diff options
author | Ted Unangst <tedu@cvs.openbsd.org> | 2017-05-28 21:59:57 +0000 |
---|---|---|
committer | Ted Unangst <tedu@cvs.openbsd.org> | 2017-05-28 21:59:57 +0000 |
commit | 548a9803495ee9f13131b171782f912ea1aefd0c (patch) | |
tree | 1dfd5756483f6b757ad1a82a75bcf9ac077c2317 /usr.bin | |
parent | e0f5b112cfce843ba373f9f41121724f830bc517 (diff) |
when copying curvy files from ssh, an extra one snuck in.
signify doesn't do any kex stuff and doesn't need scalarmult.
Diffstat (limited to 'usr.bin')
-rw-r--r-- | usr.bin/signify/Makefile | 4 | ||||
-rw-r--r-- | usr.bin/signify/smult_curve25519_ref.c | 265 |
2 files changed, 2 insertions, 267 deletions
diff --git a/usr.bin/signify/Makefile b/usr.bin/signify/Makefile index 161c43de33a..de945715d4c 100644 --- a/usr.bin/signify/Makefile +++ b/usr.bin/signify/Makefile @@ -1,8 +1,8 @@ -# $OpenBSD: Makefile,v 1.11 2016/09/02 16:10:56 espie Exp $ +# $OpenBSD: Makefile,v 1.12 2017/05/28 21:59:56 tedu Exp $ SRCS= signify.c SRCS+= zsig.c -SRCS+= fe25519.c sc25519.c smult_curve25519_ref.c +SRCS+= fe25519.c sc25519.c SRCS+= mod_ed25519.c mod_ge25519.c SRCS+= crypto_api.c diff --git a/usr.bin/signify/smult_curve25519_ref.c b/usr.bin/signify/smult_curve25519_ref.c deleted file mode 100644 index 0ed7ffaa311..00000000000 --- a/usr.bin/signify/smult_curve25519_ref.c +++ /dev/null @@ -1,265 +0,0 @@ -/* $OpenBSD: smult_curve25519_ref.c,v 1.1 2014/07/22 00:41:19 deraadt Exp $ */ -/* -version 20081011 -Matthew Dempsky -Public domain. -Derived from public domain code by D. J. Bernstein. -*/ - -int crypto_scalarmult_curve25519(unsigned char *, const unsigned char *, const unsigned char *); - -static void add(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) -{ - unsigned int j; - unsigned int u; - u = 0; - for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; } - u += a[31] + b[31]; out[31] = u; -} - -static void sub(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) -{ - unsigned int j; - unsigned int u; - u = 218; - for (j = 0;j < 31;++j) { - u += a[j] + 65280 - b[j]; - out[j] = u & 255; - u >>= 8; - } - u += a[31] - b[31]; - out[31] = u; -} - -static void squeeze(unsigned int a[32]) -{ - unsigned int j; - unsigned int u; - u = 0; - for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } - u += a[31]; a[31] = u & 127; - u = 19 * (u >> 7); - for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } - u += a[31]; a[31] = u; -} - -static const unsigned int minusp[32] = { - 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128 -} ; - -static void freeze(unsigned int a[32]) -{ - unsigned int aorig[32]; - unsigned int j; - unsigned int negative; - - for (j = 0;j < 32;++j) aorig[j] = a[j]; - add(a,a,minusp); - negative = -((a[31] >> 7) & 1); - for (j = 0;j < 32;++j) a[j] ^= negative & (aorig[j] ^ a[j]); -} - -static void mult(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) -{ - unsigned int i; - unsigned int j; - unsigned int u; - - for (i = 0;i < 32;++i) { - u = 0; - for (j = 0;j <= i;++j) u += a[j] * b[i - j]; - for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j]; - out[i] = u; - } - squeeze(out); -} - -static void mult121665(unsigned int out[32],const unsigned int a[32]) -{ - unsigned int j; - unsigned int u; - - u = 0; - for (j = 0;j < 31;++j) { u += 121665 * a[j]; out[j] = u & 255; u >>= 8; } - u += 121665 * a[31]; out[31] = u & 127; - u = 19 * (u >> 7); - for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; } - u += out[j]; out[j] = u; -} - -static void square(unsigned int out[32],const unsigned int a[32]) -{ - unsigned int i; - unsigned int j; - unsigned int u; - - for (i = 0;i < 32;++i) { - u = 0; - for (j = 0;j < i - j;++j) u += a[j] * a[i - j]; - for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j]; - u *= 2; - if ((i & 1) == 0) { - u += a[i / 2] * a[i / 2]; - u += 38 * a[i / 2 + 16] * a[i / 2 + 16]; - } - out[i] = u; - } - squeeze(out); -} - -static void select(unsigned int p[64],unsigned int q[64],const unsigned int r[64],const unsigned int s[64],unsigned int b) -{ - unsigned int j; - unsigned int t; - unsigned int bminus1; - - bminus1 = b - 1; - for (j = 0;j < 64;++j) { - t = bminus1 & (r[j] ^ s[j]); - p[j] = s[j] ^ t; - q[j] = r[j] ^ t; - } -} - -static void mainloop(unsigned int work[64],const unsigned char e[32]) -{ - unsigned int xzm1[64]; - unsigned int xzm[64]; - unsigned int xzmb[64]; - unsigned int xzm1b[64]; - unsigned int xznb[64]; - unsigned int xzn1b[64]; - unsigned int a0[64]; - unsigned int a1[64]; - unsigned int b0[64]; - unsigned int b1[64]; - unsigned int c1[64]; - unsigned int r[32]; - unsigned int s[32]; - unsigned int t[32]; - unsigned int u[32]; - unsigned int j; - unsigned int b; - int pos; - - for (j = 0;j < 32;++j) xzm1[j] = work[j]; - xzm1[32] = 1; - for (j = 33;j < 64;++j) xzm1[j] = 0; - - xzm[0] = 1; - for (j = 1;j < 64;++j) xzm[j] = 0; - - for (pos = 254;pos >= 0;--pos) { - b = e[pos / 8] >> (pos & 7); - b &= 1; - select(xzmb,xzm1b,xzm,xzm1,b); - add(a0,xzmb,xzmb + 32); - sub(a0 + 32,xzmb,xzmb + 32); - add(a1,xzm1b,xzm1b + 32); - sub(a1 + 32,xzm1b,xzm1b + 32); - square(b0,a0); - square(b0 + 32,a0 + 32); - mult(b1,a1,a0 + 32); - mult(b1 + 32,a1 + 32,a0); - add(c1,b1,b1 + 32); - sub(c1 + 32,b1,b1 + 32); - square(r,c1 + 32); - sub(s,b0,b0 + 32); - mult121665(t,s); - add(u,t,b0); - mult(xznb,b0,b0 + 32); - mult(xznb + 32,s,u); - square(xzn1b,c1); - mult(xzn1b + 32,r,work); - select(xzm,xzm1,xznb,xzn1b,b); - } - - for (j = 0;j < 64;++j) work[j] = xzm[j]; -} - -static void recip(unsigned int out[32],const unsigned int z[32]) -{ - unsigned int z2[32]; - unsigned int z9[32]; - unsigned int z11[32]; - unsigned int z2_5_0[32]; - unsigned int z2_10_0[32]; - unsigned int z2_20_0[32]; - unsigned int z2_50_0[32]; - unsigned int z2_100_0[32]; - unsigned int t0[32]; - unsigned int t1[32]; - int i; - - /* 2 */ square(z2,z); - /* 4 */ square(t1,z2); - /* 8 */ square(t0,t1); - /* 9 */ mult(z9,t0,z); - /* 11 */ mult(z11,z9,z2); - /* 22 */ square(t0,z11); - /* 2^5 - 2^0 = 31 */ mult(z2_5_0,t0,z9); - - /* 2^6 - 2^1 */ square(t0,z2_5_0); - /* 2^7 - 2^2 */ square(t1,t0); - /* 2^8 - 2^3 */ square(t0,t1); - /* 2^9 - 2^4 */ square(t1,t0); - /* 2^10 - 2^5 */ square(t0,t1); - /* 2^10 - 2^0 */ mult(z2_10_0,t0,z2_5_0); - - /* 2^11 - 2^1 */ square(t0,z2_10_0); - /* 2^12 - 2^2 */ square(t1,t0); - /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t0,t1); square(t1,t0); } - /* 2^20 - 2^0 */ mult(z2_20_0,t1,z2_10_0); - - /* 2^21 - 2^1 */ square(t0,z2_20_0); - /* 2^22 - 2^2 */ square(t1,t0); - /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { square(t0,t1); square(t1,t0); } - /* 2^40 - 2^0 */ mult(t0,t1,z2_20_0); - - /* 2^41 - 2^1 */ square(t1,t0); - /* 2^42 - 2^2 */ square(t0,t1); - /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t1,t0); square(t0,t1); } - /* 2^50 - 2^0 */ mult(z2_50_0,t0,z2_10_0); - - /* 2^51 - 2^1 */ square(t0,z2_50_0); - /* 2^52 - 2^2 */ square(t1,t0); - /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } - /* 2^100 - 2^0 */ mult(z2_100_0,t1,z2_50_0); - - /* 2^101 - 2^1 */ square(t1,z2_100_0); - /* 2^102 - 2^2 */ square(t0,t1); - /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { square(t1,t0); square(t0,t1); } - /* 2^200 - 2^0 */ mult(t1,t0,z2_100_0); - - /* 2^201 - 2^1 */ square(t0,t1); - /* 2^202 - 2^2 */ square(t1,t0); - /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } - /* 2^250 - 2^0 */ mult(t0,t1,z2_50_0); - - /* 2^251 - 2^1 */ square(t1,t0); - /* 2^252 - 2^2 */ square(t0,t1); - /* 2^253 - 2^3 */ square(t1,t0); - /* 2^254 - 2^4 */ square(t0,t1); - /* 2^255 - 2^5 */ square(t1,t0); - /* 2^255 - 21 */ mult(out,t1,z11); -} - -int crypto_scalarmult_curve25519(unsigned char *q, - const unsigned char *n, - const unsigned char *p) -{ - unsigned int work[96]; - unsigned char e[32]; - unsigned int i; - for (i = 0;i < 32;++i) e[i] = n[i]; - e[0] &= 248; - e[31] &= 127; - e[31] |= 64; - for (i = 0;i < 32;++i) work[i] = p[i]; - mainloop(work,e); - recip(work + 32,work + 32); - mult(work + 64,work,work + 32); - freeze(work + 64); - for (i = 0;i < 32;++i) q[i] = work[64 + i]; - return 0; -} |