diff options
-rw-r--r-- | sys/arch/i386/conf/GENERIC | 5 | ||||
-rw-r--r-- | sys/dev/pci/files.pci | 7 | ||||
-rw-r--r-- | sys/dev/pci/if_sf.c | 1371 | ||||
-rw-r--r-- | sys/dev/pci/if_sfreg.h | 1048 |
4 files changed, 2428 insertions, 3 deletions
diff --git a/sys/arch/i386/conf/GENERIC b/sys/arch/i386/conf/GENERIC index 640cf0477ae..35daa20e9b5 100644 --- a/sys/arch/i386/conf/GENERIC +++ b/sys/arch/i386/conf/GENERIC @@ -1,4 +1,4 @@ -# $OpenBSD: GENERIC,v 1.135 1999/10/28 21:53:55 aaron Exp $ +# $OpenBSD: GENERIC,v 1.136 1999/11/03 02:45:08 aaron Exp $ # $NetBSD: GENERIC,v 1.48 1996/05/20 18:17:23 mrg Exp $ # # GENERIC -- everything that's currently supported @@ -238,6 +238,7 @@ wb* at pci? dev ? function ? # Winbond W89C840F ethernet ti* at pci? dev ? function ? # Alteon Tigon 1Gb ethernet ax* at pci? dev ? function ? # ASIX AX88140A ethernet al* at pci? dev ? function ? # ADMtek AL981/AN985 ethernet +sf* at pci? dev ? function ? # Adaptec AIC-6915 ethernet skc* at pci? dev ? function ? # SysKonnect GEnesis 984x sk* at skc? # each port of above @@ -249,7 +250,7 @@ icsphy* at mii? phy ? # ICS 1890 PHYs #lxtphy* at mii? phy ? # Level1 LXT970 PHYs nsphy* at mii? phy ? # NS and compatible PHYs #qsphy* at mii? phy ? # Quality Semi QS6612 PHYs -#sqphy* at mii? phy ? # Seeq 8x220 PHYs +sqphy* at mii? phy ? # Seeq 8x220 PHYs rlphy* at mii? phy ? # RealTek 8139 internal PHYs #mtdphy* at mii? phy ? # Myson MTD972 PHYs ukphy* at mii? phy ? # "unknown" PHYs diff --git a/sys/dev/pci/files.pci b/sys/dev/pci/files.pci index 9218250af61..83447ffd597 100644 --- a/sys/dev/pci/files.pci +++ b/sys/dev/pci/files.pci @@ -1,4 +1,4 @@ -# $OpenBSD: files.pci,v 1.52 1999/10/28 21:53:55 aaron Exp $ +# $OpenBSD: files.pci,v 1.53 1999/11/03 02:45:08 aaron Exp $ # $NetBSD: files.pci,v 1.20 1996/09/24 17:47:15 christos Exp $ # # Config file and device description for machine-independent PCI code. @@ -194,6 +194,11 @@ device al: ether, ifnet, ifmedia attach al at pci file dev/pci/if_al.c al +# Adaptec AIC-6915 "Starfire" ethernet +device sf: ether, ifnet, mii, ifmedia +attach sf at pci +file dev/pci/if_sf.c sf + # Industrial Computer Source WDT-50x device wdt: pcibus attach wdt at pci diff --git a/sys/dev/pci/if_sf.c b/sys/dev/pci/if_sf.c new file mode 100644 index 00000000000..e3417d2d43a --- /dev/null +++ b/sys/dev/pci/if_sf.c @@ -0,0 +1,1371 @@ +/* $OpenBSD: if_sf.c,v 1.1 1999/11/03 02:45:08 aaron Exp $ */ +/* + * Copyright (c) 1997, 1998, 1999 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + * + * $FreeBSD: src/sys/pci/if_sf.c,v 1.16 1999/09/26 18:35:30 wpaul Exp $ + */ + +/* + * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD. + * Programming manual is available from: + * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf. + * + * Written by Bill Paul <wpaul@ctr.columbia.edu> + * Department of Electical Engineering + * Columbia University, New York City + */ + +/* + * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet + * controller designed with flexibility and reducing CPU load in mind. + * The Starfire offers high and low priority buffer queues, a + * producer/consumer index mechanism and several different buffer + * queue and completion queue descriptor types. Any one of a number + * of different driver designs can be used, depending on system and + * OS requirements. This driver makes use of type0 transmit frame + * descriptors (since BSD fragments packets across an mbuf chain) + * and two RX buffer queues prioritized on size (one queue for small + * frames that will fit into a single mbuf, another with full size + * mbuf clusters for everything else). The producer/consumer indexes + * and completion queues are also used. + * + * One downside to the Starfire has to do with alignment: buffer + * queues must be aligned on 256-byte boundaries, and receive buffers + * must be aligned on longword boundaries. The receive buffer alignment + * causes problems on the Alpha platform, where the packet payload + * should be longword aligned. There is no simple way around this. + * + * For receive filtering, the Starfire offers 16 perfect filter slots + * and a 512-bit hash table. + * + * The Starfire has no internal transceiver, relying instead on an + * external MII-based transceiver. Accessing registers on external + * PHYs is done through a special register map rather than with the + * usual bitbang MDIO method. + * + * Acesssing the registers on the Starfire is a little tricky. The + * Starfire has a 512K internal register space. When programmed for + * PCI memory mapped mode, the entire register space can be accessed + * directly. However in I/O space mode, only 256 bytes are directly + * mapped into PCI I/O space. The other registers can be accessed + * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA + * registers inside the 256-byte I/O window. + */ + +#include "bpfilter.h" + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/mbuf.h> +#include <sys/protosw.h> +#include <sys/socket.h> +#include <sys/ioctl.h> +#include <sys/errno.h> +#include <sys/malloc.h> +#include <sys/kernel.h> + +#include <net/if.h> +#include <net/if_dl.h> +#include <net/if_types.h> + +#include <netinet/in.h> +#include <netinet/in_systm.h> +#include <netinet/in_var.h> +#include <netinet/ip.h> +#include <netinet/if_ether.h> + +#include <net/if_media.h> + +#if NBPFILTER > 0 +#include <net/bpf.h> +#endif + +#include <vm/vm.h> /* for vtophys */ +#include <vm/pmap.h> /* for vtophys */ + +#include <sys/device.h> + +#include <dev/mii/mii.h> +#include <dev/mii/miivar.h> + +#include <dev/pci/pcireg.h> +#include <dev/pci/pcivar.h> +#include <dev/pci/pcidevs.h> + +#define SF_USEIOSPACE + +#include <dev/pci/if_sfreg.h> + +int sf_probe __P((struct device *, void *, void *)); +void sf_attach __P((struct device *, struct device *, void *)); +int sf_intr __P((void *)); +void sf_shutdown __P((void *)); +void sf_stats_update __P((void *)); +void sf_rxeof __P((struct sf_softc *)); +void sf_txeof __P((struct sf_softc *)); +int sf_encap __P((struct sf_softc *, struct sf_tx_bufdesc_type0 *, + struct mbuf *)); +void sf_start __P((struct ifnet *)); +int sf_ioctl __P((struct ifnet *, u_long, caddr_t)); +void sf_init __P((void *)); +void sf_stop __P((struct sf_softc *)); +void sf_watchdog __P((struct ifnet *)); +int sf_ifmedia_upd __P((struct ifnet *)); +void sf_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); +void sf_reset __P((struct sf_softc *)); +int sf_init_rx_ring __P((struct sf_softc *)); +void sf_init_tx_ring __P((struct sf_softc *)); +int sf_newbuf __P((struct sf_softc *, struct sf_rx_bufdesc_type0 *, + struct mbuf *)); +void sf_setmulti __P((struct sf_softc *)); +int sf_setperf __P((struct sf_softc *, int, caddr_t)); +int sf_sethash __P((struct sf_softc *, caddr_t, int)); +#ifdef notdef +int sf_setvlan __P((struct sf_softc *, int, u_int32_t)); +#endif + +u_int8_t sf_read_eeprom __P((struct sf_softc *, int)); +u_int32_t sf_calchash __P((caddr_t)); + +int sf_miibus_readreg __P((struct device *, int, int)); +void sf_miibus_writereg __P((struct device *, int, int, int)); +void sf_miibus_statchg __P((struct device *)); + +u_int32_t csr_read_4 __P((struct sf_softc *, int)); +void csr_write_4 __P((struct sf_softc *, int, u_int32_t)); + +#ifdef SF_USEIOSPACE +#define SF_RES SYS_RES_IOPORT +#define SF_RID SF_PCI_LOIO +#else +#define SF_RES SYS_RES_MEMORY +#define SF_RID SF_PCI_LOMEM +#endif + +#define SF_SETBIT(sc, reg, x) \ + csr_write_4(sc, reg, csr_read_4(sc, reg) | x) + +#define SF_CLRBIT(sc, reg, x) \ + csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x) + +u_int32_t csr_read_4(sc, reg) + struct sf_softc *sc; + int reg; +{ + u_int32_t val; + +#ifdef SF_USEIOSPACE + CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); + val = CSR_READ_4(sc, SF_INDIRECTIO_DATA); +#else + val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE)); +#endif + + return(val); +} + +u_int8_t sf_read_eeprom(sc, reg) + struct sf_softc *sc; + int reg; +{ + u_int8_t val; + + val = (csr_read_4(sc, SF_EEADDR_BASE + + (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF; + + return(val); +} + +void csr_write_4(sc, reg, val) + struct sf_softc *sc; + int reg; + u_int32_t val; +{ +#ifdef SF_USEIOSPACE + CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); + CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val); +#else + CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val); +#endif + return; +} + +u_int32_t sf_calchash(addr) + caddr_t addr; +{ + u_int32_t crc, carry; + int i, j; + u_int8_t c; + + /* Compute CRC for the address value. */ + crc = 0xFFFFFFFF; /* initial value */ + + for (i = 0; i < 6; i++) { + c = *(addr + i); + for (j = 0; j < 8; j++) { + carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); + crc <<= 1; + c >>= 1; + if (carry) + crc = (crc ^ 0x04c11db6) | carry; + } + } + + /* return the filter bit position */ + return(crc >> 23 & 0x1FF); +} + +/* + * Copy the address 'mac' into the perfect RX filter entry at + * offset 'idx.' The perfect filter only has 16 entries so do + * some sanity tests. + */ +int sf_setperf(sc, idx, mac) + struct sf_softc *sc; + int idx; + caddr_t mac; +{ + u_int16_t *p; + + if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT) + return(EINVAL); + + if (mac == NULL) + return(EINVAL); + + p = (u_int16_t *)mac; + + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2])); + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1])); + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0])); + + return(0); +} + +/* + * Set the bit in the 512-bit hash table that corresponds to the + * specified mac address 'mac.' If 'prio' is nonzero, update the + * priority hash table instead of the filter hash table. + */ +int sf_sethash(sc, mac, prio) + struct sf_softc *sc; + caddr_t mac; + int prio; +{ + u_int32_t h = 0; + + if (mac == NULL) + return(EINVAL); + + h = sf_calchash(mac); + + if (prio) { + SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF + + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); + } else { + SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF + + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); + } + + return(0); +} + +#ifdef notdef +/* + * Set a VLAN tag in the receive filter. + */ +int sf_setvlan(sc, idx, vlan) + struct sf_softc *sc; + int idx; + u_int32_t vlan; +{ + if (idx < 0 || idx >> SF_RXFILT_HASH_CNT) + return(EINVAL); + + csr_write_4(sc, SF_RXFILT_HASH_BASE + + (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan); + + return(0); +} +#endif + +int sf_miibus_readreg(self, phy, reg) + struct device *self; + int phy, reg; +{ + struct sf_softc *sc = (struct sf_softc *)self; + int i; + u_int32_t val = 0; + + for (i = 0; i < SF_TIMEOUT; i++) { + val = csr_read_4(sc, SF_PHY_REG(phy, reg)); + if (val & SF_MII_DATAVALID) + break; + } + + if (i == SF_TIMEOUT) + return(0); + + if ((val & 0x0000FFFF) == 0xFFFF) + return(0); + + return(val & 0x0000FFFF); +} + +void sf_miibus_writereg(self, phy, reg, val) + struct device *self; + int phy, reg, val; +{ + struct sf_softc *sc = (struct sf_softc *)self; + int i; + int busy; + + csr_write_4(sc, SF_PHY_REG(phy, reg), val); + + for (i = 0; i < SF_TIMEOUT; i++) { + busy = csr_read_4(sc, SF_PHY_REG(phy, reg)); + if (!(busy & SF_MII_BUSY)) + break; + } + + return; +} + +void sf_miibus_statchg(self) + struct device *self; +{ + struct sf_softc *sc = (struct sf_softc *)self; + struct mii_data *mii; + + mii = &sc->sc_mii; + + if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } else { + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } + + return; +} + +void sf_setmulti(sc) + struct sf_softc *sc; +{ + struct ifnet *ifp; + int i; + struct arpcom *ac = &sc->arpcom; + struct ether_multi *enm; + struct ether_multistep step; + u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 }; + + ifp = &sc->arpcom.ac_if; + + /* First zot all the existing filters. */ + for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++) + sf_setperf(sc, i, (char *)&dummy); + for (i = SF_RXFILT_HASH_BASE; + i < (SF_RXFILT_HASH_MAX + 1); i += 4) + csr_write_4(sc, i, 0); + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); + + /* Now program new ones. */ + if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); + } else { + i = 1; + /* First find the tail of the list. */ + ETHER_FIRST_MULTI(step, ac, enm); + + /* Now traverse the list backwards. */ + while (enm != NULL) { + /* if (enm->enm_addrlo->sa_family != AF_LINK) + continue; */ + /* + * Program the first 15 multicast groups + * into the perfect filter. For all others, + * use the hash table. + */ + if (i < SF_RXFILT_PERFECT_CNT) { + sf_setperf(sc, i, + LLADDR((struct sockaddr_dl *)enm->enm_addrlo)); + i++; + continue; + } + + sf_sethash(sc, + LLADDR((struct sockaddr_dl *)enm->enm_addrlo), 0); + ETHER_NEXT_MULTI(step, enm); + } + } + + return; +} + +/* + * Set media options. + */ +int sf_ifmedia_upd(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + struct mii_data *mii; + + sc = ifp->if_softc; + mii = &sc->sc_mii; + mii_mediachg(mii); + + return(0); +} + +/* + * Report current media status. + */ +void sf_ifmedia_sts(ifp, ifmr) + struct ifnet *ifp; + struct ifmediareq *ifmr; +{ + struct sf_softc *sc; + struct mii_data *mii; + + sc = ifp->if_softc; + mii = &sc->sc_mii; + + mii_pollstat(mii); + ifmr->ifm_active = mii->mii_media_active; + ifmr->ifm_status = mii->mii_media_status; + + return; +} + +int sf_ioctl(ifp, command, data) + struct ifnet *ifp; + u_long command; + caddr_t data; +{ + struct sf_softc *sc = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *) data; + struct ifaddr *ifa = (struct ifaddr *)data; + struct mii_data *mii; + int s, error = 0; + + s = splimp(); + + if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { + splx(s); + return error; + } + + switch(command) { + case SIOCSIFADDR: + ifp->if_flags |= IFF_UP; + switch (ifa->ifa_addr->sa_family) { + case AF_INET: + sf_init(sc); + arp_ifinit(&sc->arpcom, ifa); + break; + default: + sf_init(sc); + break; + } + break; + case SIOCSIFFLAGS: + if (ifp->if_flags & IFF_UP) { + sf_init(sc); + } else { + if (ifp->if_flags & IFF_RUNNING) + sf_stop(sc); + } + error = 0; + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + sf_setmulti(sc); + error = 0; + break; + case SIOCGIFMEDIA: + case SIOCSIFMEDIA: + mii = &sc->sc_mii; + error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); + break; + default: + error = EINVAL; + break; + } + + (void)splx(s); + + return(error); +} + +void sf_reset(sc) + struct sf_softc *sc; +{ + register int i; + + csr_write_4(sc, SF_GEN_ETH_CTL, 0); + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); + DELAY(1000); + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); + + SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET); + + for (i = 0; i < SF_TIMEOUT; i++) { + DELAY(10); + if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET)) + break; + } + + if (i == SF_TIMEOUT) + printf("sf%d: reset never completed!\n", sc->sf_unit); + + /* Wait a little while for the chip to get its brains in order. */ + DELAY(1000); + return; +} + +/* + * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device + * IDs against our list and return a device name if we find a match. + * We also check the subsystem ID so that we can identify exactly which + * NIC has been found, if possible. + */ +int sf_probe(parent, match, aux) + struct device *parent; + void *match; + void *aux; +{ + struct pci_attach_args *pa = (struct pci_attach_args *)aux; + + if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ADP) + return(0); + + switch (PCI_PRODUCT(pa->pa_id)) { + case PCI_PRODUCT_ADP_AIC6915: + return(1); + } + + return(0); +} + +/* + * Attach the interface. Allocate softc structures, do ifmedia + * setup and ethernet/BPF attach. + */ +void sf_attach(parent, self, aux) + struct device *parent, *self; + void *aux; +{ + int s, i; + const char *intrstr = NULL; + u_int32_t command; + struct sf_softc *sc = (struct sf_softc *)self; + struct pci_attach_args *pa = aux; + pci_chipset_tag_t pc = pa->pa_pc; + pci_intr_handle_t ih; + struct ifnet *ifp; + bus_addr_t iobase; + bus_size_t iosize; + + s = splimp(); + sc->sf_unit = sc->sc_dev.dv_unit; + + /* + * Handle power management nonsense. + */ + command = pci_conf_read(pc, pa->pa_tag, SF_PCI_CAPID) & 0x000000FF; + if (command == 0x01) { + + command = pci_conf_read(pc, pa->pa_tag, SF_PCI_PWRMGMTCTRL); + if (command & SF_PSTATE_MASK) { + u_int32_t iobase, membase, irq; + + /* Save important PCI config data. */ + iobase = pci_conf_read(pc, pa->pa_tag, SF_PCI_LOIO); + membase = pci_conf_read(pc, pa->pa_tag, SF_PCI_LOMEM); + irq = pci_conf_read(pc, pa->pa_tag, SF_PCI_INTLINE); + + /* Reset the power state. */ + printf("sf%d: chip is in D%d power mode " + "-- setting to D0\n", sc->sf_unit, command & SF_PSTATE_MASK); + command &= 0xFFFFFFFC; + pci_conf_write(pc, pa->pa_tag, SF_PCI_PWRMGMTCTRL, command); + + /* Restore PCI config data. */ + pci_conf_write(pc, pa->pa_tag, SF_PCI_LOIO, iobase); + pci_conf_write(pc, pa->pa_tag, SF_PCI_LOMEM, membase); + pci_conf_write(pc, pa->pa_tag, SF_PCI_INTLINE, irq); + } + } + + /* + * Map control/status registers. + */ + command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); + command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | + PCI_COMMAND_MASTER_ENABLE; + pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); + command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); + +#ifdef SF_USEIOSPACE + if (!(command & PCI_COMMAND_IO_ENABLE)) { + printf(": failed to enable I/O ports\n"); + goto fail; + } + if (pci_io_find(pc, pa->pa_tag, SF_PCI_LOIO, &iobase, &iosize)) { + printf(": can't find I/O space\n"); + goto fail; + } + if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->sf_bhandle)) { + printf(": can't map I/O space\n"); + goto fail; + } + sc->sf_btag = pa->pa_iot; +#else + if (!(command & PCI_COMMAND_MEM_ENABLE)) { + printf(": failed to enable memory mapping\n"); + goto fail; + } + if (pci_mem_find(pc, pa->pa_tag, SF_PCI_LOMEM, &iobase, &iosize, NULL)){ + printf(": can't find mem space\n"); + goto fail; + } + if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sf_bhandle)) { + printf(": can't map mem space\n"); + goto fail; + } + sc->sf_btag = pa->pa_memt; +#endif + + /* Allocate interrupt */ + if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, + &ih)) { + printf(": couldn't map interrupt\n"); + goto fail; + } + intrstr = pci_intr_string(pc, ih); + sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sf_intr, sc, + self->dv_xname); + if (sc->sc_ih == NULL) { + printf(": couldn't establish interrupt"); + if (intrstr != NULL) + printf(" at %s", intrstr); + printf("\n"); + goto fail; + } + printf(": %s", intrstr); + + /* Reset the adapter. */ + sf_reset(sc); + + /* + * Get station address from the EEPROM. + */ + for (i = 0; i < ETHER_ADDR_LEN; i++) + sc->arpcom.ac_enaddr[i] = + sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i); + + printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); + + /* Allocate the descriptor queues. */ + sc->sf_ldata_ptr = malloc(sizeof(struct sf_list_data) + 8, + M_DEVBUF, M_NOWAIT); + if (sc->sf_ldata_ptr == NULL) { + printf("%s: no memory for list buffers!\n", sc->sf_unit); + goto fail; + } + + sc->sf_ldata = (struct sf_list_data *)sc->sf_ldata_ptr; + bzero(sc->sf_ldata, sizeof(struct sf_list_data)); + + ifp = &sc->arpcom.ac_if; + ifp->if_softc = sc; + ifp->if_mtu = ETHERMTU; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = sf_ioctl; + ifp->if_output = ether_output; + ifp->if_start = sf_start; + ifp->if_watchdog = sf_watchdog; + ifp->if_baudrate = 10000000; + ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1; + bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); + + /* + * Initialize our media structures and probe the MII. + */ + sc->sc_mii.mii_ifp = ifp; + sc->sc_mii.mii_readreg = sf_miibus_readreg; + sc->sc_mii.mii_writereg = sf_miibus_writereg; + sc->sc_mii.mii_statchg = sf_miibus_statchg; + ifmedia_init(&sc->sc_mii.mii_media, 0, sf_ifmedia_upd, sf_ifmedia_sts); + mii_phy_probe(self, &sc->sc_mii, 0xffffffff); + if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { + ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); + ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); + } else + ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); + + /* + * Call MI attach routines. + */ + if_attach(ifp); + ether_ifattach(ifp); + +#if NBPFILTER > 0 + bpfattach(&sc->arpcom.ac_if.if_bpf, ifp, DLT_EN10MB, + sizeof(struct ether_header)); +#endif + shutdownhook_establish(sf_shutdown, sc); + +fail: + splx(s); + return; +} + +int sf_init_rx_ring(sc) + struct sf_softc *sc; +{ + struct sf_list_data *ld; + int i; + + ld = sc->sf_ldata; + + bzero((char *)ld->sf_rx_dlist_big, + sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT); + bzero((char *)ld->sf_rx_clist, + sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT); + + for (i = 0; i < SF_RX_DLIST_CNT; i++) { + if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS) + return(ENOBUFS); + } + + return(0); +} + +void sf_init_tx_ring(sc) + struct sf_softc *sc; +{ + struct sf_list_data *ld; + int i; + + ld = sc->sf_ldata; + + bzero((char *)ld->sf_tx_dlist, + sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT); + bzero((char *)ld->sf_tx_clist, + sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT); + + for (i = 0; i < SF_TX_DLIST_CNT; i++) + ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID; + for (i = 0; i < SF_TX_CLIST_CNT; i++) + ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX; + + ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1; + sc->sf_tx_cnt = 0; + + return; +} + +int sf_newbuf(sc, c, m) + struct sf_softc *sc; + struct sf_rx_bufdesc_type0 *c; + struct mbuf *m; +{ + struct mbuf *m_new = NULL; + + if (m == NULL) { + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("sf%d: no memory for rx list -- " + "packet dropped!\n", sc->sf_unit); + return(ENOBUFS); + } + + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + printf("sf%d: no memory for rx list -- " + "packet dropped!\n", sc->sf_unit); + m_freem(m_new); + return(ENOBUFS); + } + m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; + } else { + m_new = m; + m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; + m_new->m_data = m_new->m_ext.ext_buf; + } + + m_adj(m_new, sizeof(u_int64_t)); + + c->sf_mbuf = m_new; + c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t))); + c->sf_valid = 1; + + return(0); +} + +/* + * The starfire is programmed to use 'normal' mode for packet reception, + * which means we use the consumer/producer model for both the buffer + * descriptor queue and the completion descriptor queue. The only problem + * with this is that it involves a lot of register accesses: we have to + * read the RX completion consumer and producer indexes and the RX buffer + * producer index, plus the RX completion consumer and RX buffer producer + * indexes have to be updated. It would have been easier if Adaptec had + * put each index in a separate register, especially given that the damn + * NIC has a 512K register space. + * + * In spite of all the lovely features that Adaptec crammed into the 6915, + * it is marred by one truly stupid design flaw, which is that receive + * buffer addresses must be aligned on a longword boundary. This forces + * the packet payload to be unaligned, which is suboptimal on the x86 and + * completely unuseable on the Alpha. Our only recourse is to copy received + * packets into properly aligned buffers before handing them off. + */ + +void sf_rxeof(sc) + struct sf_softc *sc; +{ + struct ether_header *eh; + struct mbuf *m; + struct ifnet *ifp; + struct sf_rx_bufdesc_type0 *desc; + struct sf_rx_cmpdesc_type3 *cur_rx; + u_int32_t rxcons, rxprod; + int cmpprodidx, cmpconsidx, bufprodidx; + + ifp = &sc->arpcom.ac_if; + + rxcons = csr_read_4(sc, SF_CQ_CONSIDX); + rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1); + cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX)); + cmpconsidx = SF_IDX_LO(rxcons); + bufprodidx = SF_IDX_LO(rxprod); + + while (cmpconsidx != cmpprodidx) { + struct mbuf *m0; + + cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx]; + desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx]; + m = desc->sf_mbuf; + SF_INC(cmpconsidx, SF_RX_CLIST_CNT); + SF_INC(bufprodidx, SF_RX_DLIST_CNT); + + if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) { + ifp->if_ierrors++; + sf_newbuf(sc, desc, m); + continue; + } + + m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, + cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL); + sf_newbuf(sc, desc, m); + if (m0 == NULL) { + ifp->if_ierrors++; + continue; + } + m_adj(m0, ETHER_ALIGN); + m = m0; + + eh = mtod(m, struct ether_header *); + ifp->if_ipackets++; + +#if NBPFILTER > 0 + if (ifp->if_bpf) + bpf_mtap(ifp->if_bpf, m); +#endif + + /* Remove header from mbuf and pass it on. */ + m_adj(m, sizeof(struct ether_header)); + ether_input(ifp, eh, m); + + } + + csr_write_4(sc, SF_CQ_CONSIDX, + (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx); + csr_write_4(sc, SF_RXDQ_PTR_Q1, + (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx); + + return; +} + +/* + * Read the transmit status from the completion queue and release + * mbufs. Note that the buffer descriptor index in the completion + * descriptor is an offset from the start of the transmit buffer + * descriptor list in bytes. This is important because the manual + * gives the impression that it should match the producer/consumer + * index, which is the offset in 8 byte blocks. + */ +void sf_txeof(sc) + struct sf_softc *sc; +{ + int txcons, cmpprodidx, cmpconsidx; + struct sf_tx_cmpdesc_type1 *cur_cmp; + struct sf_tx_bufdesc_type0 *cur_tx; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + txcons = csr_read_4(sc, SF_CQ_CONSIDX); + cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX)); + cmpconsidx = SF_IDX_HI(txcons); + + while (cmpconsidx != cmpprodidx) { + cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx]; + cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7]; + SF_INC(cmpconsidx, SF_TX_CLIST_CNT); + + if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK) + ifp->if_opackets++; + else + ifp->if_oerrors++; + + sc->sf_tx_cnt--; + if (cur_tx->sf_mbuf != NULL) { + m_freem(cur_tx->sf_mbuf); + cur_tx->sf_mbuf = NULL; + } + } + + ifp->if_timer = 0; + ifp->if_flags &= ~IFF_OACTIVE; + + csr_write_4(sc, SF_CQ_CONSIDX, + (txcons & ~SF_CQ_CONSIDX_TXQ) | + ((cmpconsidx << 16) & 0xFFFF0000)); + + return; +} + +int sf_intr(arg) + void *arg; +{ + struct sf_softc *sc; + struct ifnet *ifp; + u_int32_t status; + int claimed = 0; + + sc = arg; + ifp = &sc->arpcom.ac_if; + + if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) + return claimed; + + /* Disable interrupts. */ + csr_write_4(sc, SF_IMR, 0x00000000); + + for (;;) { + status = csr_read_4(sc, SF_ISR); + if (status) + csr_write_4(sc, SF_ISR, status); + + if (!(status & SF_INTRS)) + break; + + claimed = 1; + + if (status & SF_ISR_RXDQ1_DMADONE) + sf_rxeof(sc); + + if (status & SF_ISR_TX_TXDONE) + sf_txeof(sc); + + if (status & SF_ISR_ABNORMALINTR) { + if (status & SF_ISR_STATSOFLOW) { + untimeout(sf_stats_update, sc); + sf_stats_update(sc); + } else + sf_init(sc); + } + } + + /* Re-enable interrupts. */ + csr_write_4(sc, SF_IMR, SF_INTRS); + + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + + return claimed; +} + +void sf_init(xsc) + void *xsc; +{ + struct sf_softc *sc = xsc; + struct ifnet *ifp = &sc->arpcom.ac_if; + struct mii_data *mii; + int i, s; + + s = splimp(); + + mii = &sc->sc_mii; + + sf_stop(sc); + sf_reset(sc); + + /* Init all the receive filter registers */ + for (i = SF_RXFILT_PERFECT_BASE; + i < (SF_RXFILT_HASH_MAX + 1); i += 4) + csr_write_4(sc, i, 0); + + /* Empty stats counter registers. */ + for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++) + csr_write_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t)), 0); + + /* Init our MAC address */ + csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); + csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); + sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr); + + if (sf_init_rx_ring(sc) == ENOBUFS) { + printf("sf%d: initialization failed: no " + "memory for rx buffers\n", sc->sf_unit); + (void)splx(s); + return; + } + + sf_init_tx_ring(sc); + + csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN); + + /* If we want promiscuous mode, set the allframes bit. */ + if (ifp->if_flags & IFF_PROMISC) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } else { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } + + if (ifp->if_flags & IFF_BROADCAST) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); + } else { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); + } + + /* Init the completion queue indexes */ + csr_write_4(sc, SF_CQ_CONSIDX, 0); + csr_write_4(sc, SF_CQ_PRODIDX, 0); + + /* Init the RX completion queue */ + csr_write_4(sc, SF_RXCQ_CTL_1, + vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR); + SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3); + + /* Init RX DMA control. */ + SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS); + + /* Init the RX buffer descriptor queue. */ + csr_write_4(sc, SF_RXDQ_ADDR_Q1, + vtophys(sc->sf_ldata->sf_rx_dlist_big)); + csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES); + csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1); + + /* Init the TX completion queue */ + csr_write_4(sc, SF_TXCQ_CTL, + vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR); + + /* Init the TX buffer descriptor queue. */ + csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, + vtophys(sc->sf_ldata->sf_tx_dlist)); + SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX); + csr_write_4(sc, SF_TXDQ_CTL, + SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES); + SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP); + + /* Enable autopadding of short TX frames. */ + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD); + + /* Make sure the duplex mode is set correctly. */ + if ((mii->mii_media.ifm_media & IFM_GMASK) == IFM_FDX) { + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } else { + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } + + /* Enable interrupts. */ + csr_write_4(sc, SF_IMR, SF_INTRS); + SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB); + + /* Enable the RX and TX engines. */ + SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB); + SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB); + + mii_mediachg(mii); + + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; + + timeout(sf_stats_update, sc, hz); + + splx(s); + + return; +} + +int sf_encap(sc, c, m_head) + struct sf_softc *sc; + struct sf_tx_bufdesc_type0 *c; + struct mbuf *m_head; +{ + int frag = 0; + struct sf_frag *f = NULL; + struct mbuf *m; + + m = m_head; + + for (m = m_head, frag = 0; m != NULL; m = m->m_next) { + if (m->m_len != 0) { + if (frag == SF_MAXFRAGS) + break; + f = &c->sf_frags[frag]; + if (frag == 0) + f->sf_pktlen = m_head->m_pkthdr.len; + f->sf_fraglen = m->m_len; + f->sf_addr = vtophys(mtod(m, vm_offset_t)); + frag++; + } + } + + if (m != NULL) { + struct mbuf *m_new = NULL; + + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("sf%d: no memory for tx list", sc->sf_unit); + return(1); + } + + if (m_head->m_pkthdr.len > MHLEN) { + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + m_freem(m_new); + printf("sf%d: no memory for tx list", + sc->sf_unit); + return(1); + } + } + m_copydata(m_head, 0, m_head->m_pkthdr.len, + mtod(m_new, caddr_t)); + m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; + m_freem(m_head); + m_head = m_new; + f = &c->sf_frags[0]; + f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len; + f->sf_addr = vtophys(mtod(m_head, caddr_t)); + frag = 1; + } + + c->sf_mbuf = m_head; + c->sf_id = SF_TX_BUFDESC_ID; + c->sf_fragcnt = frag; + c->sf_intr = 1; + c->sf_caltcp = 0; + c->sf_crcen = 1; + + return(0); +} + +void sf_start(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + struct sf_tx_bufdesc_type0 *cur_tx = NULL; + struct mbuf *m_head = NULL; + int i, txprod; + + sc = ifp->if_softc; + + if (ifp->if_flags & IFF_OACTIVE) + return; + + txprod = csr_read_4(sc, SF_TXDQ_PRODIDX); + i = SF_IDX_HI(txprod) >> 4; + + while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) { + IF_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + + cur_tx = &sc->sf_ldata->sf_tx_dlist[i]; + sf_encap(sc, cur_tx, m_head); + +#if NBPFILTER > 0 + /* + * If there's a BPF listener, bounce a copy of this frame + * to him. + */ + if (ifp->if_bpf) + bpf_mtap(ifp->if_bpf, m_head); +#endif + + SF_INC(i, SF_TX_DLIST_CNT); + sc->sf_tx_cnt++; + if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2)) + break; + } + + if (cur_tx == NULL) + return; + + /* Transmit */ + csr_write_4(sc, SF_TXDQ_PRODIDX, + (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) | + ((i << 20) & 0xFFFF0000)); + + ifp->if_timer = 5; + + return; +} + +void sf_stop(sc) + struct sf_softc *sc; +{ + int i; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + untimeout(sf_stats_update, sc); + + csr_write_4(sc, SF_GEN_ETH_CTL, 0); + csr_write_4(sc, SF_CQ_CONSIDX, 0); + csr_write_4(sc, SF_CQ_PRODIDX, 0); + csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0); + csr_write_4(sc, SF_RXDQ_CTL_1, 0); + csr_write_4(sc, SF_RXDQ_PTR_Q1, 0); + csr_write_4(sc, SF_TXCQ_CTL, 0); + csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0); + csr_write_4(sc, SF_TXDQ_CTL, 0); + sf_reset(sc); + + for (i = 0; i < SF_RX_DLIST_CNT; i++) { + if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) { + m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf); + sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL; + } + } + + for (i = 0; i < SF_TX_DLIST_CNT; i++) { + if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) { + m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf); + sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL; + } + } + + ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); + + return; +} + +/* + * Note: it is important that this function not be interrupted. We + * use a two-stage register access scheme: if we are interrupted in + * between setting the indirect address register and reading from the + * indirect data register, the contents of the address register could + * be changed out from under us. + */ +void sf_stats_update(xsc) + void *xsc; +{ + struct sf_softc *sc; + struct ifnet *ifp; + struct mii_data *mii; + struct sf_stats stats; + u_int32_t *ptr; + int i, s; + + s = splimp(); + + sc = xsc; + ifp = &sc->arpcom.ac_if; + mii = &sc->sc_mii; + + ptr = (u_int32_t *)&stats; + for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) + ptr[i] = csr_read_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t))); + + for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) + csr_write_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t)), 0); + + ifp->if_collisions += stats.sf_tx_single_colls + + stats.sf_tx_multi_colls + stats.sf_tx_excess_colls; + + mii_tick(mii); + + timeout(sf_stats_update, sc, hz); + + splx(s); + + return; +} + +void sf_watchdog(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + + sc = ifp->if_softc; + + ifp->if_oerrors++; + printf("sf%d: watchdog timeout\n", sc->sf_unit); + + sf_stop(sc); + sf_reset(sc); + sf_init(sc); + + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + + return; +} + +void sf_shutdown(v) + void *v; +{ + struct sf_softc *sc = (struct sf_softc *)v; + + sf_stop(sc); +} + +struct cfattach sf_ca = { + sizeof(struct sf_softc), sf_probe, sf_attach +}; + +struct cfdriver sf_cd = { + 0, "sf", DV_IFNET +}; + diff --git a/sys/dev/pci/if_sfreg.h b/sys/dev/pci/if_sfreg.h new file mode 100644 index 00000000000..b76206cf321 --- /dev/null +++ b/sys/dev/pci/if_sfreg.h @@ -0,0 +1,1048 @@ +/* $OpenBSD */ +/* + * Copyright (c) 1997, 1998, 1999 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + * + * $FreeBSD: src/sys/pci/if_sfreg.h,v 1.4 1999/09/03 20:58:39 wpaul Exp $ + */ + +/* + * Registers for the Adaptec AIC-6915 Starfire. The Starfire has a 512K + * register space. These registers can be accessed in the following way: + * - PCI config registers are always accessible through PCI config space + * - Full 512K space mapped into memory using PCI memory mapped access + * - 256-byte I/O space mapped through PCI I/O access + * - Full 512K space mapped through indirect I/O using PCI I/O access + * It's possible to use either memory mapped mode or I/O mode to access + * the registers, but memory mapped is usually the easiest. All registers + * are 32 bits wide and must be accessed using 32-bit operations. + */ + +/* + * Adaptec PCI vendor ID. + */ +#define AD_VENDORID 0x9004 + +/* + * AIC-6915 PCI device ID. + */ +#define AD_DEVICEID_STARFIRE 0x6915 + +/* + * AIC-6915 subsystem IDs. Adaptec uses the subsystem ID to identify + * the exact kind of NIC on which the ASIC is mounted. Currently there + * are six different variations. Note: the Adaptec manual lists code 0x28 + * for two different NICs: the 62044 and the 69011/TX. This is a typo: + * the code for the 62044 is really 0x18. + */ +#define AD_SUBSYSID_62011_REV0 0x0008 /* single port 10/100baseTX 64-bit */ +#define AD_SUBSYSID_62011_REV1 0x0009 /* single port 10/100baseTX 64-bit */ +#define AD_SUBSYSID_62022 0x0010 /* dual port 10/100baseTX 64-bit */ +#define AD_SUBSYSID_62044 0x0018 /* quad port 10/100baseTX 64-bit */ +#define AD_SUBSYSID_62020 0x0020 /* single port 10/100baseFX 64-bit */ +#define AD_SUBSYSID_69011 0x0028 /* single port 10/100baseTX 32-bit */ + +/* + * Starfire internal register space map. The entire register space + * is available using PCI memory mapped mode. The SF_RMAP_INTREG + * space is available using PCI I/O mode. The entire space can be + * accessed using indirect I/O using the indirect I/O addr and + * indirect I/O data registers located within the SF_RMAP_INTREG space. + */ +#define SF_RMAP_ROMADDR_BASE 0x00000 /* Expansion ROM space */ +#define SF_RMAP_ROMADDR_MAX 0x3FFFF + +#define SF_RMAP_EXGPIO_BASE 0x40000 /* External general purpose regs */ +#define SF_RMAP_EXGPIO_MAX 0x3FFFF + +#define SF_RMAP_INTREG_BASE 0x50000 /* Internal functional registers */ +#define SF_RMAP_INTREG_MAX 0x500FF +#define SF_RMAP_GENREG_BASE 0x50100 /* General purpose registers */ +#define SF_RMAP_GENREG_MAX 0x5FFFF + +#define SF_RMAP_FIFO_BASE 0x60000 +#define SF_RMAP_FIFO_MAX 0x6FFFF + +#define SF_RMAP_STS_BASE 0x70000 +#define SF_RMAP_STS_MAX 0x70083 + +#define SF_RMAP_RSVD_BASE 0x70084 +#define SF_RMAP_RSVD_MAX 0x7FFFF + +/* + * PCI config header registers, 0x0000 to 0x003F + */ +#define SF_PCI_VENDOR_ID 0x0000 +#define SF_PCI_DEVICE_ID 0x0002 +#define SF_PCI_COMMAND 0x0004 +#define SF_PCI_STATUS 0x0006 +#define SF_PCI_REVID 0x0008 +#define SF_PCI_CLASSCODE 0x0009 +#define SF_PCI_CACHELEN 0x000C +#define SF_PCI_LATENCY_TIMER 0x000D +#define SF_PCI_HEADER_TYPE 0x000E +#define SF_PCI_LOMEM 0x0010 +#define SF_PCI_LOIO 0x0014 +#define SF_PCI_SUBVEN_ID 0x002C +#define SF_PCI_SYBSYS_ID 0x002E +#define SF_PCI_BIOSROM 0x0030 +#define SF_PCI_INTLINE 0x003C +#define SF_PCI_INTPIN 0x003D +#define SF_PCI_MINGNT 0x003E +#define SF_PCI_MINLAT 0x003F + +/* + * PCI registers, 0x0040 to 0x006F + */ +#define SF_PCI_DEVCFG 0x0040 +#define SF_BACCTL 0x0044 +#define SF_PCI_MON1 0x0048 +#define SF_PCI_MON2 0x004C +#define SF_PCI_CAPID 0x0050 /* 8 bits */ +#define SF_PCI_NEXTPTR 0x0051 /* 8 bits */ +#define SF_PCI_PWRMGMTCAP 0x0052 /* 16 bits */ +#define SF_PCI_PWRMGMTCTRL 0x0054 /* 16 bits */ +#define SF_PCI_PME_EVENT 0x0058 +#define SF_PCI_EECTL 0x0060 +#define SF_PCI_COMPLIANCE 0x0064 +#define SF_INDIRECTIO_ADDR 0x0068 +#define SF_INDIRECTIO_DATA 0x006C + +#define SF_PCIDEVCFG_RESET 0x00000001 +#define SF_PCIDEVCFG_FORCE64 0x00000002 +#define SF_PCIDEVCFG_SYSTEM64 0x00000004 +#define SF_PCIDEVCFG_RSVD0 0x00000008 +#define SF_PCIDEVCFG_INCR_INB 0x00000010 +#define SF_PCIDEVCFG_ABTONPERR 0x00000020 +#define SF_PCIDEVCFG_STPONPERR 0x00000040 +#define SF_PCIDEVCFG_MR_ENB 0x00000080 +#define SF_PCIDEVCFG_FIFOTHR 0x00000F00 +#define SF_PCIDEVCFG_STPONCA 0x00001000 +#define SF_PCIDEVCFG_PCIMEN 0x00002000 /* enable PCI bus master */ +#define SF_PCIDEVCFG_LATSTP 0x00004000 +#define SF_PCIDEVCFG_BYTE_ENB 0x00008000 +#define SF_PCIDEVCFG_EECSWIDTH 0x00070000 +#define SF_PCIDEVCFG_STPMWCA 0x00080000 +#define SF_PCIDEVCFG_REGCSWIDTH 0x00700000 +#define SF_PCIDEVCFG_INTR_ENB 0x00800000 +#define SF_PCIDEVCFG_DPR_ENB 0x01000000 +#define SF_PCIDEVCFG_RSVD1 0x02000000 +#define SF_PCIDEVCFG_RSVD2 0x04000000 +#define SF_PCIDEVCFG_STA_ENB 0x08000000 +#define SF_PCIDEVCFG_RTA_ENB 0x10000000 +#define SF_PCIDEVCFG_RMA_ENB 0x20000000 +#define SF_PCIDEVCFG_SSE_ENB 0x40000000 +#define SF_PCIDEVCFG_DPE_ENB 0x80000000 + +#define SF_BACCTL_BACDMA_ENB 0x00000001 +#define SF_BACCTL_PREFER_RXDMA 0x00000002 +#define SF_BACCTL_PREFER_TXDMA 0x00000004 +#define SF_BACCTL_SINGLE_DMA 0x00000008 +#define SF_BACCTL_SWAPMODE_DATA 0x00000030 +#define SF_BACCTL_SWAPMODE_DESC 0x000000C0 + +#define SF_SWAPMODE_LE 0x00000000 +#define SF_SWAPMODE_BE 0x00000010 + +#define SF_PSTATE_MASK 0x0003 +#define SF_PSTATE_D0 0x0000 +#define SF_PSTATE_D1 0x0001 +#define SF_PSTATE_D2 0x0002 +#define SF_PSTATE_D3 0x0003 +#define SF_PME_EN 0x0010 +#define SF_PME_STATUS 0x8000 + + +/* + * Ethernet registers 0x0070 to 0x00FF + */ +#define SF_GEN_ETH_CTL 0x0070 +#define SF_TIMER_CTL 0x0074 +#define SF_CURTIME 0x0078 +#define SF_ISR 0x0080 +#define SF_ISR_SHADOW 0x0084 +#define SF_IMR 0x0088 +#define SF_GPIO 0x008C +#define SF_TXDQ_CTL 0x0090 +#define SF_TXDQ_ADDR_HIPRIO 0x0094 +#define SF_TXDQ_ADDR_LOPRIO 0x0098 +#define SF_TXDQ_ADDR_HIADDR 0x009C +#define SF_TXDQ_PRODIDX 0x00A0 +#define SF_TXDQ_CONSIDX 0x00A4 +#define SF_TXDMA_STS1 0x00A8 +#define SF_TXDMA_STS2 0x00AC +#define SF_TX_FRAMCTL 0x00B0 +#define SF_TXCQ_ADDR_HI 0x00B4 +#define SF_TXCQ_CTL 0x00B8 +#define SF_RXCQ_CTL_1 0x00BC +#define SF_RXCQ_CTL_2 0x00C0 +#define SF_CQ_CONSIDX 0x00C4 +#define SF_CQ_PRODIDX 0x00C8 +#define SF_CQ_RXQ2 0x00CC +#define SF_RXDMA_CTL 0x00D0 +#define SF_RXDQ_CTL_1 0x00D4 +#define SF_RXDQ_CTL_2 0x00D8 +#define SF_RXDQ_ADDR_HIADDR 0x00DC +#define SF_RXDQ_ADDR_Q1 0x00E0 +#define SF_RXDQ_ADDR_Q2 0x00E4 +#define SF_RXDQ_PTR_Q1 0x00E8 +#define SF_RXDQ_PTR_Q2 0x00EC +#define SF_RXDMA_STS 0x00F0 +#define SF_RXFILT 0x00F4 +#define SF_RX_FRAMETEST_OUT 0x00F8 + +/* Ethernet control register */ +#define SF_ETHCTL_RX_ENB 0x00000001 +#define SF_ETHCTL_TX_ENB 0x00000002 +#define SF_ETHCTL_RXDMA_ENB 0x00000004 +#define SF_ETHCTL_TXDMA_ENB 0x00000008 +#define SF_ETHCTL_RXGFP_ENB 0x00000010 +#define SF_ETHCTL_TXGFP_ENB 0x00000020 +#define SF_ETHCTL_SOFTINTR 0x00000800 + +/* Timer control register */ +#define SF_TIMER_IMASK_INTERVAL 0x0000001F +#define SF_TIMER_IMASK_MODE 0x00000060 +#define SF_TIMER_SMALLFRAME_BYP 0x00000100 +#define SF_TIMER_SMALLRX_FRAME 0x00000600 +#define SF_TIMER_TIMES_TEN 0x00000800 +#define SF_TIMER_RXHIPRIO_BYP 0x00001000 +#define SF_TIMER_TX_DMADONE_DLY 0x00002000 +#define SF_TIMER_TX_QDONE_DLY 0x00004000 +#define SF_TIMER_TX_FRDONE_DLY 0x00008000 +#define SF_TIMER_GENTIMER 0x00FF0000 +#define SF_TIMER_ONESHOT 0x01000000 +#define SF_TIMER_GENTIMER_RES 0x02000000 +#define SF_TIMER_TIMEST_RES 0x04000000 +#define SF_TIMER_RXQ2DONE_DLY 0x10000000 +#define SF_TIMER_EARLYRX2_DLY 0x20000000 +#define SF_TIMER_RXQ1DONE_DLY 0x40000000 +#define SF_TIMER_EARLYRX1_DLY 0x80000000 + +/* Interrupt status register */ +#define SF_ISR_PCIINT_ASSERTED 0x00000001 +#define SF_ISR_GFP_TX 0x00000002 +#define SF_ISR_GFP_RX 0x00000004 +#define SF_ISR_TX_BADID_HIPRIO 0x00000008 +#define SF_ISR_TX_BADID_LOPRIO 0x00000010 +#define SF_ISR_NO_TX_CSUM 0x00000020 +#define SF_ISR_RXDQ2_NOBUFS 0x00000040 +#define SF_ISR_RXGFP_NORESP 0x00000080 +#define SF_ISR_RXDQ1_DMADONE 0x00000100 +#define SF_ISR_RXDQ2_DMADONE 0x00000200 +#define SF_ISR_RXDQ1_EARLY 0x00000400 +#define SF_ISR_RXDQ2_EARLY 0x00000800 +#define SF_ISR_TX_QUEUEDONE 0x00001000 +#define SF_ISR_TX_DMADONE 0x00002000 +#define SF_ISR_TX_TXDONE 0x00004000 +#define SF_ISR_NORMALINTR 0x00008000 +#define SF_ISR_RXDQ1_NOBUFS 0x00010000 +#define SF_ISR_RXCQ2_NOBUFS 0x00020000 +#define SF_ISR_TX_LOFIFO 0x00040000 +#define SF_ISR_DMAERR 0x00080000 +#define SF_ISR_PCIINT 0x00100000 +#define SF_ISR_TXCQ_NOBUFS 0x00200000 +#define SF_ISR_RXCQ1_NOBUFS 0x00400000 +#define SF_ISR_SOFTINTR 0x00800000 +#define SF_ISR_GENTIMER 0x01000000 +#define SF_ISR_ABNORMALINTR 0x02000000 +#define SF_ISR_RSVD0 0x04000000 +#define SF_ISR_STATSOFLOW 0x08000000 +#define SF_ISR_GPIO 0xF0000000 + +/* + * Shadow interrupt status register. Unlike the normal IRQ register, + * reading bits here does not automatically cause them to reset. + */ +#define SF_SISR_PCIINT_ASSERTED 0x00000001 +#define SF_SISR_GFP_TX 0x00000002 +#define SF_SISR_GFP_RX 0x00000004 +#define SF_SISR_TX_BADID_HIPRIO 0x00000008 +#define SF_SISR_TX_BADID_LOPRIO 0x00000010 +#define SF_SISR_NO_TX_CSUM 0x00000020 +#define SF_SISR_RXDQ2_NOBUFS 0x00000040 +#define SF_SISR_RXGFP_NORESP 0x00000080 +#define SF_SISR_RXDQ1_DMADONE 0x00000100 +#define SF_SISR_RXDQ2_DMADONE 0x00000200 +#define SF_SISR_RXDQ1_EARLY 0x00000400 +#define SF_SISR_RXDQ2_EARLY 0x00000800 +#define SF_SISR_TX_QUEUEDONE 0x00001000 +#define SF_SISR_TX_DMADONE 0x00002000 +#define SF_SISR_TX_TXDONE 0x00004000 +#define SF_SISR_NORMALINTR 0x00008000 +#define SF_SISR_RXDQ1_NOBUFS 0x00010000 +#define SF_SISR_RXCQ2_NOBUFS 0x00020000 +#define SF_SISR_TX_LOFIFO 0x00040000 +#define SF_SISR_DMAERR 0x00080000 +#define SF_SISR_PCIINT 0x00100000 +#define SF_SISR_TXCQ_NOBUFS 0x00200000 +#define SF_SISR_RXCQ1_NOBUFS 0x00400000 +#define SF_SISR_SOFTINTR 0x00800000 +#define SF_SISR_GENTIMER 0x01000000 +#define SF_SISR_ABNORMALINTR 0x02000000 +#define SF_SISR_RSVD0 0x04000000 +#define SF_SISR_STATSOFLOW 0x08000000 +#define SF_SISR_GPIO 0xF0000000 + +/* Interrupt mask register */ +#define SF_IMR_PCIINT_ASSERTED 0x00000001 +#define SF_IMR_GFP_TX 0x00000002 +#define SF_IMR_GFP_RX 0x00000004 +#define SF_IMR_TX_BADID_HIPRIO 0x00000008 +#define SF_IMR_TX_BADID_LOPRIO 0x00000010 +#define SF_IMR_NO_TX_CSUM 0x00000020 +#define SF_IMR_RXDQ2_NOBUFS 0x00000040 +#define SF_IMR_RXGFP_NORESP 0x00000080 +#define SF_IMR_RXDQ1_DMADONE 0x00000100 +#define SF_IMR_RXDQ2_DMADONE 0x00000200 +#define SF_IMR_RXDQ1_EARLY 0x00000400 +#define SF_IMR_RXDQ2_EARLY 0x00000800 +#define SF_IMR_TX_QUEUEDONE 0x00001000 +#define SF_IMR_TX_DMADONE 0x00002000 +#define SF_IMR_TX_TXDONE 0x00004000 +#define SF_IMR_NORMALINTR 0x00008000 +#define SF_IMR_RXDQ1_NOBUFS 0x00010000 +#define SF_IMR_RXCQ2_NOBUFS 0x00020000 +#define SF_IMR_TX_LOFIFO 0x00040000 +#define SF_IMR_DMAERR 0x00080000 +#define SF_IMR_PCIINT 0x00100000 +#define SF_IMR_TXCQ_NOBUFS 0x00200000 +#define SF_IMR_RXCQ1_NOBUFS 0x00400000 +#define SF_IMR_SOFTINTR 0x00800000 +#define SF_IMR_GENTIMER 0x01000000 +#define SF_IMR_ABNORMALINTR 0x02000000 +#define SF_IMR_RSVD0 0x04000000 +#define SF_IMR_STATSOFLOW 0x08000000 +#define SF_IMR_GPIO 0xF0000000 + +#define SF_INTRS \ + (SF_IMR_RXDQ2_NOBUFS|SF_IMR_RXDQ1_DMADONE|SF_IMR_RXDQ2_DMADONE| \ + SF_IMR_TX_TXDONE|SF_IMR_RXDQ1_NOBUFS|SF_IMR_RXDQ2_DMADONE| \ + SF_IMR_NORMALINTR|SF_IMR_ABNORMALINTR|SF_IMR_TXCQ_NOBUFS| \ + SF_IMR_RXCQ1_NOBUFS|SF_IMR_RXCQ2_NOBUFS|SF_IMR_STATSOFLOW) + +/* TX descriptor queue control registers */ +#define SF_TXDQCTL_DESCTYPE 0x00000007 +#define SF_TXDQCTL_NODMACMP 0x00000008 +#define SF_TXDQCTL_MINSPACE 0x00000070 +#define SF_TXDQCTL_64BITADDR 0x00000080 +#define SF_TXDQCTL_BURSTLEN 0x00003F00 +#define SF_TXDQCTL_SKIPLEN 0x001F0000 +#define SF_TXDQCTL_HIPRIOTHRESH 0xFF000000 + +#define SF_TXBUFDESC_TYPE0 0x00000000 +#define SF_TXBUFDESC_TYPE1 0x00000001 +#define SF_TXBUFDESC_TYPE2 0x00000002 +#define SF_TXBUFDESC_TYPE3 0x00000003 +#define SF_TXBUFDESC_TYPE4 0x00000004 + +#define SF_TXMINSPACE_UNLIMIT 0x00000000 +#define SF_TXMINSPACE_32BYTES 0x00000010 +#define SF_TXMINSPACE_64BYTES 0x00000020 +#define SF_TXMINSPACE_128BYTES 0x00000030 +#define SF_TXMINSPACE_256BYTES 0x00000040 + +#define SF_TXSKIPLEN_0BYTES 0x00000000 +#define SF_TXSKIPLEN_8BYTES 0x00010000 +#define SF_TXSKIPLEN_16BYTES 0x00020000 +#define SF_TXSKIPLEN_24BYTES 0x00030000 +#define SF_TXSKIPLEN_32BYTES 0x00040000 + +/* TX frame control register */ +#define SF_TXFRMCTL_TXTHRESH 0x000000FF +#define SF_TXFRMCTL_CPLAFTERTX 0x00000100 +#define SF_TXFRMCRL_DEBUG 0x0000FE00 +#define SF_TXFRMCTL_STATUS 0x01FF0000 +#define SF_TXFRMCTL_MAC_TXIF 0xFE000000 + +/* TX completion queue control register */ +#define SF_TXCQ_THRESH 0x0000000F +#define SF_TXCQ_COMMON 0x00000010 +#define SF_TXCQ_SIZE 0x00000020 +#define SF_TXCQ_WRITEENB 0x00000040 +#define SF_TXCQ_USE_64BIT 0x00000080 +#define SF_TXCQ_ADDR 0xFFFFFF00 + +/* RX completion queue control register */ +#define SF_RXCQ_THRESH 0x0000000F +#define SF_RXCQ_TYPE 0x00000030 +#define SF_RXCQ_WRITEENB 0x00000040 +#define SF_RXCQ_USE_64BIT 0x00000080 +#define SF_RXCQ_ADDR 0xFFFFFF00 + +#define SF_RXCQTYPE_0 0x00000000 +#define SF_RXCQTYPE_1 0x00000010 +#define SF_RXCQTYPE_2 0x00000020 +#define SF_RXCQTYPE_3 0x00000030 + +/* TX descriptor queue producer index register */ +#define SF_TXDQ_PRODIDX_LOPRIO 0x000007FF +#define SF_TXDQ_PRODIDX_HIPRIO 0x07FF0000 + +/* TX descriptor queue consumer index register */ +#define SF_TXDQ_CONSIDX_LOPRIO 0x000007FF +#define SF_TXDQ_CONSIDX_HIPRIO 0x07FF0000 + +/* Completion queue consumer index register */ +#define SF_CQ_CONSIDX_RXQ1 0x000003FF +#define SF_CQ_CONSIDX_RXTHRMODE 0x00008000 +#define SF_CQ_CONSIDX_TXQ 0x03FF0000 +#define SF_CQ_CONSIDX_TXTHRMODE 0x80000000 + +/* Completion queue producer index register */ +#define SF_CQ_PRODIDX_RXQ1 0x000003FF +#define SF_CQ_PRODIDX_TXQ 0x03FF0000 + +/* RX completion queue 2 consumer/producer index register */ +#define SF_CQ_RXQ2_CONSIDX 0x000003FF +#define SF_CQ_RXQ2_RXTHRMODE 0x00008000 +#define SF_CQ_RXQ2_PRODIDX 0x03FF0000 + +#define SF_CQ_RXTHRMODE_INT_ON 0x00008000 +#define SF_CQ_RXTHRMODE_INT_OFF 0x00000000 +#define SF_CQ_TXTHRMODE_INT_ON 0x80000000 +#define SF_CQ_TXTHRMODE_INT_OFF 0x00000000 + +#define SF_IDX_LO(x) ((x) & 0x000007FF) +#define SF_IDX_HI(x) (((x) >> 16) & 0x000007FF) + +/* RX DMA control register */ +#define SF_RXDMA_BURSTSIZE 0x0000007F +#define SF_RXDMA_FPTESTMODE 0x00000080 +#define SF_RXDMA_HIPRIOTHRESH 0x00000F00 +#define SF_RXDMA_RXEARLYTHRESH 0x0001F000 +#define SF_RXDMA_DMACRC 0x00040000 +#define SF_RXDMA_USEBKUPQUEUE 0x00080000 +#define SF_RXDMA_QUEUEMODE 0x00700000 +#define SF_RXDMA_RXCQ2_ON 0x00800000 +#define SF_RXDMA_CSUMMODE 0x03000000 +#define SF_RXDMA_DMAPAUSEPKTS 0x04000000 +#define SF_RXDMA_DMACTLPKTS 0x08000000 +#define SF_RXDMA_DMACRXERRPKTS 0x10000000 +#define SF_RXDMA_DMABADPKTS 0x20000000 +#define SF_RXDMA_DMARUNTS 0x40000000 +#define SF_RXDMA_REPORTBADPKTS 0x80000000 + +#define SF_RXDQMODE_Q1ONLY 0x00100000 +#define SF_RXDQMODE_Q2_ON_FP 0x00200000 +#define SF_RXDQMODE_Q2_ON_SHORT 0x00300000 +#define SF_RXDQMODE_Q2_ON_PRIO 0x00400000 +#define SF_RXDQMODE_SPLITHDR 0x00500000 + +#define SF_RXCSUMMODE_IGNORE 0x00000000 +#define SF_RXCSUMMODE_REJECT_BAD_TCP 0x01000000 +#define SF_RXCSUMMODE_REJECT_BAD_TCPUDP 0x02000000 +#define SF_RXCSUMMODE_RSVD 0x03000000 + +/* RX descriptor queue control registers */ +#define SF_RXDQCTL_MINDESCTHR 0x0000007F +#define SF_RXDQCTL_Q1_WE 0x00000080 +#define SF_RXDQCTL_DESCSPACE 0x00000700 +#define SF_RXDQCTL_64BITDADDR 0x00000800 +#define SF_RXDQCTL_64BITBADDR 0x00001000 +#define SF_RXDQCTL_VARIABLE 0x00002000 +#define SF_RXDQCTL_ENTRIES 0x00004000 +#define SF_RXDQCTL_PREFETCH 0x00008000 +#define SF_RXDQCTL_BUFLEN 0xFFFF0000 + +#define SF_DESCSPACE_4BYTES 0x00000000 +#define SF_DESCSPACE_8BYTES 0x00000100 +#define SF_DESCSPACE_16BYTES 0x00000200 +#define SF_DESCSPACE_32BYTES 0x00000300 +#define SF_DESCSPACE_64BYTES 0x00000400 +#define SF_DESCSPACE_128_BYTES 0x00000500 + +/* RX buffer consumer/producer index registers */ +#define SF_RXDQ_PRODIDX 0x000007FF +#define SF_RXDQ_CONSIDX 0x07FF0000 + +/* RX filter control register */ +#define SF_RXFILT_PROMISC 0x00000001 +#define SF_RXFILT_ALLMULTI 0x00000002 +#define SF_RXFILT_BROAD 0x00000004 +#define SF_RXFILT_HASHPRIO 0x00000008 +#define SF_RXFILT_HASHMODE 0x00000030 +#define SF_RXFILT_PERFMODE 0x000000C0 +#define SF_RXFILT_VLANMODE 0x00000300 +#define SF_RXFILT_WAKEMODE 0x00000C00 +#define SF_RXFILT_MULTI_NOBROAD 0x00001000 +#define SF_RXFILT_MIN_VLANPRIO 0x0000E000 +#define SF_RXFILT_PEFECTPRIO 0xFFFF0000 + +/* Hash filtering mode */ +#define SF_HASHMODE_OFF 0x00000000 +#define SF_HASHMODE_WITHVLAN 0x00000010 +#define SF_HASHMODE_ANYVLAN 0x00000020 +#define SF_HASHMODE_ANY 0x00000030 + +/* Perfect filtering mode */ +#define SF_PERFMODE_OFF 0x00000000 +#define SF_PERFMODE_NORMAL 0x00000040 +#define SF_PERFMODE_INVERSE 0x00000080 +#define SF_PERFMODE_VLAN 0x000000C0 + +/* VLAN mode */ +#define SF_VLANMODE_OFF 0x00000000 +#define SF_VLANMODE_NOSTRIP 0x00000100 +#define SF_VLANMODE_STRIP 0x00000200 +#define SF_VLANMODE_RSVD 0x00000300 + +/* Wakeup mode */ +#define SF_WAKEMODE_OFF 0x00000000 +#define SF_WAKEMODE_FILTER 0x00000400 +#define SF_WAKEMODE_FP 0x00000800 +#define SF_WAKEMODE_HIPRIO 0x00000C00 + +/* + * Extra PCI registers 0x0100 to 0x0FFF + */ +#define SF_PCI_TARGSTAT 0x0100 +#define SF_PCI_MASTSTAT1 0x0104 +#define SF_PCI_MASTSTAT2 0x0108 +#define SF_PCI_DMAHOSTADDR_LO 0x010C +#define SF_BAC_DMADIAG0 0x0110 +#define SF_BAC_DMADIAG1 0x0114 +#define SF_BAC_DMADIAG2 0x0118 +#define SF_BAC_DMADIAG3 0x011C +#define SF_PAR0 0x0120 +#define SF_PAR1 0x0124 +#define SF_PCICB_FUNCEVENT 0x0130 +#define SF_PCICB_FUNCEVENT_MASK 0x0134 +#define SF_PCICB_FUNCSTATE 0x0138 +#define SF_PCICB_FUNCFORCE 0x013C + +/* + * Serial EEPROM registers 0x1000 to 0x1FFF + * Presumeably the EEPROM is mapped into this 8K window. + */ +#define SF_EEADDR_BASE 0x1000 +#define SF_EEADDR_MAX 0x1FFF + +#define SF_EE_NODEADDR 14 + +/* + * MII registers registers 0x2000 to 0x3FFF + * There are 32 sets of 32 registers, one set for each possible + * PHY address. Each 32 bit register is split into a 16-bit data + * port and a couple of status bits. + */ + +#define SF_MIIADDR_BASE 0x2000 +#define SF_MIIADDR_MAX 0x3FFF +#define SF_MII_BLOCKS 32 + +#define SF_MII_DATAVALID 0x80000000 +#define SF_MII_BUSY 0x40000000 +#define SF_MII_DATAPORT 0x0000FFFF + +#define SF_PHY_REG(phy, reg) \ + (SF_MIIADDR_BASE + (phy * SF_MII_BLOCKS * sizeof(u_int32_t)) + \ + (reg * sizeof(u_int32_t))) + +/* + * Ethernet extra registers 0x4000 to 0x4FFF + */ +#define SF_TESTMODE 0x4000 +#define SF_RX_FRAMEPROC_CTL 0x4004 +#define SF_TX_FRAMEPROC_CTL 0x4008 + +/* + * MAC registers 0x5000 to 0x5FFF + */ +#define SF_MACCFG_1 0x5000 +#define SF_MACCFG_2 0x5004 +#define SF_BKTOBKIPG 0x5008 +#define SF_NONBKTOBKIPG 0x500C +#define SF_COLRETRY 0x5010 +#define SF_MAXLEN 0x5014 +#define SF_TXNIBBLECNT 0x5018 +#define SF_TXBYTECNT 0x501C +#define SF_RETXCNT 0x5020 +#define SF_RANDNUM 0x5024 +#define SF_RANDNUM_MASK 0x5028 +#define SF_TOTALTXCNT 0x5034 +#define SF_RXBYTECNT 0x5040 +#define SF_TXPAUSETIMER 0x5060 +#define SF_VLANTYPE 0x5064 +#define SF_MIISTATUS 0x5070 + +#define SF_MACCFG1_HUGEFRAMES 0x00000001 +#define SF_MACCFG1_FULLDUPLEX 0x00000002 +#define SF_MACCFG1_AUTOPAD 0x00000004 +#define SF_MACCFG1_HDJAM 0x00000008 +#define SF_MACCFG1_DELAYCRC 0x00000010 +#define SF_MACCFG1_NOBACKOFF 0x00000020 +#define SF_MACCFG1_LENGTHCHECK 0x00000040 +#define SF_MACCFG1_PUREPREAMBLE 0x00000080 +#define SF_MACCFG1_PASSALLRX 0x00000100 +#define SF_MACCFG1_PREAM_DETCNT 0x00000200 +#define SF_MACCFG1_RX_FLOWENB 0x00000400 +#define SF_MACCFG1_TX_FLOWENB 0x00000800 +#define SF_MACCFG1_TESTMODE 0x00003000 +#define SF_MACCFG1_MIILOOPBK 0x00004000 +#define SF_MACCFG1_SOFTRESET 0x00008000 + +/* + * RX filter registers 0x6000 to 0x6FFF + */ +#define SF_RXFILT_PERFECT_BASE 0x6000 +#define SF_RXFILT_PERFECT_MAX 0x60FF +#define SF_RXFILT_PERFECT_SKIP 0x0010 +#define SF_RXFILT_PERFECT_CNT 0x0010 + +#define SF_RXFILT_HASH_BASE 0x6100 +#define SF_RXFILT_HASH_MAX 0x62FF +#define SF_RXFILT_HASH_SKIP 0x0010 +#define SF_RXFILT_HASH_CNT 0x001F +#define SF_RXFILT_HASH_ADDROFF 0x0000 +#define SF_RXFILT_HASH_PRIOOFF 0x0004 +#define SF_RXFILT_HASH_VLANOFF 0x0008 + +/* + * Statistics registers 0x7000 to 0x7FFF + */ +#define SF_STATS_BASE 0x7000 +#define SF_STATS_END 0x7FFF + +/* + * TX frame processor instruction space 0x8000 to 0x9FFF + */ + +/* + * RX frame processor instruction space 0xA000 to 0xBFFF + */ + +/* + * Ethernet FIFO access space 0xC000 to 0xDFFF + */ + +/* + * Reserved 0xE000 to 0xFFFF + */ + +/* + * Descriptor data structures. + */ + + +/* Receive descriptor formats. */ +#define SF_RX_MINSPACING 8 +#define SF_RX_DLIST_CNT 256 +#define SF_RX_CLIST_CNT 1024 +#define SF_RX_HOSTADDR(x) (((x) >> 2) & 0x3FFFFFFF) + +/* + * RX buffer descriptor type 0, 32-bit addressing. Note that we + * program the RX buffer queue control register(s) to allow a + * descriptor spacing of 16 bytes, which leaves room after each + * descriptor to store a pointer to the mbuf for each buffer. + */ +struct sf_rx_bufdesc_type0 { + u_int32_t sf_valid:1, + sf_end:1, + sf_addrlo:30; + u_int32_t sf_pad0; +#ifdef __i386__ + u_int32_t sf_pad1; +#endif + struct mbuf *sf_mbuf; +}; + +/* + * RX buffer descriptor type 0, 64-bit addressing. + */ +struct sf_rx_bufdesc_type1 { + u_int32_t sf_valid:1, + sf_end:1, + sf_addrlo:30; + u_int32_t sf_addrhi; +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; +}; + +/* + * RX completion descriptor, type 0 (short). + */ +struct sf_rx_cmpdesc_type0 { + u_int32_t sf_len:16, + sf_endidx:11, + sf_status1:3, + sf_id:2; +}; + +/* + * RX completion descriptor, type 1 (basic). Includes vlan ID + * if this is a vlan-addressed packet, plus extended status. + */ +struct sf_rx_cmpdesc_type1 { + u_int32_t sf_len:16, + sf_endidx:11, + sf_status1:3, + sf_id:2; + u_int16_t sf_status2; + u_int16_t sf_vlanid; +}; + +/* + * RX completion descriptor, type 2 (checksum). Includes partial TCP/IP + * checksum instead of vlan tag, plus extended status. + */ +struct sf_rx_cmpdesc_type2 { + u_int32_t sf_len:16, + sf_endidx:11, + sf_status1:3, + sf_id:2; + u_int16_t sf_status2; + u_int16_t sf_cksum; +}; + +/* + * RX completion descriptor type 3 (full). Includes timestamp, partial + * TCP/IP checksum, vlan tag plus priority, two extended status fields. + */ +struct sf_rx_cmpdesc_type3 { + u_int32_t sf_len:16, + sf_endidx:11, + sf_status1:3, + sf_id:2; + u_int32_t sf_startidx:10, + sf_status3:6, + sf_status2:16; + u_int16_t sf_cksum; + u_int16_t sf_vlanid_prio; + u_int32_t sf_timestamp; +}; + +#define SF_RXSTAT1_QUEUE 0x1 +#define SF_RXSTAT1_FIFOFULL 0x2 +#define SF_RXSTAT1_OK 0x4 + + /* 0=unknown,5=unsupported */ +#define SF_RXSTAT2_FRAMETYPE 0x0007 /* 1=IPv4,2=IPv2,3=IPX,4=ICMP */ +#define SF_RXSTAT2_UDP 0x0008 +#define SF_RXSTAT2_TCP 0x0010 +#define SF_RXSTAT2_FRAG 0x0020 +#define SF_RXSTAT2_PCSUM_OK 0x0040 /* partial checksum ok */ +#define SF_RXSTAT2_CSUM_BAD 0x0080 /* TCP/IP checksum bad */ +#define SF_RXSTAT2_CSUM_OK 0x0100 /* TCP/IP checksum ok */ +#define SF_RXSTAT2_VLAN 0x0200 +#define SF_RXSTAT2_BADRXCODE 0x0400 +#define SF_RXSTAT2_DRIBBLE 0x0800 +#define SF_RXSTAT2_ISL_CRCERR 0x1000 +#define SF_RXSTAT2_CRCERR 0x2000 +#define SF_RXSTAT2_HASH 0x4000 +#define SF_RXSTAT2_PERFECT 0x8000 + +#define SF_RXSTAT3_TRAILER 0x01 +#define SF_RXSTAT3_HEADER 0x02 +#define SF_RXSTAT3_CONTROL 0x04 +#define SF_RXSTAT3_PAUSE 0x08 +#define SF_RXSTAT3_ISL 0x10 + +/* + * Transmit descriptor formats. + * Each transmit descriptor type allows for a skip field at the + * start of each structure. The size of the skip field can vary, + * however we always set it for 8 bytes, which is enough to hold + * a pointer (32 bits on x86, 64-bits on alpha) that we can use + * to hold the address of the head of the mbuf chain for the + * frame or fragment associated with the descriptor. This saves + * us from having to create a separate pointer array to hold + * the mbuf addresses. + */ +#define SF_TX_BUFDESC_ID 0xB +#define SF_MAXFRAGS 14 +#define SF_TX_MINSPACING 128 +#define SF_TX_DLIST_CNT 128 +#define SF_TX_DLIST_SIZE 16384 +#define SF_TX_SKIPLEN 1 +#define SF_TX_CLIST_CNT 1024 + +struct sf_frag { + u_int32_t sf_addr; + u_int16_t sf_fraglen; + u_int16_t sf_pktlen; +}; + +struct sf_frag_msdos { + u_int16_t sf_pktlen; + u_int16_t sf_fraglen; + u_int32_t sf_addr; +}; + +/* + * TX frame descriptor type 0, 32-bit addressing. One descriptor can + * be used to map multiple packet fragments. We use this format since + * BSD networking fragments packet data across mbuf chains. Note that + * the number of fragments can be variable depending on how the descriptor + * spacing is specified in the TX descriptor queue control register. + * We always use a spacing of 128 bytes, and a skipfield length of 8 + * bytes: this means 16 bytes for the descriptor, including the skipfield, + * with 121 bytes left for fragment maps. Each fragment requires 8 bytes, + * which allows for 14 fragments per descriptor. The total size of the + * transmit buffer queue is limited to 16384 bytes, so with a spacing of + * 128 bytes per descriptor, we have room for 128 descriptors in the queue. + */ +struct sf_tx_bufdesc_type0 { +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; + u_int32_t sf_rsvd0:24, + sf_crcen:1, + sf_caltcp:1, + sf_end:1, + sf_intr:1, + sf_id:4; + u_int8_t sf_fragcnt; + u_int8_t sf_rsvd2; + u_int16_t sf_rsvd1; + struct sf_frag sf_frags[14]; +}; + +/* + * TX buffer descriptor type 1, 32-bit addressing. Each descriptor + * maps a single fragment. + */ +struct sf_tx_bufdesc_type1 { +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; + u_int32_t sf_fraglen:16, + sf_fragcnt:8, + sf_crcen:1, + sf_caltcp:1, + sf_end:1, + sf_intr:1, + sf_id:4; + u_int32_t sf_addr; +}; + +/* + * TX buffer descriptor type 2, 64-bit addressing. Each descriptor + * maps a single fragment. + */ +struct sf_tx_bufdesc_type2 { +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; + u_int32_t sf_fraglen:16, + sf_fragcnt:8, + sf_crcen:1, + sf_caltcp:1, + sf_end:1, + sf_intr:1, + sf_id:4; + u_int32_t sf_addrlo; + u_int32_t sf_addrhi; +}; + +/* TX buffer descriptor type 3 is not defined. */ + +/* + * TX frame descriptor type 4, 32-bit addressing. This is a special + * case of the type 0 descriptor, identical except that the fragment + * address and length fields are ordered differently. This is done + * to optimize copies in MS-DOS and OS/2 drivers. + */ +struct sf_tx_bufdesc_type4 { +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; + u_int32_t sf_rsvd0:24, + sf_crcen:1, + sf_caltcp:1, + sf_end:1, + sf_intr:1, + sf_id:4; + u_int8_t sf_fragcnt; + u_int8_t sf_rsvd2; + u_int16_t sf_rsvd1; + struct sf_frag_msdos sf_frags[14]; +}; + +/* + * Transmit completion queue descriptor formats. + */ + +/* + * Transmit DMA completion descriptor, type 0. + */ +#define SF_TXCMPTYPE_DMA 0x4 +struct sf_tx_cmpdesc_type0 { + u_int32_t sf_index:15, + sf_priority:1, + sf_timestamp:13, + sf_type:3; +}; + +/* + * Transmit completion descriptor, type 1. + */ +#define SF_TXCMPTYPE_TX 0x5 +struct sf_tx_cmpdesc_type1 { + u_int32_t sf_index:15, + sf_priority:1, + sf_txstat:13, + sf_type:3; +}; + +#define SF_TXSTAT_CRCERR 0x0001 +#define SF_TXSTAT_LENCHECKERR 0x0002 +#define SF_TXSTAT_LENRANGEERR 0x0004 +#define SF_TXSTAT_TX_OK 0x0008 +#define SF_TXSTAT_TX_DEFERED 0x0010 +#define SF_TXSTAT_EXCESS_DEFER 0x0020 +#define SF_TXSTAT_EXCESS_COLL 0x0040 +#define SF_TXSTAT_LATE_COLL 0x0080 +#define SF_TXSTAT_TOOBIG 0x0100 +#define SF_TXSTAT_TX_UNDERRUN 0x0200 +#define SF_TXSTAT_CTLFRAME_OK 0x0400 +#define SF_TXSTAT_PAUSEFRAME_OK 0x0800 +#define SF_TXSTAT_PAUSED 0x1000 + +/* Statistics counters. */ +struct sf_stats { + u_int32_t sf_tx_frames; + u_int32_t sf_tx_single_colls; + u_int32_t sf_tx_multi_colls; + u_int32_t sf_tx_crcerrs; + u_int32_t sf_tx_bytes; + u_int32_t sf_tx_defered; + u_int32_t sf_tx_late_colls; + u_int32_t sf_tx_pause_frames; + u_int32_t sf_tx_control_frames; + u_int32_t sf_tx_excess_colls; + u_int32_t sf_tx_excess_defer; + u_int32_t sf_tx_mcast_frames; + u_int32_t sf_tx_bcast_frames; + u_int32_t sf_tx_frames_lost; + u_int32_t sf_rx_rx_frames; + u_int32_t sf_rx_crcerrs; + u_int32_t sf_rx_alignerrs; + u_int32_t sf_rx_bytes; + u_int32_t sf_rx_control_frames; + u_int32_t sf_rx_unsup_control_frames; + u_int32_t sf_rx_giants; + u_int32_t sf_rx_runts; + u_int32_t sf_rx_jabbererrs; + u_int32_t sf_rx_pkts_64; + u_int32_t sf_rx_pkts_65_127; + u_int32_t sf_rx_pkts_128_255; + u_int32_t sf_rx_pkts_256_511; + u_int32_t sf_rx_pkts_512_1023; + u_int32_t sf_rx_pkts_1024_1518; + u_int32_t sf_rx_frames_lost; + u_int16_t sf_tx_underruns; + u_int16_t sf_pad; +}; + +/* + * register space access macros + */ +#define CSR_WRITE_4(sc, reg, val) \ + bus_space_write_4(sc->sf_btag, sc->sf_bhandle, reg, val) + +#define CSR_READ_4(sc, reg) \ + bus_space_read_4(sc->sf_btag, sc->sf_bhandle, reg) + +#define CSR_READ_1(sc, reg) \ + bus_space_read_1(sc->sf_btag, sc->sf_bhandle, reg) + + +struct sf_type { + u_int16_t sf_vid; + u_int16_t sf_did; + char *sf_name; +}; + +#define SF_INC(x, y) (x) = (x + 1) % y + +#define ETHER_ALIGN 2 + +/* + * Note: alignment is important here: each list must be aligned to + * a 256-byte boundary. It turns out that each ring is some multiple + * of 4K in length, so we can stack them all on top of each other + * and just worry about aligning the whole mess. There's one transmit + * buffer ring and two receive buffer rings: one RX ring is for small + * packets and the other is for large packets. Each buffer ring also + * has a companion completion queue. + */ +struct sf_list_data { + struct sf_tx_bufdesc_type0 sf_tx_dlist[SF_TX_DLIST_CNT]; + struct sf_tx_cmpdesc_type1 sf_tx_clist[SF_TX_CLIST_CNT]; + struct sf_rx_bufdesc_type0 sf_rx_dlist_big[SF_RX_DLIST_CNT]; +#ifdef notdef + /* + * Unfortunately, because the Starfire doesn't allow arbitrary + * byte alignment, we have to copy packets in the RX handler in + * order to align the payload correctly. This means that we + * don't gain anything by having separate large and small descriptor + * lists, so for now we don't bother with the small one. + */ + struct sf_rx_bufdesc_type0 sf_rx_dlist_small[SF_RX_DLIST_CNT]; +#endif + struct sf_rx_cmpdesc_type3 sf_rx_clist[SF_RX_CLIST_CNT]; +}; + +struct sf_softc { + struct device sc_dev; /* generic device structure */ + void *sc_ih; /* interrupt handler cookie */ + struct arpcom arpcom; /* interface info */ + struct ifmedia ifmedia; /* media info */ + mii_data_t sc_mii; /* mii bus */ + bus_space_handle_t sf_bhandle; /* bus space handle */ + bus_space_tag_t sf_btag; /* bus space tag */ + void *sf_intrhand; /* interrupt handler cookie */ + struct sf_type *sf_info; /* Starfire adapter info */ + struct sf_type *sf_pinfo; + u_int8_t sf_unit; /* interface number */ + u_int8_t sf_type; + u_int8_t sf_phy_addr; + u_int8_t sf_want_auto; + u_int8_t sf_autoneg; + u_int8_t sf_tx_pend; + struct sf_list_data *sf_ldata; + caddr_t sf_ldata_ptr; + int sf_tx_cnt; +}; + +#define SF_TIMEOUT 1000 + +#ifdef __alpha__ +#undef vtophys +#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)va) +#endif |