summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--sys/arch/i386/conf/GENERIC5
-rw-r--r--sys/dev/pci/files.pci7
-rw-r--r--sys/dev/pci/if_sf.c1371
-rw-r--r--sys/dev/pci/if_sfreg.h1048
4 files changed, 2428 insertions, 3 deletions
diff --git a/sys/arch/i386/conf/GENERIC b/sys/arch/i386/conf/GENERIC
index 640cf0477ae..35daa20e9b5 100644
--- a/sys/arch/i386/conf/GENERIC
+++ b/sys/arch/i386/conf/GENERIC
@@ -1,4 +1,4 @@
-# $OpenBSD: GENERIC,v 1.135 1999/10/28 21:53:55 aaron Exp $
+# $OpenBSD: GENERIC,v 1.136 1999/11/03 02:45:08 aaron Exp $
# $NetBSD: GENERIC,v 1.48 1996/05/20 18:17:23 mrg Exp $
#
# GENERIC -- everything that's currently supported
@@ -238,6 +238,7 @@ wb* at pci? dev ? function ? # Winbond W89C840F ethernet
ti* at pci? dev ? function ? # Alteon Tigon 1Gb ethernet
ax* at pci? dev ? function ? # ASIX AX88140A ethernet
al* at pci? dev ? function ? # ADMtek AL981/AN985 ethernet
+sf* at pci? dev ? function ? # Adaptec AIC-6915 ethernet
skc* at pci? dev ? function ? # SysKonnect GEnesis 984x
sk* at skc? # each port of above
@@ -249,7 +250,7 @@ icsphy* at mii? phy ? # ICS 1890 PHYs
#lxtphy* at mii? phy ? # Level1 LXT970 PHYs
nsphy* at mii? phy ? # NS and compatible PHYs
#qsphy* at mii? phy ? # Quality Semi QS6612 PHYs
-#sqphy* at mii? phy ? # Seeq 8x220 PHYs
+sqphy* at mii? phy ? # Seeq 8x220 PHYs
rlphy* at mii? phy ? # RealTek 8139 internal PHYs
#mtdphy* at mii? phy ? # Myson MTD972 PHYs
ukphy* at mii? phy ? # "unknown" PHYs
diff --git a/sys/dev/pci/files.pci b/sys/dev/pci/files.pci
index 9218250af61..83447ffd597 100644
--- a/sys/dev/pci/files.pci
+++ b/sys/dev/pci/files.pci
@@ -1,4 +1,4 @@
-# $OpenBSD: files.pci,v 1.52 1999/10/28 21:53:55 aaron Exp $
+# $OpenBSD: files.pci,v 1.53 1999/11/03 02:45:08 aaron Exp $
# $NetBSD: files.pci,v 1.20 1996/09/24 17:47:15 christos Exp $
#
# Config file and device description for machine-independent PCI code.
@@ -194,6 +194,11 @@ device al: ether, ifnet, ifmedia
attach al at pci
file dev/pci/if_al.c al
+# Adaptec AIC-6915 "Starfire" ethernet
+device sf: ether, ifnet, mii, ifmedia
+attach sf at pci
+file dev/pci/if_sf.c sf
+
# Industrial Computer Source WDT-50x
device wdt: pcibus
attach wdt at pci
diff --git a/sys/dev/pci/if_sf.c b/sys/dev/pci/if_sf.c
new file mode 100644
index 00000000000..e3417d2d43a
--- /dev/null
+++ b/sys/dev/pci/if_sf.c
@@ -0,0 +1,1371 @@
+/* $OpenBSD: if_sf.c,v 1.1 1999/11/03 02:45:08 aaron Exp $ */
+/*
+ * Copyright (c) 1997, 1998, 1999
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $FreeBSD: src/sys/pci/if_sf.c,v 1.16 1999/09/26 18:35:30 wpaul Exp $
+ */
+
+/*
+ * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
+ * Programming manual is available from:
+ * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
+ *
+ * Written by Bill Paul <wpaul@ctr.columbia.edu>
+ * Department of Electical Engineering
+ * Columbia University, New York City
+ */
+
+/*
+ * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
+ * controller designed with flexibility and reducing CPU load in mind.
+ * The Starfire offers high and low priority buffer queues, a
+ * producer/consumer index mechanism and several different buffer
+ * queue and completion queue descriptor types. Any one of a number
+ * of different driver designs can be used, depending on system and
+ * OS requirements. This driver makes use of type0 transmit frame
+ * descriptors (since BSD fragments packets across an mbuf chain)
+ * and two RX buffer queues prioritized on size (one queue for small
+ * frames that will fit into a single mbuf, another with full size
+ * mbuf clusters for everything else). The producer/consumer indexes
+ * and completion queues are also used.
+ *
+ * One downside to the Starfire has to do with alignment: buffer
+ * queues must be aligned on 256-byte boundaries, and receive buffers
+ * must be aligned on longword boundaries. The receive buffer alignment
+ * causes problems on the Alpha platform, where the packet payload
+ * should be longword aligned. There is no simple way around this.
+ *
+ * For receive filtering, the Starfire offers 16 perfect filter slots
+ * and a 512-bit hash table.
+ *
+ * The Starfire has no internal transceiver, relying instead on an
+ * external MII-based transceiver. Accessing registers on external
+ * PHYs is done through a special register map rather than with the
+ * usual bitbang MDIO method.
+ *
+ * Acesssing the registers on the Starfire is a little tricky. The
+ * Starfire has a 512K internal register space. When programmed for
+ * PCI memory mapped mode, the entire register space can be accessed
+ * directly. However in I/O space mode, only 256 bytes are directly
+ * mapped into PCI I/O space. The other registers can be accessed
+ * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
+ * registers inside the 256-byte I/O window.
+ */
+
+#include "bpfilter.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/mbuf.h>
+#include <sys/protosw.h>
+#include <sys/socket.h>
+#include <sys/ioctl.h>
+#include <sys/errno.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+
+#include <net/if.h>
+#include <net/if_dl.h>
+#include <net/if_types.h>
+
+#include <netinet/in.h>
+#include <netinet/in_systm.h>
+#include <netinet/in_var.h>
+#include <netinet/ip.h>
+#include <netinet/if_ether.h>
+
+#include <net/if_media.h>
+
+#if NBPFILTER > 0
+#include <net/bpf.h>
+#endif
+
+#include <vm/vm.h> /* for vtophys */
+#include <vm/pmap.h> /* for vtophys */
+
+#include <sys/device.h>
+
+#include <dev/mii/mii.h>
+#include <dev/mii/miivar.h>
+
+#include <dev/pci/pcireg.h>
+#include <dev/pci/pcivar.h>
+#include <dev/pci/pcidevs.h>
+
+#define SF_USEIOSPACE
+
+#include <dev/pci/if_sfreg.h>
+
+int sf_probe __P((struct device *, void *, void *));
+void sf_attach __P((struct device *, struct device *, void *));
+int sf_intr __P((void *));
+void sf_shutdown __P((void *));
+void sf_stats_update __P((void *));
+void sf_rxeof __P((struct sf_softc *));
+void sf_txeof __P((struct sf_softc *));
+int sf_encap __P((struct sf_softc *, struct sf_tx_bufdesc_type0 *,
+ struct mbuf *));
+void sf_start __P((struct ifnet *));
+int sf_ioctl __P((struct ifnet *, u_long, caddr_t));
+void sf_init __P((void *));
+void sf_stop __P((struct sf_softc *));
+void sf_watchdog __P((struct ifnet *));
+int sf_ifmedia_upd __P((struct ifnet *));
+void sf_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
+void sf_reset __P((struct sf_softc *));
+int sf_init_rx_ring __P((struct sf_softc *));
+void sf_init_tx_ring __P((struct sf_softc *));
+int sf_newbuf __P((struct sf_softc *, struct sf_rx_bufdesc_type0 *,
+ struct mbuf *));
+void sf_setmulti __P((struct sf_softc *));
+int sf_setperf __P((struct sf_softc *, int, caddr_t));
+int sf_sethash __P((struct sf_softc *, caddr_t, int));
+#ifdef notdef
+int sf_setvlan __P((struct sf_softc *, int, u_int32_t));
+#endif
+
+u_int8_t sf_read_eeprom __P((struct sf_softc *, int));
+u_int32_t sf_calchash __P((caddr_t));
+
+int sf_miibus_readreg __P((struct device *, int, int));
+void sf_miibus_writereg __P((struct device *, int, int, int));
+void sf_miibus_statchg __P((struct device *));
+
+u_int32_t csr_read_4 __P((struct sf_softc *, int));
+void csr_write_4 __P((struct sf_softc *, int, u_int32_t));
+
+#ifdef SF_USEIOSPACE
+#define SF_RES SYS_RES_IOPORT
+#define SF_RID SF_PCI_LOIO
+#else
+#define SF_RES SYS_RES_MEMORY
+#define SF_RID SF_PCI_LOMEM
+#endif
+
+#define SF_SETBIT(sc, reg, x) \
+ csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
+
+#define SF_CLRBIT(sc, reg, x) \
+ csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
+
+u_int32_t csr_read_4(sc, reg)
+ struct sf_softc *sc;
+ int reg;
+{
+ u_int32_t val;
+
+#ifdef SF_USEIOSPACE
+ CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
+ val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
+#else
+ val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
+#endif
+
+ return(val);
+}
+
+u_int8_t sf_read_eeprom(sc, reg)
+ struct sf_softc *sc;
+ int reg;
+{
+ u_int8_t val;
+
+ val = (csr_read_4(sc, SF_EEADDR_BASE +
+ (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
+
+ return(val);
+}
+
+void csr_write_4(sc, reg, val)
+ struct sf_softc *sc;
+ int reg;
+ u_int32_t val;
+{
+#ifdef SF_USEIOSPACE
+ CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
+ CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
+#else
+ CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
+#endif
+ return;
+}
+
+u_int32_t sf_calchash(addr)
+ caddr_t addr;
+{
+ u_int32_t crc, carry;
+ int i, j;
+ u_int8_t c;
+
+ /* Compute CRC for the address value. */
+ crc = 0xFFFFFFFF; /* initial value */
+
+ for (i = 0; i < 6; i++) {
+ c = *(addr + i);
+ for (j = 0; j < 8; j++) {
+ carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
+ crc <<= 1;
+ c >>= 1;
+ if (carry)
+ crc = (crc ^ 0x04c11db6) | carry;
+ }
+ }
+
+ /* return the filter bit position */
+ return(crc >> 23 & 0x1FF);
+}
+
+/*
+ * Copy the address 'mac' into the perfect RX filter entry at
+ * offset 'idx.' The perfect filter only has 16 entries so do
+ * some sanity tests.
+ */
+int sf_setperf(sc, idx, mac)
+ struct sf_softc *sc;
+ int idx;
+ caddr_t mac;
+{
+ u_int16_t *p;
+
+ if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
+ return(EINVAL);
+
+ if (mac == NULL)
+ return(EINVAL);
+
+ p = (u_int16_t *)mac;
+
+ csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
+ (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
+ csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
+ (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
+ csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
+ (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
+
+ return(0);
+}
+
+/*
+ * Set the bit in the 512-bit hash table that corresponds to the
+ * specified mac address 'mac.' If 'prio' is nonzero, update the
+ * priority hash table instead of the filter hash table.
+ */
+int sf_sethash(sc, mac, prio)
+ struct sf_softc *sc;
+ caddr_t mac;
+ int prio;
+{
+ u_int32_t h = 0;
+
+ if (mac == NULL)
+ return(EINVAL);
+
+ h = sf_calchash(mac);
+
+ if (prio) {
+ SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
+ (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
+ } else {
+ SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
+ (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
+ }
+
+ return(0);
+}
+
+#ifdef notdef
+/*
+ * Set a VLAN tag in the receive filter.
+ */
+int sf_setvlan(sc, idx, vlan)
+ struct sf_softc *sc;
+ int idx;
+ u_int32_t vlan;
+{
+ if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
+ return(EINVAL);
+
+ csr_write_4(sc, SF_RXFILT_HASH_BASE +
+ (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
+
+ return(0);
+}
+#endif
+
+int sf_miibus_readreg(self, phy, reg)
+ struct device *self;
+ int phy, reg;
+{
+ struct sf_softc *sc = (struct sf_softc *)self;
+ int i;
+ u_int32_t val = 0;
+
+ for (i = 0; i < SF_TIMEOUT; i++) {
+ val = csr_read_4(sc, SF_PHY_REG(phy, reg));
+ if (val & SF_MII_DATAVALID)
+ break;
+ }
+
+ if (i == SF_TIMEOUT)
+ return(0);
+
+ if ((val & 0x0000FFFF) == 0xFFFF)
+ return(0);
+
+ return(val & 0x0000FFFF);
+}
+
+void sf_miibus_writereg(self, phy, reg, val)
+ struct device *self;
+ int phy, reg, val;
+{
+ struct sf_softc *sc = (struct sf_softc *)self;
+ int i;
+ int busy;
+
+ csr_write_4(sc, SF_PHY_REG(phy, reg), val);
+
+ for (i = 0; i < SF_TIMEOUT; i++) {
+ busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
+ if (!(busy & SF_MII_BUSY))
+ break;
+ }
+
+ return;
+}
+
+void sf_miibus_statchg(self)
+ struct device *self;
+{
+ struct sf_softc *sc = (struct sf_softc *)self;
+ struct mii_data *mii;
+
+ mii = &sc->sc_mii;
+
+ if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ } else {
+ SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ }
+
+ return;
+}
+
+void sf_setmulti(sc)
+ struct sf_softc *sc;
+{
+ struct ifnet *ifp;
+ int i;
+ struct arpcom *ac = &sc->arpcom;
+ struct ether_multi *enm;
+ struct ether_multistep step;
+ u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
+
+ ifp = &sc->arpcom.ac_if;
+
+ /* First zot all the existing filters. */
+ for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
+ sf_setperf(sc, i, (char *)&dummy);
+ for (i = SF_RXFILT_HASH_BASE;
+ i < (SF_RXFILT_HASH_MAX + 1); i += 4)
+ csr_write_4(sc, i, 0);
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
+
+ /* Now program new ones. */
+ if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
+ } else {
+ i = 1;
+ /* First find the tail of the list. */
+ ETHER_FIRST_MULTI(step, ac, enm);
+
+ /* Now traverse the list backwards. */
+ while (enm != NULL) {
+ /* if (enm->enm_addrlo->sa_family != AF_LINK)
+ continue; */
+ /*
+ * Program the first 15 multicast groups
+ * into the perfect filter. For all others,
+ * use the hash table.
+ */
+ if (i < SF_RXFILT_PERFECT_CNT) {
+ sf_setperf(sc, i,
+ LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
+ i++;
+ continue;
+ }
+
+ sf_sethash(sc,
+ LLADDR((struct sockaddr_dl *)enm->enm_addrlo), 0);
+ ETHER_NEXT_MULTI(step, enm);
+ }
+ }
+
+ return;
+}
+
+/*
+ * Set media options.
+ */
+int sf_ifmedia_upd(ifp)
+ struct ifnet *ifp;
+{
+ struct sf_softc *sc;
+ struct mii_data *mii;
+
+ sc = ifp->if_softc;
+ mii = &sc->sc_mii;
+ mii_mediachg(mii);
+
+ return(0);
+}
+
+/*
+ * Report current media status.
+ */
+void sf_ifmedia_sts(ifp, ifmr)
+ struct ifnet *ifp;
+ struct ifmediareq *ifmr;
+{
+ struct sf_softc *sc;
+ struct mii_data *mii;
+
+ sc = ifp->if_softc;
+ mii = &sc->sc_mii;
+
+ mii_pollstat(mii);
+ ifmr->ifm_active = mii->mii_media_active;
+ ifmr->ifm_status = mii->mii_media_status;
+
+ return;
+}
+
+int sf_ioctl(ifp, command, data)
+ struct ifnet *ifp;
+ u_long command;
+ caddr_t data;
+{
+ struct sf_softc *sc = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *) data;
+ struct ifaddr *ifa = (struct ifaddr *)data;
+ struct mii_data *mii;
+ int s, error = 0;
+
+ s = splimp();
+
+ if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) {
+ splx(s);
+ return error;
+ }
+
+ switch(command) {
+ case SIOCSIFADDR:
+ ifp->if_flags |= IFF_UP;
+ switch (ifa->ifa_addr->sa_family) {
+ case AF_INET:
+ sf_init(sc);
+ arp_ifinit(&sc->arpcom, ifa);
+ break;
+ default:
+ sf_init(sc);
+ break;
+ }
+ break;
+ case SIOCSIFFLAGS:
+ if (ifp->if_flags & IFF_UP) {
+ sf_init(sc);
+ } else {
+ if (ifp->if_flags & IFF_RUNNING)
+ sf_stop(sc);
+ }
+ error = 0;
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ sf_setmulti(sc);
+ error = 0;
+ break;
+ case SIOCGIFMEDIA:
+ case SIOCSIFMEDIA:
+ mii = &sc->sc_mii;
+ error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
+ break;
+ default:
+ error = EINVAL;
+ break;
+ }
+
+ (void)splx(s);
+
+ return(error);
+}
+
+void sf_reset(sc)
+ struct sf_softc *sc;
+{
+ register int i;
+
+ csr_write_4(sc, SF_GEN_ETH_CTL, 0);
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
+ DELAY(1000);
+ SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
+
+ SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
+
+ for (i = 0; i < SF_TIMEOUT; i++) {
+ DELAY(10);
+ if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
+ break;
+ }
+
+ if (i == SF_TIMEOUT)
+ printf("sf%d: reset never completed!\n", sc->sf_unit);
+
+ /* Wait a little while for the chip to get its brains in order. */
+ DELAY(1000);
+ return;
+}
+
+/*
+ * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
+ * IDs against our list and return a device name if we find a match.
+ * We also check the subsystem ID so that we can identify exactly which
+ * NIC has been found, if possible.
+ */
+int sf_probe(parent, match, aux)
+ struct device *parent;
+ void *match;
+ void *aux;
+{
+ struct pci_attach_args *pa = (struct pci_attach_args *)aux;
+
+ if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ADP)
+ return(0);
+
+ switch (PCI_PRODUCT(pa->pa_id)) {
+ case PCI_PRODUCT_ADP_AIC6915:
+ return(1);
+ }
+
+ return(0);
+}
+
+/*
+ * Attach the interface. Allocate softc structures, do ifmedia
+ * setup and ethernet/BPF attach.
+ */
+void sf_attach(parent, self, aux)
+ struct device *parent, *self;
+ void *aux;
+{
+ int s, i;
+ const char *intrstr = NULL;
+ u_int32_t command;
+ struct sf_softc *sc = (struct sf_softc *)self;
+ struct pci_attach_args *pa = aux;
+ pci_chipset_tag_t pc = pa->pa_pc;
+ pci_intr_handle_t ih;
+ struct ifnet *ifp;
+ bus_addr_t iobase;
+ bus_size_t iosize;
+
+ s = splimp();
+ sc->sf_unit = sc->sc_dev.dv_unit;
+
+ /*
+ * Handle power management nonsense.
+ */
+ command = pci_conf_read(pc, pa->pa_tag, SF_PCI_CAPID) & 0x000000FF;
+ if (command == 0x01) {
+
+ command = pci_conf_read(pc, pa->pa_tag, SF_PCI_PWRMGMTCTRL);
+ if (command & SF_PSTATE_MASK) {
+ u_int32_t iobase, membase, irq;
+
+ /* Save important PCI config data. */
+ iobase = pci_conf_read(pc, pa->pa_tag, SF_PCI_LOIO);
+ membase = pci_conf_read(pc, pa->pa_tag, SF_PCI_LOMEM);
+ irq = pci_conf_read(pc, pa->pa_tag, SF_PCI_INTLINE);
+
+ /* Reset the power state. */
+ printf("sf%d: chip is in D%d power mode "
+ "-- setting to D0\n", sc->sf_unit, command & SF_PSTATE_MASK);
+ command &= 0xFFFFFFFC;
+ pci_conf_write(pc, pa->pa_tag, SF_PCI_PWRMGMTCTRL, command);
+
+ /* Restore PCI config data. */
+ pci_conf_write(pc, pa->pa_tag, SF_PCI_LOIO, iobase);
+ pci_conf_write(pc, pa->pa_tag, SF_PCI_LOMEM, membase);
+ pci_conf_write(pc, pa->pa_tag, SF_PCI_INTLINE, irq);
+ }
+ }
+
+ /*
+ * Map control/status registers.
+ */
+ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
+ command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE |
+ PCI_COMMAND_MASTER_ENABLE;
+ pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
+ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
+
+#ifdef SF_USEIOSPACE
+ if (!(command & PCI_COMMAND_IO_ENABLE)) {
+ printf(": failed to enable I/O ports\n");
+ goto fail;
+ }
+ if (pci_io_find(pc, pa->pa_tag, SF_PCI_LOIO, &iobase, &iosize)) {
+ printf(": can't find I/O space\n");
+ goto fail;
+ }
+ if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->sf_bhandle)) {
+ printf(": can't map I/O space\n");
+ goto fail;
+ }
+ sc->sf_btag = pa->pa_iot;
+#else
+ if (!(command & PCI_COMMAND_MEM_ENABLE)) {
+ printf(": failed to enable memory mapping\n");
+ goto fail;
+ }
+ if (pci_mem_find(pc, pa->pa_tag, SF_PCI_LOMEM, &iobase, &iosize, NULL)){
+ printf(": can't find mem space\n");
+ goto fail;
+ }
+ if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sf_bhandle)) {
+ printf(": can't map mem space\n");
+ goto fail;
+ }
+ sc->sf_btag = pa->pa_memt;
+#endif
+
+ /* Allocate interrupt */
+ if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline,
+ &ih)) {
+ printf(": couldn't map interrupt\n");
+ goto fail;
+ }
+ intrstr = pci_intr_string(pc, ih);
+ sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sf_intr, sc,
+ self->dv_xname);
+ if (sc->sc_ih == NULL) {
+ printf(": couldn't establish interrupt");
+ if (intrstr != NULL)
+ printf(" at %s", intrstr);
+ printf("\n");
+ goto fail;
+ }
+ printf(": %s", intrstr);
+
+ /* Reset the adapter. */
+ sf_reset(sc);
+
+ /*
+ * Get station address from the EEPROM.
+ */
+ for (i = 0; i < ETHER_ADDR_LEN; i++)
+ sc->arpcom.ac_enaddr[i] =
+ sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
+
+ printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
+
+ /* Allocate the descriptor queues. */
+ sc->sf_ldata_ptr = malloc(sizeof(struct sf_list_data) + 8,
+ M_DEVBUF, M_NOWAIT);
+ if (sc->sf_ldata_ptr == NULL) {
+ printf("%s: no memory for list buffers!\n", sc->sf_unit);
+ goto fail;
+ }
+
+ sc->sf_ldata = (struct sf_list_data *)sc->sf_ldata_ptr;
+ bzero(sc->sf_ldata, sizeof(struct sf_list_data));
+
+ ifp = &sc->arpcom.ac_if;
+ ifp->if_softc = sc;
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = sf_ioctl;
+ ifp->if_output = ether_output;
+ ifp->if_start = sf_start;
+ ifp->if_watchdog = sf_watchdog;
+ ifp->if_baudrate = 10000000;
+ ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
+ bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
+
+ /*
+ * Initialize our media structures and probe the MII.
+ */
+ sc->sc_mii.mii_ifp = ifp;
+ sc->sc_mii.mii_readreg = sf_miibus_readreg;
+ sc->sc_mii.mii_writereg = sf_miibus_writereg;
+ sc->sc_mii.mii_statchg = sf_miibus_statchg;
+ ifmedia_init(&sc->sc_mii.mii_media, 0, sf_ifmedia_upd, sf_ifmedia_sts);
+ mii_phy_probe(self, &sc->sc_mii, 0xffffffff);
+ if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
+ ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
+ ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
+ } else
+ ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
+
+ /*
+ * Call MI attach routines.
+ */
+ if_attach(ifp);
+ ether_ifattach(ifp);
+
+#if NBPFILTER > 0
+ bpfattach(&sc->arpcom.ac_if.if_bpf, ifp, DLT_EN10MB,
+ sizeof(struct ether_header));
+#endif
+ shutdownhook_establish(sf_shutdown, sc);
+
+fail:
+ splx(s);
+ return;
+}
+
+int sf_init_rx_ring(sc)
+ struct sf_softc *sc;
+{
+ struct sf_list_data *ld;
+ int i;
+
+ ld = sc->sf_ldata;
+
+ bzero((char *)ld->sf_rx_dlist_big,
+ sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
+ bzero((char *)ld->sf_rx_clist,
+ sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
+
+ for (i = 0; i < SF_RX_DLIST_CNT; i++) {
+ if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
+ return(ENOBUFS);
+ }
+
+ return(0);
+}
+
+void sf_init_tx_ring(sc)
+ struct sf_softc *sc;
+{
+ struct sf_list_data *ld;
+ int i;
+
+ ld = sc->sf_ldata;
+
+ bzero((char *)ld->sf_tx_dlist,
+ sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
+ bzero((char *)ld->sf_tx_clist,
+ sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
+
+ for (i = 0; i < SF_TX_DLIST_CNT; i++)
+ ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
+ for (i = 0; i < SF_TX_CLIST_CNT; i++)
+ ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
+
+ ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
+ sc->sf_tx_cnt = 0;
+
+ return;
+}
+
+int sf_newbuf(sc, c, m)
+ struct sf_softc *sc;
+ struct sf_rx_bufdesc_type0 *c;
+ struct mbuf *m;
+{
+ struct mbuf *m_new = NULL;
+
+ if (m == NULL) {
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("sf%d: no memory for rx list -- "
+ "packet dropped!\n", sc->sf_unit);
+ return(ENOBUFS);
+ }
+
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ printf("sf%d: no memory for rx list -- "
+ "packet dropped!\n", sc->sf_unit);
+ m_freem(m_new);
+ return(ENOBUFS);
+ }
+ m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
+ } else {
+ m_new = m;
+ m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
+ m_new->m_data = m_new->m_ext.ext_buf;
+ }
+
+ m_adj(m_new, sizeof(u_int64_t));
+
+ c->sf_mbuf = m_new;
+ c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
+ c->sf_valid = 1;
+
+ return(0);
+}
+
+/*
+ * The starfire is programmed to use 'normal' mode for packet reception,
+ * which means we use the consumer/producer model for both the buffer
+ * descriptor queue and the completion descriptor queue. The only problem
+ * with this is that it involves a lot of register accesses: we have to
+ * read the RX completion consumer and producer indexes and the RX buffer
+ * producer index, plus the RX completion consumer and RX buffer producer
+ * indexes have to be updated. It would have been easier if Adaptec had
+ * put each index in a separate register, especially given that the damn
+ * NIC has a 512K register space.
+ *
+ * In spite of all the lovely features that Adaptec crammed into the 6915,
+ * it is marred by one truly stupid design flaw, which is that receive
+ * buffer addresses must be aligned on a longword boundary. This forces
+ * the packet payload to be unaligned, which is suboptimal on the x86 and
+ * completely unuseable on the Alpha. Our only recourse is to copy received
+ * packets into properly aligned buffers before handing them off.
+ */
+
+void sf_rxeof(sc)
+ struct sf_softc *sc;
+{
+ struct ether_header *eh;
+ struct mbuf *m;
+ struct ifnet *ifp;
+ struct sf_rx_bufdesc_type0 *desc;
+ struct sf_rx_cmpdesc_type3 *cur_rx;
+ u_int32_t rxcons, rxprod;
+ int cmpprodidx, cmpconsidx, bufprodidx;
+
+ ifp = &sc->arpcom.ac_if;
+
+ rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
+ rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
+ cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
+ cmpconsidx = SF_IDX_LO(rxcons);
+ bufprodidx = SF_IDX_LO(rxprod);
+
+ while (cmpconsidx != cmpprodidx) {
+ struct mbuf *m0;
+
+ cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
+ desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
+ m = desc->sf_mbuf;
+ SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
+ SF_INC(bufprodidx, SF_RX_DLIST_CNT);
+
+ if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
+ ifp->if_ierrors++;
+ sf_newbuf(sc, desc, m);
+ continue;
+ }
+
+ m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
+ cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
+ sf_newbuf(sc, desc, m);
+ if (m0 == NULL) {
+ ifp->if_ierrors++;
+ continue;
+ }
+ m_adj(m0, ETHER_ALIGN);
+ m = m0;
+
+ eh = mtod(m, struct ether_header *);
+ ifp->if_ipackets++;
+
+#if NBPFILTER > 0
+ if (ifp->if_bpf)
+ bpf_mtap(ifp->if_bpf, m);
+#endif
+
+ /* Remove header from mbuf and pass it on. */
+ m_adj(m, sizeof(struct ether_header));
+ ether_input(ifp, eh, m);
+
+ }
+
+ csr_write_4(sc, SF_CQ_CONSIDX,
+ (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
+ csr_write_4(sc, SF_RXDQ_PTR_Q1,
+ (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
+
+ return;
+}
+
+/*
+ * Read the transmit status from the completion queue and release
+ * mbufs. Note that the buffer descriptor index in the completion
+ * descriptor is an offset from the start of the transmit buffer
+ * descriptor list in bytes. This is important because the manual
+ * gives the impression that it should match the producer/consumer
+ * index, which is the offset in 8 byte blocks.
+ */
+void sf_txeof(sc)
+ struct sf_softc *sc;
+{
+ int txcons, cmpprodidx, cmpconsidx;
+ struct sf_tx_cmpdesc_type1 *cur_cmp;
+ struct sf_tx_bufdesc_type0 *cur_tx;
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ txcons = csr_read_4(sc, SF_CQ_CONSIDX);
+ cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
+ cmpconsidx = SF_IDX_HI(txcons);
+
+ while (cmpconsidx != cmpprodidx) {
+ cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
+ cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
+ SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
+
+ if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
+ ifp->if_opackets++;
+ else
+ ifp->if_oerrors++;
+
+ sc->sf_tx_cnt--;
+ if (cur_tx->sf_mbuf != NULL) {
+ m_freem(cur_tx->sf_mbuf);
+ cur_tx->sf_mbuf = NULL;
+ }
+ }
+
+ ifp->if_timer = 0;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ csr_write_4(sc, SF_CQ_CONSIDX,
+ (txcons & ~SF_CQ_CONSIDX_TXQ) |
+ ((cmpconsidx << 16) & 0xFFFF0000));
+
+ return;
+}
+
+int sf_intr(arg)
+ void *arg;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ u_int32_t status;
+ int claimed = 0;
+
+ sc = arg;
+ ifp = &sc->arpcom.ac_if;
+
+ if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
+ return claimed;
+
+ /* Disable interrupts. */
+ csr_write_4(sc, SF_IMR, 0x00000000);
+
+ for (;;) {
+ status = csr_read_4(sc, SF_ISR);
+ if (status)
+ csr_write_4(sc, SF_ISR, status);
+
+ if (!(status & SF_INTRS))
+ break;
+
+ claimed = 1;
+
+ if (status & SF_ISR_RXDQ1_DMADONE)
+ sf_rxeof(sc);
+
+ if (status & SF_ISR_TX_TXDONE)
+ sf_txeof(sc);
+
+ if (status & SF_ISR_ABNORMALINTR) {
+ if (status & SF_ISR_STATSOFLOW) {
+ untimeout(sf_stats_update, sc);
+ sf_stats_update(sc);
+ } else
+ sf_init(sc);
+ }
+ }
+
+ /* Re-enable interrupts. */
+ csr_write_4(sc, SF_IMR, SF_INTRS);
+
+ if (ifp->if_snd.ifq_head != NULL)
+ sf_start(ifp);
+
+ return claimed;
+}
+
+void sf_init(xsc)
+ void *xsc;
+{
+ struct sf_softc *sc = xsc;
+ struct ifnet *ifp = &sc->arpcom.ac_if;
+ struct mii_data *mii;
+ int i, s;
+
+ s = splimp();
+
+ mii = &sc->sc_mii;
+
+ sf_stop(sc);
+ sf_reset(sc);
+
+ /* Init all the receive filter registers */
+ for (i = SF_RXFILT_PERFECT_BASE;
+ i < (SF_RXFILT_HASH_MAX + 1); i += 4)
+ csr_write_4(sc, i, 0);
+
+ /* Empty stats counter registers. */
+ for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
+ csr_write_4(sc, SF_STATS_BASE +
+ (i + sizeof(u_int32_t)), 0);
+
+ /* Init our MAC address */
+ csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
+ csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
+ sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
+
+ if (sf_init_rx_ring(sc) == ENOBUFS) {
+ printf("sf%d: initialization failed: no "
+ "memory for rx buffers\n", sc->sf_unit);
+ (void)splx(s);
+ return;
+ }
+
+ sf_init_tx_ring(sc);
+
+ csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
+
+ /* If we want promiscuous mode, set the allframes bit. */
+ if (ifp->if_flags & IFF_PROMISC) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
+ } else {
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
+ }
+
+ if (ifp->if_flags & IFF_BROADCAST) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
+ } else {
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
+ }
+
+ /* Init the completion queue indexes */
+ csr_write_4(sc, SF_CQ_CONSIDX, 0);
+ csr_write_4(sc, SF_CQ_PRODIDX, 0);
+
+ /* Init the RX completion queue */
+ csr_write_4(sc, SF_RXCQ_CTL_1,
+ vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
+ SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
+
+ /* Init RX DMA control. */
+ SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
+
+ /* Init the RX buffer descriptor queue. */
+ csr_write_4(sc, SF_RXDQ_ADDR_Q1,
+ vtophys(sc->sf_ldata->sf_rx_dlist_big));
+ csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
+ csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
+
+ /* Init the TX completion queue */
+ csr_write_4(sc, SF_TXCQ_CTL,
+ vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
+
+ /* Init the TX buffer descriptor queue. */
+ csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
+ vtophys(sc->sf_ldata->sf_tx_dlist));
+ SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
+ csr_write_4(sc, SF_TXDQ_CTL,
+ SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
+ SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
+
+ /* Enable autopadding of short TX frames. */
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
+
+ /* Make sure the duplex mode is set correctly. */
+ if ((mii->mii_media.ifm_media & IFM_GMASK) == IFM_FDX) {
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ } else {
+ SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ }
+
+ /* Enable interrupts. */
+ csr_write_4(sc, SF_IMR, SF_INTRS);
+ SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
+
+ /* Enable the RX and TX engines. */
+ SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
+ SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
+
+ mii_mediachg(mii);
+
+ ifp->if_flags |= IFF_RUNNING;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ timeout(sf_stats_update, sc, hz);
+
+ splx(s);
+
+ return;
+}
+
+int sf_encap(sc, c, m_head)
+ struct sf_softc *sc;
+ struct sf_tx_bufdesc_type0 *c;
+ struct mbuf *m_head;
+{
+ int frag = 0;
+ struct sf_frag *f = NULL;
+ struct mbuf *m;
+
+ m = m_head;
+
+ for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
+ if (m->m_len != 0) {
+ if (frag == SF_MAXFRAGS)
+ break;
+ f = &c->sf_frags[frag];
+ if (frag == 0)
+ f->sf_pktlen = m_head->m_pkthdr.len;
+ f->sf_fraglen = m->m_len;
+ f->sf_addr = vtophys(mtod(m, vm_offset_t));
+ frag++;
+ }
+ }
+
+ if (m != NULL) {
+ struct mbuf *m_new = NULL;
+
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("sf%d: no memory for tx list", sc->sf_unit);
+ return(1);
+ }
+
+ if (m_head->m_pkthdr.len > MHLEN) {
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ m_freem(m_new);
+ printf("sf%d: no memory for tx list",
+ sc->sf_unit);
+ return(1);
+ }
+ }
+ m_copydata(m_head, 0, m_head->m_pkthdr.len,
+ mtod(m_new, caddr_t));
+ m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
+ m_freem(m_head);
+ m_head = m_new;
+ f = &c->sf_frags[0];
+ f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
+ f->sf_addr = vtophys(mtod(m_head, caddr_t));
+ frag = 1;
+ }
+
+ c->sf_mbuf = m_head;
+ c->sf_id = SF_TX_BUFDESC_ID;
+ c->sf_fragcnt = frag;
+ c->sf_intr = 1;
+ c->sf_caltcp = 0;
+ c->sf_crcen = 1;
+
+ return(0);
+}
+
+void sf_start(ifp)
+ struct ifnet *ifp;
+{
+ struct sf_softc *sc;
+ struct sf_tx_bufdesc_type0 *cur_tx = NULL;
+ struct mbuf *m_head = NULL;
+ int i, txprod;
+
+ sc = ifp->if_softc;
+
+ if (ifp->if_flags & IFF_OACTIVE)
+ return;
+
+ txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
+ i = SF_IDX_HI(txprod) >> 4;
+
+ while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
+ IF_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+
+ cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
+ sf_encap(sc, cur_tx, m_head);
+
+#if NBPFILTER > 0
+ /*
+ * If there's a BPF listener, bounce a copy of this frame
+ * to him.
+ */
+ if (ifp->if_bpf)
+ bpf_mtap(ifp->if_bpf, m_head);
+#endif
+
+ SF_INC(i, SF_TX_DLIST_CNT);
+ sc->sf_tx_cnt++;
+ if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2))
+ break;
+ }
+
+ if (cur_tx == NULL)
+ return;
+
+ /* Transmit */
+ csr_write_4(sc, SF_TXDQ_PRODIDX,
+ (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
+ ((i << 20) & 0xFFFF0000));
+
+ ifp->if_timer = 5;
+
+ return;
+}
+
+void sf_stop(sc)
+ struct sf_softc *sc;
+{
+ int i;
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ untimeout(sf_stats_update, sc);
+
+ csr_write_4(sc, SF_GEN_ETH_CTL, 0);
+ csr_write_4(sc, SF_CQ_CONSIDX, 0);
+ csr_write_4(sc, SF_CQ_PRODIDX, 0);
+ csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
+ csr_write_4(sc, SF_RXDQ_CTL_1, 0);
+ csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
+ csr_write_4(sc, SF_TXCQ_CTL, 0);
+ csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
+ csr_write_4(sc, SF_TXDQ_CTL, 0);
+ sf_reset(sc);
+
+ for (i = 0; i < SF_RX_DLIST_CNT; i++) {
+ if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
+ m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
+ sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
+ }
+ }
+
+ for (i = 0; i < SF_TX_DLIST_CNT; i++) {
+ if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
+ m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
+ sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
+ }
+ }
+
+ ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
+
+ return;
+}
+
+/*
+ * Note: it is important that this function not be interrupted. We
+ * use a two-stage register access scheme: if we are interrupted in
+ * between setting the indirect address register and reading from the
+ * indirect data register, the contents of the address register could
+ * be changed out from under us.
+ */
+void sf_stats_update(xsc)
+ void *xsc;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ struct mii_data *mii;
+ struct sf_stats stats;
+ u_int32_t *ptr;
+ int i, s;
+
+ s = splimp();
+
+ sc = xsc;
+ ifp = &sc->arpcom.ac_if;
+ mii = &sc->sc_mii;
+
+ ptr = (u_int32_t *)&stats;
+ for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
+ ptr[i] = csr_read_4(sc, SF_STATS_BASE +
+ (i + sizeof(u_int32_t)));
+
+ for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
+ csr_write_4(sc, SF_STATS_BASE +
+ (i + sizeof(u_int32_t)), 0);
+
+ ifp->if_collisions += stats.sf_tx_single_colls +
+ stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
+
+ mii_tick(mii);
+
+ timeout(sf_stats_update, sc, hz);
+
+ splx(s);
+
+ return;
+}
+
+void sf_watchdog(ifp)
+ struct ifnet *ifp;
+{
+ struct sf_softc *sc;
+
+ sc = ifp->if_softc;
+
+ ifp->if_oerrors++;
+ printf("sf%d: watchdog timeout\n", sc->sf_unit);
+
+ sf_stop(sc);
+ sf_reset(sc);
+ sf_init(sc);
+
+ if (ifp->if_snd.ifq_head != NULL)
+ sf_start(ifp);
+
+ return;
+}
+
+void sf_shutdown(v)
+ void *v;
+{
+ struct sf_softc *sc = (struct sf_softc *)v;
+
+ sf_stop(sc);
+}
+
+struct cfattach sf_ca = {
+ sizeof(struct sf_softc), sf_probe, sf_attach
+};
+
+struct cfdriver sf_cd = {
+ 0, "sf", DV_IFNET
+};
+
diff --git a/sys/dev/pci/if_sfreg.h b/sys/dev/pci/if_sfreg.h
new file mode 100644
index 00000000000..b76206cf321
--- /dev/null
+++ b/sys/dev/pci/if_sfreg.h
@@ -0,0 +1,1048 @@
+/* $OpenBSD */
+/*
+ * Copyright (c) 1997, 1998, 1999
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $FreeBSD: src/sys/pci/if_sfreg.h,v 1.4 1999/09/03 20:58:39 wpaul Exp $
+ */
+
+/*
+ * Registers for the Adaptec AIC-6915 Starfire. The Starfire has a 512K
+ * register space. These registers can be accessed in the following way:
+ * - PCI config registers are always accessible through PCI config space
+ * - Full 512K space mapped into memory using PCI memory mapped access
+ * - 256-byte I/O space mapped through PCI I/O access
+ * - Full 512K space mapped through indirect I/O using PCI I/O access
+ * It's possible to use either memory mapped mode or I/O mode to access
+ * the registers, but memory mapped is usually the easiest. All registers
+ * are 32 bits wide and must be accessed using 32-bit operations.
+ */
+
+/*
+ * Adaptec PCI vendor ID.
+ */
+#define AD_VENDORID 0x9004
+
+/*
+ * AIC-6915 PCI device ID.
+ */
+#define AD_DEVICEID_STARFIRE 0x6915
+
+/*
+ * AIC-6915 subsystem IDs. Adaptec uses the subsystem ID to identify
+ * the exact kind of NIC on which the ASIC is mounted. Currently there
+ * are six different variations. Note: the Adaptec manual lists code 0x28
+ * for two different NICs: the 62044 and the 69011/TX. This is a typo:
+ * the code for the 62044 is really 0x18.
+ */
+#define AD_SUBSYSID_62011_REV0 0x0008 /* single port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62011_REV1 0x0009 /* single port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62022 0x0010 /* dual port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62044 0x0018 /* quad port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62020 0x0020 /* single port 10/100baseFX 64-bit */
+#define AD_SUBSYSID_69011 0x0028 /* single port 10/100baseTX 32-bit */
+
+/*
+ * Starfire internal register space map. The entire register space
+ * is available using PCI memory mapped mode. The SF_RMAP_INTREG
+ * space is available using PCI I/O mode. The entire space can be
+ * accessed using indirect I/O using the indirect I/O addr and
+ * indirect I/O data registers located within the SF_RMAP_INTREG space.
+ */
+#define SF_RMAP_ROMADDR_BASE 0x00000 /* Expansion ROM space */
+#define SF_RMAP_ROMADDR_MAX 0x3FFFF
+
+#define SF_RMAP_EXGPIO_BASE 0x40000 /* External general purpose regs */
+#define SF_RMAP_EXGPIO_MAX 0x3FFFF
+
+#define SF_RMAP_INTREG_BASE 0x50000 /* Internal functional registers */
+#define SF_RMAP_INTREG_MAX 0x500FF
+#define SF_RMAP_GENREG_BASE 0x50100 /* General purpose registers */
+#define SF_RMAP_GENREG_MAX 0x5FFFF
+
+#define SF_RMAP_FIFO_BASE 0x60000
+#define SF_RMAP_FIFO_MAX 0x6FFFF
+
+#define SF_RMAP_STS_BASE 0x70000
+#define SF_RMAP_STS_MAX 0x70083
+
+#define SF_RMAP_RSVD_BASE 0x70084
+#define SF_RMAP_RSVD_MAX 0x7FFFF
+
+/*
+ * PCI config header registers, 0x0000 to 0x003F
+ */
+#define SF_PCI_VENDOR_ID 0x0000
+#define SF_PCI_DEVICE_ID 0x0002
+#define SF_PCI_COMMAND 0x0004
+#define SF_PCI_STATUS 0x0006
+#define SF_PCI_REVID 0x0008
+#define SF_PCI_CLASSCODE 0x0009
+#define SF_PCI_CACHELEN 0x000C
+#define SF_PCI_LATENCY_TIMER 0x000D
+#define SF_PCI_HEADER_TYPE 0x000E
+#define SF_PCI_LOMEM 0x0010
+#define SF_PCI_LOIO 0x0014
+#define SF_PCI_SUBVEN_ID 0x002C
+#define SF_PCI_SYBSYS_ID 0x002E
+#define SF_PCI_BIOSROM 0x0030
+#define SF_PCI_INTLINE 0x003C
+#define SF_PCI_INTPIN 0x003D
+#define SF_PCI_MINGNT 0x003E
+#define SF_PCI_MINLAT 0x003F
+
+/*
+ * PCI registers, 0x0040 to 0x006F
+ */
+#define SF_PCI_DEVCFG 0x0040
+#define SF_BACCTL 0x0044
+#define SF_PCI_MON1 0x0048
+#define SF_PCI_MON2 0x004C
+#define SF_PCI_CAPID 0x0050 /* 8 bits */
+#define SF_PCI_NEXTPTR 0x0051 /* 8 bits */
+#define SF_PCI_PWRMGMTCAP 0x0052 /* 16 bits */
+#define SF_PCI_PWRMGMTCTRL 0x0054 /* 16 bits */
+#define SF_PCI_PME_EVENT 0x0058
+#define SF_PCI_EECTL 0x0060
+#define SF_PCI_COMPLIANCE 0x0064
+#define SF_INDIRECTIO_ADDR 0x0068
+#define SF_INDIRECTIO_DATA 0x006C
+
+#define SF_PCIDEVCFG_RESET 0x00000001
+#define SF_PCIDEVCFG_FORCE64 0x00000002
+#define SF_PCIDEVCFG_SYSTEM64 0x00000004
+#define SF_PCIDEVCFG_RSVD0 0x00000008
+#define SF_PCIDEVCFG_INCR_INB 0x00000010
+#define SF_PCIDEVCFG_ABTONPERR 0x00000020
+#define SF_PCIDEVCFG_STPONPERR 0x00000040
+#define SF_PCIDEVCFG_MR_ENB 0x00000080
+#define SF_PCIDEVCFG_FIFOTHR 0x00000F00
+#define SF_PCIDEVCFG_STPONCA 0x00001000
+#define SF_PCIDEVCFG_PCIMEN 0x00002000 /* enable PCI bus master */
+#define SF_PCIDEVCFG_LATSTP 0x00004000
+#define SF_PCIDEVCFG_BYTE_ENB 0x00008000
+#define SF_PCIDEVCFG_EECSWIDTH 0x00070000
+#define SF_PCIDEVCFG_STPMWCA 0x00080000
+#define SF_PCIDEVCFG_REGCSWIDTH 0x00700000
+#define SF_PCIDEVCFG_INTR_ENB 0x00800000
+#define SF_PCIDEVCFG_DPR_ENB 0x01000000
+#define SF_PCIDEVCFG_RSVD1 0x02000000
+#define SF_PCIDEVCFG_RSVD2 0x04000000
+#define SF_PCIDEVCFG_STA_ENB 0x08000000
+#define SF_PCIDEVCFG_RTA_ENB 0x10000000
+#define SF_PCIDEVCFG_RMA_ENB 0x20000000
+#define SF_PCIDEVCFG_SSE_ENB 0x40000000
+#define SF_PCIDEVCFG_DPE_ENB 0x80000000
+
+#define SF_BACCTL_BACDMA_ENB 0x00000001
+#define SF_BACCTL_PREFER_RXDMA 0x00000002
+#define SF_BACCTL_PREFER_TXDMA 0x00000004
+#define SF_BACCTL_SINGLE_DMA 0x00000008
+#define SF_BACCTL_SWAPMODE_DATA 0x00000030
+#define SF_BACCTL_SWAPMODE_DESC 0x000000C0
+
+#define SF_SWAPMODE_LE 0x00000000
+#define SF_SWAPMODE_BE 0x00000010
+
+#define SF_PSTATE_MASK 0x0003
+#define SF_PSTATE_D0 0x0000
+#define SF_PSTATE_D1 0x0001
+#define SF_PSTATE_D2 0x0002
+#define SF_PSTATE_D3 0x0003
+#define SF_PME_EN 0x0010
+#define SF_PME_STATUS 0x8000
+
+
+/*
+ * Ethernet registers 0x0070 to 0x00FF
+ */
+#define SF_GEN_ETH_CTL 0x0070
+#define SF_TIMER_CTL 0x0074
+#define SF_CURTIME 0x0078
+#define SF_ISR 0x0080
+#define SF_ISR_SHADOW 0x0084
+#define SF_IMR 0x0088
+#define SF_GPIO 0x008C
+#define SF_TXDQ_CTL 0x0090
+#define SF_TXDQ_ADDR_HIPRIO 0x0094
+#define SF_TXDQ_ADDR_LOPRIO 0x0098
+#define SF_TXDQ_ADDR_HIADDR 0x009C
+#define SF_TXDQ_PRODIDX 0x00A0
+#define SF_TXDQ_CONSIDX 0x00A4
+#define SF_TXDMA_STS1 0x00A8
+#define SF_TXDMA_STS2 0x00AC
+#define SF_TX_FRAMCTL 0x00B0
+#define SF_TXCQ_ADDR_HI 0x00B4
+#define SF_TXCQ_CTL 0x00B8
+#define SF_RXCQ_CTL_1 0x00BC
+#define SF_RXCQ_CTL_2 0x00C0
+#define SF_CQ_CONSIDX 0x00C4
+#define SF_CQ_PRODIDX 0x00C8
+#define SF_CQ_RXQ2 0x00CC
+#define SF_RXDMA_CTL 0x00D0
+#define SF_RXDQ_CTL_1 0x00D4
+#define SF_RXDQ_CTL_2 0x00D8
+#define SF_RXDQ_ADDR_HIADDR 0x00DC
+#define SF_RXDQ_ADDR_Q1 0x00E0
+#define SF_RXDQ_ADDR_Q2 0x00E4
+#define SF_RXDQ_PTR_Q1 0x00E8
+#define SF_RXDQ_PTR_Q2 0x00EC
+#define SF_RXDMA_STS 0x00F0
+#define SF_RXFILT 0x00F4
+#define SF_RX_FRAMETEST_OUT 0x00F8
+
+/* Ethernet control register */
+#define SF_ETHCTL_RX_ENB 0x00000001
+#define SF_ETHCTL_TX_ENB 0x00000002
+#define SF_ETHCTL_RXDMA_ENB 0x00000004
+#define SF_ETHCTL_TXDMA_ENB 0x00000008
+#define SF_ETHCTL_RXGFP_ENB 0x00000010
+#define SF_ETHCTL_TXGFP_ENB 0x00000020
+#define SF_ETHCTL_SOFTINTR 0x00000800
+
+/* Timer control register */
+#define SF_TIMER_IMASK_INTERVAL 0x0000001F
+#define SF_TIMER_IMASK_MODE 0x00000060
+#define SF_TIMER_SMALLFRAME_BYP 0x00000100
+#define SF_TIMER_SMALLRX_FRAME 0x00000600
+#define SF_TIMER_TIMES_TEN 0x00000800
+#define SF_TIMER_RXHIPRIO_BYP 0x00001000
+#define SF_TIMER_TX_DMADONE_DLY 0x00002000
+#define SF_TIMER_TX_QDONE_DLY 0x00004000
+#define SF_TIMER_TX_FRDONE_DLY 0x00008000
+#define SF_TIMER_GENTIMER 0x00FF0000
+#define SF_TIMER_ONESHOT 0x01000000
+#define SF_TIMER_GENTIMER_RES 0x02000000
+#define SF_TIMER_TIMEST_RES 0x04000000
+#define SF_TIMER_RXQ2DONE_DLY 0x10000000
+#define SF_TIMER_EARLYRX2_DLY 0x20000000
+#define SF_TIMER_RXQ1DONE_DLY 0x40000000
+#define SF_TIMER_EARLYRX1_DLY 0x80000000
+
+/* Interrupt status register */
+#define SF_ISR_PCIINT_ASSERTED 0x00000001
+#define SF_ISR_GFP_TX 0x00000002
+#define SF_ISR_GFP_RX 0x00000004
+#define SF_ISR_TX_BADID_HIPRIO 0x00000008
+#define SF_ISR_TX_BADID_LOPRIO 0x00000010
+#define SF_ISR_NO_TX_CSUM 0x00000020
+#define SF_ISR_RXDQ2_NOBUFS 0x00000040
+#define SF_ISR_RXGFP_NORESP 0x00000080
+#define SF_ISR_RXDQ1_DMADONE 0x00000100
+#define SF_ISR_RXDQ2_DMADONE 0x00000200
+#define SF_ISR_RXDQ1_EARLY 0x00000400
+#define SF_ISR_RXDQ2_EARLY 0x00000800
+#define SF_ISR_TX_QUEUEDONE 0x00001000
+#define SF_ISR_TX_DMADONE 0x00002000
+#define SF_ISR_TX_TXDONE 0x00004000
+#define SF_ISR_NORMALINTR 0x00008000
+#define SF_ISR_RXDQ1_NOBUFS 0x00010000
+#define SF_ISR_RXCQ2_NOBUFS 0x00020000
+#define SF_ISR_TX_LOFIFO 0x00040000
+#define SF_ISR_DMAERR 0x00080000
+#define SF_ISR_PCIINT 0x00100000
+#define SF_ISR_TXCQ_NOBUFS 0x00200000
+#define SF_ISR_RXCQ1_NOBUFS 0x00400000
+#define SF_ISR_SOFTINTR 0x00800000
+#define SF_ISR_GENTIMER 0x01000000
+#define SF_ISR_ABNORMALINTR 0x02000000
+#define SF_ISR_RSVD0 0x04000000
+#define SF_ISR_STATSOFLOW 0x08000000
+#define SF_ISR_GPIO 0xF0000000
+
+/*
+ * Shadow interrupt status register. Unlike the normal IRQ register,
+ * reading bits here does not automatically cause them to reset.
+ */
+#define SF_SISR_PCIINT_ASSERTED 0x00000001
+#define SF_SISR_GFP_TX 0x00000002
+#define SF_SISR_GFP_RX 0x00000004
+#define SF_SISR_TX_BADID_HIPRIO 0x00000008
+#define SF_SISR_TX_BADID_LOPRIO 0x00000010
+#define SF_SISR_NO_TX_CSUM 0x00000020
+#define SF_SISR_RXDQ2_NOBUFS 0x00000040
+#define SF_SISR_RXGFP_NORESP 0x00000080
+#define SF_SISR_RXDQ1_DMADONE 0x00000100
+#define SF_SISR_RXDQ2_DMADONE 0x00000200
+#define SF_SISR_RXDQ1_EARLY 0x00000400
+#define SF_SISR_RXDQ2_EARLY 0x00000800
+#define SF_SISR_TX_QUEUEDONE 0x00001000
+#define SF_SISR_TX_DMADONE 0x00002000
+#define SF_SISR_TX_TXDONE 0x00004000
+#define SF_SISR_NORMALINTR 0x00008000
+#define SF_SISR_RXDQ1_NOBUFS 0x00010000
+#define SF_SISR_RXCQ2_NOBUFS 0x00020000
+#define SF_SISR_TX_LOFIFO 0x00040000
+#define SF_SISR_DMAERR 0x00080000
+#define SF_SISR_PCIINT 0x00100000
+#define SF_SISR_TXCQ_NOBUFS 0x00200000
+#define SF_SISR_RXCQ1_NOBUFS 0x00400000
+#define SF_SISR_SOFTINTR 0x00800000
+#define SF_SISR_GENTIMER 0x01000000
+#define SF_SISR_ABNORMALINTR 0x02000000
+#define SF_SISR_RSVD0 0x04000000
+#define SF_SISR_STATSOFLOW 0x08000000
+#define SF_SISR_GPIO 0xF0000000
+
+/* Interrupt mask register */
+#define SF_IMR_PCIINT_ASSERTED 0x00000001
+#define SF_IMR_GFP_TX 0x00000002
+#define SF_IMR_GFP_RX 0x00000004
+#define SF_IMR_TX_BADID_HIPRIO 0x00000008
+#define SF_IMR_TX_BADID_LOPRIO 0x00000010
+#define SF_IMR_NO_TX_CSUM 0x00000020
+#define SF_IMR_RXDQ2_NOBUFS 0x00000040
+#define SF_IMR_RXGFP_NORESP 0x00000080
+#define SF_IMR_RXDQ1_DMADONE 0x00000100
+#define SF_IMR_RXDQ2_DMADONE 0x00000200
+#define SF_IMR_RXDQ1_EARLY 0x00000400
+#define SF_IMR_RXDQ2_EARLY 0x00000800
+#define SF_IMR_TX_QUEUEDONE 0x00001000
+#define SF_IMR_TX_DMADONE 0x00002000
+#define SF_IMR_TX_TXDONE 0x00004000
+#define SF_IMR_NORMALINTR 0x00008000
+#define SF_IMR_RXDQ1_NOBUFS 0x00010000
+#define SF_IMR_RXCQ2_NOBUFS 0x00020000
+#define SF_IMR_TX_LOFIFO 0x00040000
+#define SF_IMR_DMAERR 0x00080000
+#define SF_IMR_PCIINT 0x00100000
+#define SF_IMR_TXCQ_NOBUFS 0x00200000
+#define SF_IMR_RXCQ1_NOBUFS 0x00400000
+#define SF_IMR_SOFTINTR 0x00800000
+#define SF_IMR_GENTIMER 0x01000000
+#define SF_IMR_ABNORMALINTR 0x02000000
+#define SF_IMR_RSVD0 0x04000000
+#define SF_IMR_STATSOFLOW 0x08000000
+#define SF_IMR_GPIO 0xF0000000
+
+#define SF_INTRS \
+ (SF_IMR_RXDQ2_NOBUFS|SF_IMR_RXDQ1_DMADONE|SF_IMR_RXDQ2_DMADONE| \
+ SF_IMR_TX_TXDONE|SF_IMR_RXDQ1_NOBUFS|SF_IMR_RXDQ2_DMADONE| \
+ SF_IMR_NORMALINTR|SF_IMR_ABNORMALINTR|SF_IMR_TXCQ_NOBUFS| \
+ SF_IMR_RXCQ1_NOBUFS|SF_IMR_RXCQ2_NOBUFS|SF_IMR_STATSOFLOW)
+
+/* TX descriptor queue control registers */
+#define SF_TXDQCTL_DESCTYPE 0x00000007
+#define SF_TXDQCTL_NODMACMP 0x00000008
+#define SF_TXDQCTL_MINSPACE 0x00000070
+#define SF_TXDQCTL_64BITADDR 0x00000080
+#define SF_TXDQCTL_BURSTLEN 0x00003F00
+#define SF_TXDQCTL_SKIPLEN 0x001F0000
+#define SF_TXDQCTL_HIPRIOTHRESH 0xFF000000
+
+#define SF_TXBUFDESC_TYPE0 0x00000000
+#define SF_TXBUFDESC_TYPE1 0x00000001
+#define SF_TXBUFDESC_TYPE2 0x00000002
+#define SF_TXBUFDESC_TYPE3 0x00000003
+#define SF_TXBUFDESC_TYPE4 0x00000004
+
+#define SF_TXMINSPACE_UNLIMIT 0x00000000
+#define SF_TXMINSPACE_32BYTES 0x00000010
+#define SF_TXMINSPACE_64BYTES 0x00000020
+#define SF_TXMINSPACE_128BYTES 0x00000030
+#define SF_TXMINSPACE_256BYTES 0x00000040
+
+#define SF_TXSKIPLEN_0BYTES 0x00000000
+#define SF_TXSKIPLEN_8BYTES 0x00010000
+#define SF_TXSKIPLEN_16BYTES 0x00020000
+#define SF_TXSKIPLEN_24BYTES 0x00030000
+#define SF_TXSKIPLEN_32BYTES 0x00040000
+
+/* TX frame control register */
+#define SF_TXFRMCTL_TXTHRESH 0x000000FF
+#define SF_TXFRMCTL_CPLAFTERTX 0x00000100
+#define SF_TXFRMCRL_DEBUG 0x0000FE00
+#define SF_TXFRMCTL_STATUS 0x01FF0000
+#define SF_TXFRMCTL_MAC_TXIF 0xFE000000
+
+/* TX completion queue control register */
+#define SF_TXCQ_THRESH 0x0000000F
+#define SF_TXCQ_COMMON 0x00000010
+#define SF_TXCQ_SIZE 0x00000020
+#define SF_TXCQ_WRITEENB 0x00000040
+#define SF_TXCQ_USE_64BIT 0x00000080
+#define SF_TXCQ_ADDR 0xFFFFFF00
+
+/* RX completion queue control register */
+#define SF_RXCQ_THRESH 0x0000000F
+#define SF_RXCQ_TYPE 0x00000030
+#define SF_RXCQ_WRITEENB 0x00000040
+#define SF_RXCQ_USE_64BIT 0x00000080
+#define SF_RXCQ_ADDR 0xFFFFFF00
+
+#define SF_RXCQTYPE_0 0x00000000
+#define SF_RXCQTYPE_1 0x00000010
+#define SF_RXCQTYPE_2 0x00000020
+#define SF_RXCQTYPE_3 0x00000030
+
+/* TX descriptor queue producer index register */
+#define SF_TXDQ_PRODIDX_LOPRIO 0x000007FF
+#define SF_TXDQ_PRODIDX_HIPRIO 0x07FF0000
+
+/* TX descriptor queue consumer index register */
+#define SF_TXDQ_CONSIDX_LOPRIO 0x000007FF
+#define SF_TXDQ_CONSIDX_HIPRIO 0x07FF0000
+
+/* Completion queue consumer index register */
+#define SF_CQ_CONSIDX_RXQ1 0x000003FF
+#define SF_CQ_CONSIDX_RXTHRMODE 0x00008000
+#define SF_CQ_CONSIDX_TXQ 0x03FF0000
+#define SF_CQ_CONSIDX_TXTHRMODE 0x80000000
+
+/* Completion queue producer index register */
+#define SF_CQ_PRODIDX_RXQ1 0x000003FF
+#define SF_CQ_PRODIDX_TXQ 0x03FF0000
+
+/* RX completion queue 2 consumer/producer index register */
+#define SF_CQ_RXQ2_CONSIDX 0x000003FF
+#define SF_CQ_RXQ2_RXTHRMODE 0x00008000
+#define SF_CQ_RXQ2_PRODIDX 0x03FF0000
+
+#define SF_CQ_RXTHRMODE_INT_ON 0x00008000
+#define SF_CQ_RXTHRMODE_INT_OFF 0x00000000
+#define SF_CQ_TXTHRMODE_INT_ON 0x80000000
+#define SF_CQ_TXTHRMODE_INT_OFF 0x00000000
+
+#define SF_IDX_LO(x) ((x) & 0x000007FF)
+#define SF_IDX_HI(x) (((x) >> 16) & 0x000007FF)
+
+/* RX DMA control register */
+#define SF_RXDMA_BURSTSIZE 0x0000007F
+#define SF_RXDMA_FPTESTMODE 0x00000080
+#define SF_RXDMA_HIPRIOTHRESH 0x00000F00
+#define SF_RXDMA_RXEARLYTHRESH 0x0001F000
+#define SF_RXDMA_DMACRC 0x00040000
+#define SF_RXDMA_USEBKUPQUEUE 0x00080000
+#define SF_RXDMA_QUEUEMODE 0x00700000
+#define SF_RXDMA_RXCQ2_ON 0x00800000
+#define SF_RXDMA_CSUMMODE 0x03000000
+#define SF_RXDMA_DMAPAUSEPKTS 0x04000000
+#define SF_RXDMA_DMACTLPKTS 0x08000000
+#define SF_RXDMA_DMACRXERRPKTS 0x10000000
+#define SF_RXDMA_DMABADPKTS 0x20000000
+#define SF_RXDMA_DMARUNTS 0x40000000
+#define SF_RXDMA_REPORTBADPKTS 0x80000000
+
+#define SF_RXDQMODE_Q1ONLY 0x00100000
+#define SF_RXDQMODE_Q2_ON_FP 0x00200000
+#define SF_RXDQMODE_Q2_ON_SHORT 0x00300000
+#define SF_RXDQMODE_Q2_ON_PRIO 0x00400000
+#define SF_RXDQMODE_SPLITHDR 0x00500000
+
+#define SF_RXCSUMMODE_IGNORE 0x00000000
+#define SF_RXCSUMMODE_REJECT_BAD_TCP 0x01000000
+#define SF_RXCSUMMODE_REJECT_BAD_TCPUDP 0x02000000
+#define SF_RXCSUMMODE_RSVD 0x03000000
+
+/* RX descriptor queue control registers */
+#define SF_RXDQCTL_MINDESCTHR 0x0000007F
+#define SF_RXDQCTL_Q1_WE 0x00000080
+#define SF_RXDQCTL_DESCSPACE 0x00000700
+#define SF_RXDQCTL_64BITDADDR 0x00000800
+#define SF_RXDQCTL_64BITBADDR 0x00001000
+#define SF_RXDQCTL_VARIABLE 0x00002000
+#define SF_RXDQCTL_ENTRIES 0x00004000
+#define SF_RXDQCTL_PREFETCH 0x00008000
+#define SF_RXDQCTL_BUFLEN 0xFFFF0000
+
+#define SF_DESCSPACE_4BYTES 0x00000000
+#define SF_DESCSPACE_8BYTES 0x00000100
+#define SF_DESCSPACE_16BYTES 0x00000200
+#define SF_DESCSPACE_32BYTES 0x00000300
+#define SF_DESCSPACE_64BYTES 0x00000400
+#define SF_DESCSPACE_128_BYTES 0x00000500
+
+/* RX buffer consumer/producer index registers */
+#define SF_RXDQ_PRODIDX 0x000007FF
+#define SF_RXDQ_CONSIDX 0x07FF0000
+
+/* RX filter control register */
+#define SF_RXFILT_PROMISC 0x00000001
+#define SF_RXFILT_ALLMULTI 0x00000002
+#define SF_RXFILT_BROAD 0x00000004
+#define SF_RXFILT_HASHPRIO 0x00000008
+#define SF_RXFILT_HASHMODE 0x00000030
+#define SF_RXFILT_PERFMODE 0x000000C0
+#define SF_RXFILT_VLANMODE 0x00000300
+#define SF_RXFILT_WAKEMODE 0x00000C00
+#define SF_RXFILT_MULTI_NOBROAD 0x00001000
+#define SF_RXFILT_MIN_VLANPRIO 0x0000E000
+#define SF_RXFILT_PEFECTPRIO 0xFFFF0000
+
+/* Hash filtering mode */
+#define SF_HASHMODE_OFF 0x00000000
+#define SF_HASHMODE_WITHVLAN 0x00000010
+#define SF_HASHMODE_ANYVLAN 0x00000020
+#define SF_HASHMODE_ANY 0x00000030
+
+/* Perfect filtering mode */
+#define SF_PERFMODE_OFF 0x00000000
+#define SF_PERFMODE_NORMAL 0x00000040
+#define SF_PERFMODE_INVERSE 0x00000080
+#define SF_PERFMODE_VLAN 0x000000C0
+
+/* VLAN mode */
+#define SF_VLANMODE_OFF 0x00000000
+#define SF_VLANMODE_NOSTRIP 0x00000100
+#define SF_VLANMODE_STRIP 0x00000200
+#define SF_VLANMODE_RSVD 0x00000300
+
+/* Wakeup mode */
+#define SF_WAKEMODE_OFF 0x00000000
+#define SF_WAKEMODE_FILTER 0x00000400
+#define SF_WAKEMODE_FP 0x00000800
+#define SF_WAKEMODE_HIPRIO 0x00000C00
+
+/*
+ * Extra PCI registers 0x0100 to 0x0FFF
+ */
+#define SF_PCI_TARGSTAT 0x0100
+#define SF_PCI_MASTSTAT1 0x0104
+#define SF_PCI_MASTSTAT2 0x0108
+#define SF_PCI_DMAHOSTADDR_LO 0x010C
+#define SF_BAC_DMADIAG0 0x0110
+#define SF_BAC_DMADIAG1 0x0114
+#define SF_BAC_DMADIAG2 0x0118
+#define SF_BAC_DMADIAG3 0x011C
+#define SF_PAR0 0x0120
+#define SF_PAR1 0x0124
+#define SF_PCICB_FUNCEVENT 0x0130
+#define SF_PCICB_FUNCEVENT_MASK 0x0134
+#define SF_PCICB_FUNCSTATE 0x0138
+#define SF_PCICB_FUNCFORCE 0x013C
+
+/*
+ * Serial EEPROM registers 0x1000 to 0x1FFF
+ * Presumeably the EEPROM is mapped into this 8K window.
+ */
+#define SF_EEADDR_BASE 0x1000
+#define SF_EEADDR_MAX 0x1FFF
+
+#define SF_EE_NODEADDR 14
+
+/*
+ * MII registers registers 0x2000 to 0x3FFF
+ * There are 32 sets of 32 registers, one set for each possible
+ * PHY address. Each 32 bit register is split into a 16-bit data
+ * port and a couple of status bits.
+ */
+
+#define SF_MIIADDR_BASE 0x2000
+#define SF_MIIADDR_MAX 0x3FFF
+#define SF_MII_BLOCKS 32
+
+#define SF_MII_DATAVALID 0x80000000
+#define SF_MII_BUSY 0x40000000
+#define SF_MII_DATAPORT 0x0000FFFF
+
+#define SF_PHY_REG(phy, reg) \
+ (SF_MIIADDR_BASE + (phy * SF_MII_BLOCKS * sizeof(u_int32_t)) + \
+ (reg * sizeof(u_int32_t)))
+
+/*
+ * Ethernet extra registers 0x4000 to 0x4FFF
+ */
+#define SF_TESTMODE 0x4000
+#define SF_RX_FRAMEPROC_CTL 0x4004
+#define SF_TX_FRAMEPROC_CTL 0x4008
+
+/*
+ * MAC registers 0x5000 to 0x5FFF
+ */
+#define SF_MACCFG_1 0x5000
+#define SF_MACCFG_2 0x5004
+#define SF_BKTOBKIPG 0x5008
+#define SF_NONBKTOBKIPG 0x500C
+#define SF_COLRETRY 0x5010
+#define SF_MAXLEN 0x5014
+#define SF_TXNIBBLECNT 0x5018
+#define SF_TXBYTECNT 0x501C
+#define SF_RETXCNT 0x5020
+#define SF_RANDNUM 0x5024
+#define SF_RANDNUM_MASK 0x5028
+#define SF_TOTALTXCNT 0x5034
+#define SF_RXBYTECNT 0x5040
+#define SF_TXPAUSETIMER 0x5060
+#define SF_VLANTYPE 0x5064
+#define SF_MIISTATUS 0x5070
+
+#define SF_MACCFG1_HUGEFRAMES 0x00000001
+#define SF_MACCFG1_FULLDUPLEX 0x00000002
+#define SF_MACCFG1_AUTOPAD 0x00000004
+#define SF_MACCFG1_HDJAM 0x00000008
+#define SF_MACCFG1_DELAYCRC 0x00000010
+#define SF_MACCFG1_NOBACKOFF 0x00000020
+#define SF_MACCFG1_LENGTHCHECK 0x00000040
+#define SF_MACCFG1_PUREPREAMBLE 0x00000080
+#define SF_MACCFG1_PASSALLRX 0x00000100
+#define SF_MACCFG1_PREAM_DETCNT 0x00000200
+#define SF_MACCFG1_RX_FLOWENB 0x00000400
+#define SF_MACCFG1_TX_FLOWENB 0x00000800
+#define SF_MACCFG1_TESTMODE 0x00003000
+#define SF_MACCFG1_MIILOOPBK 0x00004000
+#define SF_MACCFG1_SOFTRESET 0x00008000
+
+/*
+ * RX filter registers 0x6000 to 0x6FFF
+ */
+#define SF_RXFILT_PERFECT_BASE 0x6000
+#define SF_RXFILT_PERFECT_MAX 0x60FF
+#define SF_RXFILT_PERFECT_SKIP 0x0010
+#define SF_RXFILT_PERFECT_CNT 0x0010
+
+#define SF_RXFILT_HASH_BASE 0x6100
+#define SF_RXFILT_HASH_MAX 0x62FF
+#define SF_RXFILT_HASH_SKIP 0x0010
+#define SF_RXFILT_HASH_CNT 0x001F
+#define SF_RXFILT_HASH_ADDROFF 0x0000
+#define SF_RXFILT_HASH_PRIOOFF 0x0004
+#define SF_RXFILT_HASH_VLANOFF 0x0008
+
+/*
+ * Statistics registers 0x7000 to 0x7FFF
+ */
+#define SF_STATS_BASE 0x7000
+#define SF_STATS_END 0x7FFF
+
+/*
+ * TX frame processor instruction space 0x8000 to 0x9FFF
+ */
+
+/*
+ * RX frame processor instruction space 0xA000 to 0xBFFF
+ */
+
+/*
+ * Ethernet FIFO access space 0xC000 to 0xDFFF
+ */
+
+/*
+ * Reserved 0xE000 to 0xFFFF
+ */
+
+/*
+ * Descriptor data structures.
+ */
+
+
+/* Receive descriptor formats. */
+#define SF_RX_MINSPACING 8
+#define SF_RX_DLIST_CNT 256
+#define SF_RX_CLIST_CNT 1024
+#define SF_RX_HOSTADDR(x) (((x) >> 2) & 0x3FFFFFFF)
+
+/*
+ * RX buffer descriptor type 0, 32-bit addressing. Note that we
+ * program the RX buffer queue control register(s) to allow a
+ * descriptor spacing of 16 bytes, which leaves room after each
+ * descriptor to store a pointer to the mbuf for each buffer.
+ */
+struct sf_rx_bufdesc_type0 {
+ u_int32_t sf_valid:1,
+ sf_end:1,
+ sf_addrlo:30;
+ u_int32_t sf_pad0;
+#ifdef __i386__
+ u_int32_t sf_pad1;
+#endif
+ struct mbuf *sf_mbuf;
+};
+
+/*
+ * RX buffer descriptor type 0, 64-bit addressing.
+ */
+struct sf_rx_bufdesc_type1 {
+ u_int32_t sf_valid:1,
+ sf_end:1,
+ sf_addrlo:30;
+ u_int32_t sf_addrhi;
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+};
+
+/*
+ * RX completion descriptor, type 0 (short).
+ */
+struct sf_rx_cmpdesc_type0 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+};
+
+/*
+ * RX completion descriptor, type 1 (basic). Includes vlan ID
+ * if this is a vlan-addressed packet, plus extended status.
+ */
+struct sf_rx_cmpdesc_type1 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+ u_int16_t sf_status2;
+ u_int16_t sf_vlanid;
+};
+
+/*
+ * RX completion descriptor, type 2 (checksum). Includes partial TCP/IP
+ * checksum instead of vlan tag, plus extended status.
+ */
+struct sf_rx_cmpdesc_type2 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+ u_int16_t sf_status2;
+ u_int16_t sf_cksum;
+};
+
+/*
+ * RX completion descriptor type 3 (full). Includes timestamp, partial
+ * TCP/IP checksum, vlan tag plus priority, two extended status fields.
+ */
+struct sf_rx_cmpdesc_type3 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+ u_int32_t sf_startidx:10,
+ sf_status3:6,
+ sf_status2:16;
+ u_int16_t sf_cksum;
+ u_int16_t sf_vlanid_prio;
+ u_int32_t sf_timestamp;
+};
+
+#define SF_RXSTAT1_QUEUE 0x1
+#define SF_RXSTAT1_FIFOFULL 0x2
+#define SF_RXSTAT1_OK 0x4
+
+ /* 0=unknown,5=unsupported */
+#define SF_RXSTAT2_FRAMETYPE 0x0007 /* 1=IPv4,2=IPv2,3=IPX,4=ICMP */
+#define SF_RXSTAT2_UDP 0x0008
+#define SF_RXSTAT2_TCP 0x0010
+#define SF_RXSTAT2_FRAG 0x0020
+#define SF_RXSTAT2_PCSUM_OK 0x0040 /* partial checksum ok */
+#define SF_RXSTAT2_CSUM_BAD 0x0080 /* TCP/IP checksum bad */
+#define SF_RXSTAT2_CSUM_OK 0x0100 /* TCP/IP checksum ok */
+#define SF_RXSTAT2_VLAN 0x0200
+#define SF_RXSTAT2_BADRXCODE 0x0400
+#define SF_RXSTAT2_DRIBBLE 0x0800
+#define SF_RXSTAT2_ISL_CRCERR 0x1000
+#define SF_RXSTAT2_CRCERR 0x2000
+#define SF_RXSTAT2_HASH 0x4000
+#define SF_RXSTAT2_PERFECT 0x8000
+
+#define SF_RXSTAT3_TRAILER 0x01
+#define SF_RXSTAT3_HEADER 0x02
+#define SF_RXSTAT3_CONTROL 0x04
+#define SF_RXSTAT3_PAUSE 0x08
+#define SF_RXSTAT3_ISL 0x10
+
+/*
+ * Transmit descriptor formats.
+ * Each transmit descriptor type allows for a skip field at the
+ * start of each structure. The size of the skip field can vary,
+ * however we always set it for 8 bytes, which is enough to hold
+ * a pointer (32 bits on x86, 64-bits on alpha) that we can use
+ * to hold the address of the head of the mbuf chain for the
+ * frame or fragment associated with the descriptor. This saves
+ * us from having to create a separate pointer array to hold
+ * the mbuf addresses.
+ */
+#define SF_TX_BUFDESC_ID 0xB
+#define SF_MAXFRAGS 14
+#define SF_TX_MINSPACING 128
+#define SF_TX_DLIST_CNT 128
+#define SF_TX_DLIST_SIZE 16384
+#define SF_TX_SKIPLEN 1
+#define SF_TX_CLIST_CNT 1024
+
+struct sf_frag {
+ u_int32_t sf_addr;
+ u_int16_t sf_fraglen;
+ u_int16_t sf_pktlen;
+};
+
+struct sf_frag_msdos {
+ u_int16_t sf_pktlen;
+ u_int16_t sf_fraglen;
+ u_int32_t sf_addr;
+};
+
+/*
+ * TX frame descriptor type 0, 32-bit addressing. One descriptor can
+ * be used to map multiple packet fragments. We use this format since
+ * BSD networking fragments packet data across mbuf chains. Note that
+ * the number of fragments can be variable depending on how the descriptor
+ * spacing is specified in the TX descriptor queue control register.
+ * We always use a spacing of 128 bytes, and a skipfield length of 8
+ * bytes: this means 16 bytes for the descriptor, including the skipfield,
+ * with 121 bytes left for fragment maps. Each fragment requires 8 bytes,
+ * which allows for 14 fragments per descriptor. The total size of the
+ * transmit buffer queue is limited to 16384 bytes, so with a spacing of
+ * 128 bytes per descriptor, we have room for 128 descriptors in the queue.
+ */
+struct sf_tx_bufdesc_type0 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_rsvd0:24,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int8_t sf_fragcnt;
+ u_int8_t sf_rsvd2;
+ u_int16_t sf_rsvd1;
+ struct sf_frag sf_frags[14];
+};
+
+/*
+ * TX buffer descriptor type 1, 32-bit addressing. Each descriptor
+ * maps a single fragment.
+ */
+struct sf_tx_bufdesc_type1 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_fraglen:16,
+ sf_fragcnt:8,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int32_t sf_addr;
+};
+
+/*
+ * TX buffer descriptor type 2, 64-bit addressing. Each descriptor
+ * maps a single fragment.
+ */
+struct sf_tx_bufdesc_type2 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_fraglen:16,
+ sf_fragcnt:8,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int32_t sf_addrlo;
+ u_int32_t sf_addrhi;
+};
+
+/* TX buffer descriptor type 3 is not defined. */
+
+/*
+ * TX frame descriptor type 4, 32-bit addressing. This is a special
+ * case of the type 0 descriptor, identical except that the fragment
+ * address and length fields are ordered differently. This is done
+ * to optimize copies in MS-DOS and OS/2 drivers.
+ */
+struct sf_tx_bufdesc_type4 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_rsvd0:24,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int8_t sf_fragcnt;
+ u_int8_t sf_rsvd2;
+ u_int16_t sf_rsvd1;
+ struct sf_frag_msdos sf_frags[14];
+};
+
+/*
+ * Transmit completion queue descriptor formats.
+ */
+
+/*
+ * Transmit DMA completion descriptor, type 0.
+ */
+#define SF_TXCMPTYPE_DMA 0x4
+struct sf_tx_cmpdesc_type0 {
+ u_int32_t sf_index:15,
+ sf_priority:1,
+ sf_timestamp:13,
+ sf_type:3;
+};
+
+/*
+ * Transmit completion descriptor, type 1.
+ */
+#define SF_TXCMPTYPE_TX 0x5
+struct sf_tx_cmpdesc_type1 {
+ u_int32_t sf_index:15,
+ sf_priority:1,
+ sf_txstat:13,
+ sf_type:3;
+};
+
+#define SF_TXSTAT_CRCERR 0x0001
+#define SF_TXSTAT_LENCHECKERR 0x0002
+#define SF_TXSTAT_LENRANGEERR 0x0004
+#define SF_TXSTAT_TX_OK 0x0008
+#define SF_TXSTAT_TX_DEFERED 0x0010
+#define SF_TXSTAT_EXCESS_DEFER 0x0020
+#define SF_TXSTAT_EXCESS_COLL 0x0040
+#define SF_TXSTAT_LATE_COLL 0x0080
+#define SF_TXSTAT_TOOBIG 0x0100
+#define SF_TXSTAT_TX_UNDERRUN 0x0200
+#define SF_TXSTAT_CTLFRAME_OK 0x0400
+#define SF_TXSTAT_PAUSEFRAME_OK 0x0800
+#define SF_TXSTAT_PAUSED 0x1000
+
+/* Statistics counters. */
+struct sf_stats {
+ u_int32_t sf_tx_frames;
+ u_int32_t sf_tx_single_colls;
+ u_int32_t sf_tx_multi_colls;
+ u_int32_t sf_tx_crcerrs;
+ u_int32_t sf_tx_bytes;
+ u_int32_t sf_tx_defered;
+ u_int32_t sf_tx_late_colls;
+ u_int32_t sf_tx_pause_frames;
+ u_int32_t sf_tx_control_frames;
+ u_int32_t sf_tx_excess_colls;
+ u_int32_t sf_tx_excess_defer;
+ u_int32_t sf_tx_mcast_frames;
+ u_int32_t sf_tx_bcast_frames;
+ u_int32_t sf_tx_frames_lost;
+ u_int32_t sf_rx_rx_frames;
+ u_int32_t sf_rx_crcerrs;
+ u_int32_t sf_rx_alignerrs;
+ u_int32_t sf_rx_bytes;
+ u_int32_t sf_rx_control_frames;
+ u_int32_t sf_rx_unsup_control_frames;
+ u_int32_t sf_rx_giants;
+ u_int32_t sf_rx_runts;
+ u_int32_t sf_rx_jabbererrs;
+ u_int32_t sf_rx_pkts_64;
+ u_int32_t sf_rx_pkts_65_127;
+ u_int32_t sf_rx_pkts_128_255;
+ u_int32_t sf_rx_pkts_256_511;
+ u_int32_t sf_rx_pkts_512_1023;
+ u_int32_t sf_rx_pkts_1024_1518;
+ u_int32_t sf_rx_frames_lost;
+ u_int16_t sf_tx_underruns;
+ u_int16_t sf_pad;
+};
+
+/*
+ * register space access macros
+ */
+#define CSR_WRITE_4(sc, reg, val) \
+ bus_space_write_4(sc->sf_btag, sc->sf_bhandle, reg, val)
+
+#define CSR_READ_4(sc, reg) \
+ bus_space_read_4(sc->sf_btag, sc->sf_bhandle, reg)
+
+#define CSR_READ_1(sc, reg) \
+ bus_space_read_1(sc->sf_btag, sc->sf_bhandle, reg)
+
+
+struct sf_type {
+ u_int16_t sf_vid;
+ u_int16_t sf_did;
+ char *sf_name;
+};
+
+#define SF_INC(x, y) (x) = (x + 1) % y
+
+#define ETHER_ALIGN 2
+
+/*
+ * Note: alignment is important here: each list must be aligned to
+ * a 256-byte boundary. It turns out that each ring is some multiple
+ * of 4K in length, so we can stack them all on top of each other
+ * and just worry about aligning the whole mess. There's one transmit
+ * buffer ring and two receive buffer rings: one RX ring is for small
+ * packets and the other is for large packets. Each buffer ring also
+ * has a companion completion queue.
+ */
+struct sf_list_data {
+ struct sf_tx_bufdesc_type0 sf_tx_dlist[SF_TX_DLIST_CNT];
+ struct sf_tx_cmpdesc_type1 sf_tx_clist[SF_TX_CLIST_CNT];
+ struct sf_rx_bufdesc_type0 sf_rx_dlist_big[SF_RX_DLIST_CNT];
+#ifdef notdef
+ /*
+ * Unfortunately, because the Starfire doesn't allow arbitrary
+ * byte alignment, we have to copy packets in the RX handler in
+ * order to align the payload correctly. This means that we
+ * don't gain anything by having separate large and small descriptor
+ * lists, so for now we don't bother with the small one.
+ */
+ struct sf_rx_bufdesc_type0 sf_rx_dlist_small[SF_RX_DLIST_CNT];
+#endif
+ struct sf_rx_cmpdesc_type3 sf_rx_clist[SF_RX_CLIST_CNT];
+};
+
+struct sf_softc {
+ struct device sc_dev; /* generic device structure */
+ void *sc_ih; /* interrupt handler cookie */
+ struct arpcom arpcom; /* interface info */
+ struct ifmedia ifmedia; /* media info */
+ mii_data_t sc_mii; /* mii bus */
+ bus_space_handle_t sf_bhandle; /* bus space handle */
+ bus_space_tag_t sf_btag; /* bus space tag */
+ void *sf_intrhand; /* interrupt handler cookie */
+ struct sf_type *sf_info; /* Starfire adapter info */
+ struct sf_type *sf_pinfo;
+ u_int8_t sf_unit; /* interface number */
+ u_int8_t sf_type;
+ u_int8_t sf_phy_addr;
+ u_int8_t sf_want_auto;
+ u_int8_t sf_autoneg;
+ u_int8_t sf_tx_pend;
+ struct sf_list_data *sf_ldata;
+ caddr_t sf_ldata_ptr;
+ int sf_tx_cnt;
+};
+
+#define SF_TIMEOUT 1000
+
+#ifdef __alpha__
+#undef vtophys
+#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)va)
+#endif