,b, c, ctx)) { + if (!BN_mod_exp(d, a, b, c, ctx)) { rc = 0; break; } @@ -1015,9 +1058,9 @@ test_mod_exp(BIO *bp, BN_CTX *ctx) BN_print(bp, d); BIO_puts(bp, "\n"); } - BN_exp(e, a,b, ctx); + BN_exp(e, a, b, ctx); BN_sub(e, e, d); - BN_div(a, b,e, c, ctx); + BN_div(a, b, e, c, ctx); if (!BN_is_zero(b)) { fprintf(stderr, "Modulo exponentiation test failed!\n"); rc = 0; @@ -1045,12 +1088,30 @@ test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx) d = BN_new(); e = BN_new(); - BN_bntest_rand(c,30,0,1); /* must be odd for montgomery */ + BN_one(a); + BN_one(b); + BN_zero(c); + if (BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) { + fprintf(stderr, "BN_mod_exp_mont_consttime with zero modulus " + "succeeded\n"); + rc = 0; + goto err; + } + + BN_set_word(c, 16); + if (BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) { + fprintf(stderr, "BN_mod_exp_mont_consttime with even modulus " + "succeeded\n"); + rc = 0; + goto err; + } + + BN_bntest_rand(c, 30, 0, 1); /* must be odd for montgomery */ for (i = 0; i < num2; i++) { - BN_bntest_rand(a,20+i*5,0,0); - BN_bntest_rand(b,2+i,0,0); + BN_bntest_rand(a, 20 + i * 5, 0, 0); + BN_bntest_rand(b, 2 + i, 0, 0); - if (!BN_mod_exp_mont_consttime(d, a,b, c,ctx, NULL)) { + if (!BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) { rc = 0; break; } @@ -1067,15 +1128,16 @@ test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx) BN_print(bp, d); BIO_puts(bp, "\n"); } - BN_exp(e, a,b, ctx); + BN_exp(e, a, b, ctx); BN_sub(e, e, d); - BN_div(a, b,e, c, ctx); + BN_div(a, b, e, c, ctx); if (!BN_is_zero(b)) { fprintf(stderr, "Modulo exponentiation test failed!\n"); rc = 0; break; } } +err: BN_free(a); BN_free(b); BN_free(c); @@ -1084,6 +1146,98 @@ test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx) return (rc); } +/* + * Test constant-time modular exponentiation with 1024-bit inputs, which on + * x86_64 cause a different code branch to be taken. + */ +int +test_mod_exp_mont5(BIO *bp, BN_CTX *ctx) +{ + BIGNUM *a, *p, *m, *d, *e; + int rc = 1; + BN_MONT_CTX *mont; + + a = BN_new(); + p = BN_new(); + m = BN_new(); + d = BN_new(); + e = BN_new(); + + mont = BN_MONT_CTX_new(); + + BN_bntest_rand(m, 1024, 0, 1); /* must be odd for montgomery */ + /* Zero exponent */ + BN_bntest_rand(a, 1024, 0, 0); + BN_zero(p); + if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL)) { + rc = 0; + goto err; + } + if (!BN_is_one(d)) { + fprintf(stderr, "Modular exponentiation test failed!\n"); + rc = 0; + goto err; + } + /* Zero input */ + BN_bntest_rand(p, 1024, 0, 0); + BN_zero(a); + if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL)) { + rc = 0; + goto err; + } + if (!BN_is_zero(d)) { + fprintf(stderr, "Modular exponentiation test failed!\n"); + rc = 0; + goto err; + } + /* + * Craft an input whose Montgomery representation is 1, i.e., shorter + * than the modulus m, in order to test the const time precomputation + * scattering/gathering. + */ + BN_one(a); + BN_MONT_CTX_set(mont, m, ctx); + if (!BN_from_montgomery(e, a, mont, ctx)) { + rc = 0; + goto err; + } + if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL)) { + rc = 0; + goto err; + } + if (!BN_mod_exp_simple(a, e, p, m, ctx)) { + rc = 0; + goto err; + } + if (BN_cmp(a, d) != 0) { + fprintf(stderr, "Modular exponentiation test failed!\n"); + rc = 0; + goto err; + } + /* Finally, some regular test vectors. */ + BN_bntest_rand(e, 1024, 0, 0); + if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL)) { + rc = 0; + goto err; + } + if (!BN_mod_exp_simple(a, e, p, m, ctx)) { + rc = 0; + goto err; + } + if (BN_cmp(a, d) != 0) { + fprintf(stderr, "Modular exponentiation test failed!\n"); + rc = 0; + goto err; + } +err: + BN_free(a); + BN_free(p); + BN_free(m); + BN_free(d); + BN_free(e); + return (rc); +} + int test_exp(BIO *bp, BN_CTX *ctx) { @@ -1099,10 +1253,10 @@ test_exp(BIO *bp, BN_CTX *ctx) BN_one(one); for (i = 0; i < num2; i++) { - BN_bntest_rand(a,20+i*5,0,0); - BN_bntest_rand(b,2+i,0,0); + BN_bntest_rand(a, 20 + i * 5, 0, 0); + BN_bntest_rand(b, 2 + i, 0, 0); - if (BN_exp(d, a,b, ctx) <= 0) { + if (BN_exp(d, a, b, ctx) <= 0) { rc = 0; break; } @@ -1119,7 +1273,7 @@ test_exp(BIO *bp, BN_CTX *ctx) } BN_one(e); for (; !BN_is_zero(b); BN_sub(b, b, one)) - BN_mul(e, e,a, ctx); + BN_mul(e, e, a, ctx); BN_sub(e, e, d); if (!BN_is_zero(e)) { fprintf(stderr, "Exponentiation test failed!\n"); @@ -1165,7 +1319,8 @@ test_gf2m_add(BIO *bp) } #endif /* Test that two added values have the correct parity. */ - if ((BN_is_odd(&a) && BN_is_odd(&c)) || (!BN_is_odd(&a) && !BN_is_odd(&c))) { + if ((BN_is_odd(&a) && BN_is_odd(&c)) + || (!BN_is_odd(&a) && !BN_is_odd(&c))) { fprintf(stderr, "GF(2^m) addition test (a) failed!\n"); goto err; } @@ -1189,8 +1344,8 @@ test_gf2m_mod(BIO *bp) { BIGNUM *a, *b[2], *c, *d, *e; int i, j, ret = 0; - int p0[] = {163, 7,6, 3,0, -1}; - int p1[] = {193, 15, 0, -1}; + int p0[] = { 163, 7, 6, 3, 0, -1 }; + int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); @@ -1243,8 +1398,8 @@ test_gf2m_mod_mul(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e, *f, *g, *h; int i, j, ret = 0; - int p0[] = {163, 7,6, 3,0, -1}; - int p1[] = {193, 15, 0, -1}; + int p0[] = { 163, 7, 6, 3, 0, -1 }; + int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); @@ -1310,8 +1465,8 @@ test_gf2m_mod_sqr(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d; int i, j, ret = 0; - int p0[] = {163, 7,6, 3,0, -1}; - int p1[] = {193, 15, 0, -1}; + int p0[] = { 163, 7, 6, 3, 0, -1 }; + int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); @@ -1365,8 +1520,8 @@ test_gf2m_mod_inv(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d; int i, j, ret = 0; - int p0[] = {163, 7,6, 3,0, -1}; - int p1[] = {193, 15, 0, -1}; + int p0[] = { 163, 7, 6, 3, 0, -1 }; + int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); @@ -1416,8 +1571,8 @@ test_gf2m_mod_div(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e, *f; int i, j, ret = 0; - int p0[] = {163, 7,6, 3,0, -1}; - int p1[] = {193, 15, 0, -1}; + int p0[] = { 163, 7, 6, 3, 0, -1 }; + int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); @@ -1475,8 +1630,8 @@ test_gf2m_mod_exp(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e, *f; int i, j, ret = 0; - int p0[] = {163, 7,6, 3,0, -1}; - int p1[] = {193, 15, 0, -1}; + int p0[] = { 163, 7, 6, 3, 0, -1 }; + int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); @@ -1542,8 +1697,8 @@ test_gf2m_mod_sqrt(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e, *f; int i, j, ret = 0; - int p0[] = {163, 7,6, 3,0, -1}; - int p1[] = {193, 15, 0, -1}; + int p0[] = { 163, 7, 6, 3, 0, -1 }; + int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); @@ -1597,8 +1752,8 @@ test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e; int i, j, s = 0, t, ret = 0; - int p0[] = {163, 7,6, 3,0, -1}; - int p1[] = {193, 15, 0, -1}; + int p0[] = { 163, 7, 6, 3, 0, -1 }; + int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); @@ -1637,6 +1792,7 @@ test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx) fprintf(stderr, "GF(2^m) modular solve quadratic test failed!\n"); goto err; } + } else { #if 0 /* make test uses ouput in bc but bc can't handle GF(2^m) arithmetic */ if (bp != NULL) { @@ -1652,7 +1808,7 @@ test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx) } } } - if (s == 0) { + if (s == 0) { fprintf(stderr, "All %i tests of GF(2^m) modular solve quadratic resulted in no roots;\n", num0); fprintf(stderr, "this is very unlikely and probably indicates an error.\n"); goto err; @@ -1668,23 +1824,22 @@ err: return ret; } #endif - static int genprime_cb(int p, int n, BN_GENCB *arg) { - char c='*'; + char c = '*'; if (p == 0) - c='.'; + c = '.'; if (p == 1) - c='+'; + c = '+'; if (p == 2) - c='*'; + c = '*'; if (p == 3) - c='\n'; + c = '\n'; putc(c, stderr); fflush(stderr); - return 1; + return (1); } int @@ -1705,14 +1860,15 @@ test_kron(BIO *bp, BN_CTX *ctx) BN_GENCB_set(&cb, genprime_cb, NULL); - /* We test BN_kronecker(a, b, ctx) just for b odd (Jacobi symbol). - * In this case we know that if b is prime, then BN_kronecker(a, b, ctx) - * is congruent to $a^{(b-1)/2}$, modulo $b$ (Legendre symbol). - * So we generate a random prime b and compare these values - * for a number of random a's. (That is, we run the Solovay-Strassen - * primality test to confirm that b is prime, except that we - * don't want to test whether b is prime but whether BN_kronecker - * works.) */ + /* + * We test BN_kronecker(a, b, ctx) just for b odd (Jacobi symbol). In + * this case we know that if b is prime, then BN_kronecker(a, b, ctx) is + * congruent to $a^{(b-1)/2}$, modulo $b$ (Legendre symbol). So we + * generate a random prime b and compare these values for a number of + * random a's. (That is, we run the Solovay-Strassen primality test to + * confirm that b is prime, except that we don't want to test whether b + * is prime but whether BN_kronecker works.) + */ if (!BN_generate_prime_ex(b, 512, 0, NULL, NULL, &cb)) goto err; @@ -1809,7 +1965,7 @@ test_sqrt(BIO *bp, BN_CTX *ctx) } else { if (!BN_set_word(a, 32)) goto err; - if (!BN_set_word(r, 2*i + 1)) + if (!BN_set_word(r, 2 * i + 1)) goto err; if (!BN_generate_prime_ex(p, 256, 0, a, r, &cb)) @@ -1819,8 +1975,10 @@ test_sqrt(BIO *bp, BN_CTX *ctx) p->neg = rand_neg(); for (j = 0; j < num2; j++) { - /* construct 'a' such that it is a square modulo p, - * but in general not a proper square and not reduced modulo p */ + /* + * construct 'a' such that it is a square modulo p, but in + * general not a proper square and not reduced modulo p + */ if (!BN_bntest_rand(r, 256, 0, 3)) goto err; if (!BN_nnmod(r, r, p, ctx)) @@ -1889,7 +2047,7 @@ test_lshift(BIO *bp, BN_CTX *ctx, BIGNUM *a_) a = a_; else { a = BN_new(); - BN_bntest_rand(a,200,0,0); + BN_bntest_rand(a, 200, 0, 0); a->neg = rand_neg(); } for (i = 0; i < num0; i++) { @@ -1905,7 +2063,7 @@ test_lshift(BIO *bp, BN_CTX *ctx, BIGNUM *a_) BN_print(bp, b); BIO_puts(bp, "\n"); } - BN_mul(d, a,c, ctx); + BN_mul(d, a, c, ctx); BN_sub(d, d, b); if (!BN_is_zero(d)) { fprintf(stderr, "Left shift test failed!\n"); @@ -1940,7 +2098,7 @@ test_lshift1(BIO *bp) b = BN_new(); c = BN_new(); - BN_bntest_rand(a,200,0,0); + BN_bntest_rand(a, 200, 0, 0); a->neg = rand_neg(); for (i = 0; i < num0; i++) { (void)BN_lshift1(b, a); @@ -1983,7 +2141,7 @@ test_rshift(BIO *bp, BN_CTX *ctx) e = BN_new(); BN_one(c); - BN_bntest_rand(a,200,0,0); + BN_bntest_rand(a, 200, 0, 0); a->neg = rand_neg(); for (i = 0; i < num0; i++) { (void)BN_rshift(b, a, i + 1); @@ -1998,7 +2156,7 @@ test_rshift(BIO *bp, BN_CTX *ctx) BN_print(bp, b); BIO_puts(bp, "\n"); } - BN_div(d, e,a, c, ctx); + BN_div(d, e, a, c, ctx); BN_sub(d, d, b); if (!BN_is_zero(d)) { fprintf(stderr, "Right shift test failed!\n"); @@ -2025,7 +2183,7 @@ test_rshift1(BIO *bp) b = BN_new(); c = BN_new(); - BN_bntest_rand(a,200,0,0); + BN_bntest_rand(a, 200, 0, 0); a->neg = rand_neg(); for (i = 0; i < num0; i++) { (void)BN_rshift1(b, a); @@ -2057,7 +2215,7 @@ int rand_neg(void) { static unsigned int neg = 0; - static int sign[8] = {0, 0,0, 1,1, 0,1, 1}; + static int sign[8] = { 0, 0, 0, 1, 1, 0, 1, 1 }; return (sign[(neg++) % 8]); } diff --git a/regress/lib/libcrypto/exp/exptest.c b/regress/lib/libcrypto/exp/exptest.c index 5f9b663a262..45ca5ac5f57 100644 --- a/regress/lib/libcrypto/exp/exptest.c +++ b/regress/lib/libcrypto/exp/exptest.c @@ -5,21 +5,21 @@ * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. - * + * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). - * + * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. - * + * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: @@ -34,10 +34,10 @@ * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). - * 4. If you include any Windows specific code (or a derivative thereof) from + * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" - * + * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE @@ -49,7 +49,7 @@ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. - * + * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence @@ -66,110 +66,213 @@ #define NUM_BITS (BN_BITS*2) +/* + * Test that r == 0 in test_exp_mod_zero(). Returns one on success, + * returns zero and prints debug output otherwise. + */ +static int a_is_zero_mod_one(const char *method, const BIGNUM *r, + const BIGNUM *a) { + if (!BN_is_zero(r)) { + fprintf(stderr, "%s failed:\n", method); + fprintf(stderr, "a ** 0 mod 1 = r (should be 0)\n"); + fprintf(stderr, "a = "); + BN_print_fp(stderr, a); + fprintf(stderr, "\nr = "); + BN_print_fp(stderr, r); + fprintf(stderr, "\n"); + return 0; + } + return 1; +} + +/* + * test_exp_mod_zero tests that x**0 mod 1 == 0. It returns zero on success. + */ +static int test_exp_mod_zero(void) +{ + BIGNUM a, p, m; + BIGNUM r; + BN_ULONG one_word = 1; + BN_CTX *ctx = BN_CTX_new(); + int ret = 1, failed = 0; + + BN_init(&m); + BN_one(&m); + + BN_init(&a); + BN_one(&a); + + BN_init(&p); + BN_zero(&p); + + BN_init(&r); + + if (!BN_rand(&a, 1024, 0, 0)) + goto err; + + if (!BN_mod_exp(&r, &a, &p, &m, ctx)) + goto err; + + if (!a_is_zero_mod_one("BN_mod_exp", &r, &a)) + failed = 1; + + if (!BN_mod_exp_recp(&r, &a, &p, &m, ctx)) + goto err; + + if (!a_is_zero_mod_one("BN_mod_exp_recp", &r, &a)) + failed = 1; + + if (!BN_mod_exp_simple(&r, &a, &p, &m, ctx)) + goto err; + + if (!a_is_zero_mod_one("BN_mod_exp_simple", &r, &a)) + failed = 1; + + if (!BN_mod_exp_mont(&r, &a, &p, &m, ctx, NULL)) + goto err; + + if (!a_is_zero_mod_one("BN_mod_exp_mont", &r, &a)) + failed = 1; + + if (!BN_mod_exp_mont_consttime(&r, &a, &p, &m, ctx, NULL)) { + goto err; + } + + if (!a_is_zero_mod_one("BN_mod_exp_mont_consttime", &r, &a)) + failed = 1; + + /* + * A different codepath exists for single word multiplication + * in non-constant-time only. + */ + if (!BN_mod_exp_mont_word(&r, one_word, &p, &m, ctx, NULL)) + goto err; + + if (!BN_is_zero(&r)) { + fprintf(stderr, "BN_mod_exp_mont_word failed:\n"); + fprintf(stderr, "1 ** 0 mod 1 = r (should be 0)\n"); + fprintf(stderr, "r = "); + BN_print_fp(stderr, &r); + fprintf(stderr, "\n"); + return 0; + } + + ret = failed; + + err: + BN_free(&r); + BN_free(&a); + BN_free(&p); + BN_free(&m); + BN_CTX_free(ctx); + + return ret; +} + int main(int argc, char *argv[]) - { +{ BN_CTX *ctx; - BIO *out=NULL; - int i,ret; + BIO *out = NULL; + int i, ret; unsigned char c; - BIGNUM *r_mont,*r_mont_const,*r_recp,*r_simple,*a,*b,*m; + BIGNUM *r_mont, *r_mont_const, *r_recp, *r_simple, *a, *b, *m; ERR_load_BN_strings(); - ctx=BN_CTX_new(); - if (ctx == NULL) exit(1); - r_mont=BN_new(); - r_mont_const=BN_new(); - r_recp=BN_new(); - r_simple=BN_new(); - a=BN_new(); - b=BN_new(); - m=BN_new(); - if ( (r_mont == NULL) || (r_recp == NULL) || - (a == NULL) || (b == NULL)) + ctx = BN_CTX_new(); + if (ctx == NULL) + exit(1); + r_mont = BN_new(); + r_mont_const = BN_new(); + r_recp = BN_new(); + r_simple = BN_new(); + a = BN_new(); + b = BN_new(); + m = BN_new(); + if ((r_mont == NULL) || (r_recp == NULL) || (a == NULL) || (b == NULL)) goto err; - out=BIO_new(BIO_s_file()); + out = BIO_new(BIO_s_file()); - if (out == NULL) exit(1); - BIO_set_fp(out,stdout,BIO_NOCLOSE); + if (out == NULL) + exit(1); + BIO_set_fp(out, stdout, BIO_NOCLOSE); - for (i=0; i<200; i++) - { - arc4random_buf(&c,1); - c=(c%BN_BITS)-BN_BITS2; - BN_rand(a,NUM_BITS+c,0,0); + for (i = 0; i < 200; i++) { + arc4random_buf(&c, 1); + c = (c % BN_BITS) - BN_BITS2; + BN_rand(a, NUM_BITS + c, 0, 0); - arc4random_buf(&c,1); - c=(c%BN_BITS)-BN_BITS2; - BN_rand(b,NUM_BITS+c,0,0); + arc4random_buf(&c, 1); + c = (c % BN_BITS) - BN_BITS2; + BN_rand(b, NUM_BITS + c, 0, 0); - arc4random_buf(&c,1); - c=(c%BN_BITS)-BN_BITS2; - BN_rand(m,NUM_BITS+c,0,1); + arc4random_buf(&c, 1); + c = (c % BN_BITS) - BN_BITS2; + BN_rand(m, NUM_BITS + c, 0, 1); - BN_mod(a,a,m,ctx); - BN_mod(b,b,m,ctx); + BN_mod(a, a, m, ctx); + BN_mod(b, b, m, ctx); - ret=BN_mod_exp_mont(r_mont,a,b,m,ctx,NULL); - if (ret <= 0) - { + ret = BN_mod_exp_mont(r_mont, a, b, m, ctx, NULL); + if (ret <= 0) { printf("BN_mod_exp_mont() problems\n"); ERR_print_errors(out); exit(1); - } + } - ret=BN_mod_exp_recp(r_recp,a,b,m,ctx); - if (ret <= 0) - { + ret = BN_mod_exp_recp(r_recp, a, b, m, ctx); + if (ret <= 0) { printf("BN_mod_exp_recp() problems\n"); ERR_print_errors(out); exit(1); - } + } - ret=BN_mod_exp_simple(r_simple,a,b,m,ctx); - if (ret <= 0) - { + ret = BN_mod_exp_simple(r_simple, a, b, m, ctx); + if (ret <= 0) { printf("BN_mod_exp_simple() problems\n"); ERR_print_errors(out); exit(1); - } + } - ret=BN_mod_exp_mont_consttime(r_mont_const,a,b,m,ctx,NULL); - if (ret <= 0) - { + ret = BN_mod_exp_mont_consttime(r_mont_const, a, b, m, ctx, NULL); + if (ret <= 0) { printf("BN_mod_exp_mont_consttime() problems\n"); ERR_print_errors(out); exit(1); - } + } if (BN_cmp(r_simple, r_mont) == 0 - && BN_cmp(r_simple,r_recp) == 0 - && BN_cmp(r_simple,r_mont_const) == 0) - { + && BN_cmp(r_simple, r_recp) == 0 + && BN_cmp(r_simple, r_mont_const) == 0) { printf("."); fflush(stdout); - } - else - { - if (BN_cmp(r_simple,r_mont) != 0) + } else { + if (BN_cmp(r_simple, r_mont) != 0) printf("\nsimple and mont results differ\n"); - if (BN_cmp(r_simple,r_mont_const) != 0) + if (BN_cmp(r_simple, r_mont_const) != 0) printf("\nsimple and mont const time results differ\n"); - if (BN_cmp(r_simple,r_recp) != 0) + if (BN_cmp(r_simple, r_recp) != 0) printf("\nsimple and recp results differ\n"); - printf("a (%3d) = ",BN_num_bits(a)); BN_print(out,a); - printf("\nb (%3d) = ",BN_num_bits(b)); BN_print(out,b); - printf("\nm (%3d) = ",BN_num_bits(m)); BN_print(out,m); - printf("\nsimple ="); BN_print(out,r_simple); - printf("\nrecp ="); BN_print(out,r_recp); - printf("\nmont ="); BN_print(out,r_mont); - printf("\nmont_ct ="); BN_print(out,r_mont_const); + printf("a (%3d) = ", BN_num_bits(a)); + BN_print(out, a); + printf("\nb (%3d) = ", BN_num_bits(b)); + BN_print(out, b); + printf("\nm (%3d) = ", BN_num_bits(m)); + BN_print(out, m); + printf("\nsimple ="); + BN_print(out, r_simple); + printf("\nrecp ="); + BN_print(out, r_recp); + printf("\nmont ="); + BN_print(out, r_mont); + printf("\nmont_ct ="); + BN_print(out, r_mont_const); printf("\n"); exit(1); - } } + } BN_free(r_mont); BN_free(r_mont_const); BN_free(r_recp); @@ -181,10 +284,16 @@ int main(int argc, char *argv[]) ERR_remove_thread_state(NULL); CRYPTO_mem_leaks(out); BIO_free(out); - printf(" done\n"); - exit(0); -err: + printf("\n"); + + if (test_exp_mod_zero() != 0) + goto err; + + printf("done\n"); + + return (0); + err: ERR_load_crypto_strings(); ERR_print_errors(out); - exit(1); - } + return (1); +} |