summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/calls.c
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/egcs/gcc/calls.c')
-rw-r--r--gnu/egcs/gcc/calls.c3940
1 files changed, 3940 insertions, 0 deletions
diff --git a/gnu/egcs/gcc/calls.c b/gnu/egcs/gcc/calls.c
new file mode 100644
index 00000000000..d0153a3d124
--- /dev/null
+++ b/gnu/egcs/gcc/calls.c
@@ -0,0 +1,3940 @@
+/* Convert function calls to rtl insns, for GNU C compiler.
+ Copyright (C) 1989, 92-97, 1998, 1999 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "rtl.h"
+#include "tree.h"
+#include "flags.h"
+#include "expr.h"
+#include "regs.h"
+#include "insn-flags.h"
+#include "toplev.h"
+#include "output.h"
+
+#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
+#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
+#endif
+
+/* Decide whether a function's arguments should be processed
+ from first to last or from last to first.
+
+ They should if the stack and args grow in opposite directions, but
+ only if we have push insns. */
+
+#ifdef PUSH_ROUNDING
+
+#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
+#define PUSH_ARGS_REVERSED /* If it's last to first */
+#endif
+
+#endif
+
+/* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
+#define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
+
+/* Data structure and subroutines used within expand_call. */
+
+struct arg_data
+{
+ /* Tree node for this argument. */
+ tree tree_value;
+ /* Mode for value; TYPE_MODE unless promoted. */
+ enum machine_mode mode;
+ /* Current RTL value for argument, or 0 if it isn't precomputed. */
+ rtx value;
+ /* Initially-compute RTL value for argument; only for const functions. */
+ rtx initial_value;
+ /* Register to pass this argument in, 0 if passed on stack, or an
+ PARALLEL if the arg is to be copied into multiple non-contiguous
+ registers. */
+ rtx reg;
+ /* If REG was promoted from the actual mode of the argument expression,
+ indicates whether the promotion is sign- or zero-extended. */
+ int unsignedp;
+ /* Number of registers to use. 0 means put the whole arg in registers.
+ Also 0 if not passed in registers. */
+ int partial;
+ /* Non-zero if argument must be passed on stack.
+ Note that some arguments may be passed on the stack
+ even though pass_on_stack is zero, just because FUNCTION_ARG says so.
+ pass_on_stack identifies arguments that *cannot* go in registers. */
+ int pass_on_stack;
+ /* Offset of this argument from beginning of stack-args. */
+ struct args_size offset;
+ /* Similar, but offset to the start of the stack slot. Different from
+ OFFSET if this arg pads downward. */
+ struct args_size slot_offset;
+ /* Size of this argument on the stack, rounded up for any padding it gets,
+ parts of the argument passed in registers do not count.
+ If REG_PARM_STACK_SPACE is defined, then register parms
+ are counted here as well. */
+ struct args_size size;
+ /* Location on the stack at which parameter should be stored. The store
+ has already been done if STACK == VALUE. */
+ rtx stack;
+ /* Location on the stack of the start of this argument slot. This can
+ differ from STACK if this arg pads downward. This location is known
+ to be aligned to FUNCTION_ARG_BOUNDARY. */
+ rtx stack_slot;
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* Place that this stack area has been saved, if needed. */
+ rtx save_area;
+#endif
+ /* If an argument's alignment does not permit direct copying into registers,
+ copy in smaller-sized pieces into pseudos. These are stored in a
+ block pointed to by this field. The next field says how many
+ word-sized pseudos we made. */
+ rtx *aligned_regs;
+ int n_aligned_regs;
+};
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+/* A vector of one char per byte of stack space. A byte if non-zero if
+ the corresponding stack location has been used.
+ This vector is used to prevent a function call within an argument from
+ clobbering any stack already set up. */
+static char *stack_usage_map;
+
+/* Size of STACK_USAGE_MAP. */
+static int highest_outgoing_arg_in_use;
+
+/* stack_arg_under_construction is nonzero when an argument may be
+ initialized with a constructor call (including a C function that
+ returns a BLKmode struct) and expand_call must take special action
+ to make sure the object being constructed does not overlap the
+ argument list for the constructor call. */
+int stack_arg_under_construction;
+#endif
+
+static int calls_function PROTO ((tree, int));
+static int calls_function_1 PROTO ((tree, int));
+static void emit_call_1 PROTO ((rtx, tree, tree, HOST_WIDE_INT,
+ HOST_WIDE_INT, HOST_WIDE_INT, rtx,
+ rtx, int, rtx, int));
+static void special_function_p PROTO ((char *, tree, int *, int *,
+ int *, int *));
+static void precompute_register_parameters PROTO ((int, struct arg_data *,
+ int *));
+static void store_one_arg PROTO ((struct arg_data *, rtx, int, int,
+ int));
+static void store_unaligned_arguments_into_pseudos PROTO ((struct arg_data *,
+ int));
+static int finalize_must_preallocate PROTO ((int, int,
+ struct arg_data *,
+ struct args_size *));
+static void precompute_arguments PROTO ((int, int, int,
+ struct arg_data *,
+ struct args_size *));
+static int compute_argument_block_size PROTO ((int,
+ struct args_size *));
+static void initialize_argument_information PROTO ((int,
+ struct arg_data *,
+ struct args_size *,
+ int, tree, tree,
+ CUMULATIVE_ARGS *,
+ int, rtx *, int *,
+ int *, int *));
+static void compute_argument_addresses PROTO ((struct arg_data *,
+ rtx, int));
+static rtx rtx_for_function_call PROTO ((tree, tree));
+static void load_register_parameters PROTO ((struct arg_data *,
+ int, rtx *));
+
+#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
+static rtx save_fixed_argument_area PROTO ((int, rtx, int *, int *));
+static void restore_fixed_argument_area PROTO ((rtx, rtx, int, int));
+#endif
+
+/* If WHICH is 1, return 1 if EXP contains a call to the built-in function
+ `alloca'.
+
+ If WHICH is 0, return 1 if EXP contains a call to any function.
+ Actually, we only need return 1 if evaluating EXP would require pushing
+ arguments on the stack, but that is too difficult to compute, so we just
+ assume any function call might require the stack. */
+
+static tree calls_function_save_exprs;
+
+static int
+calls_function (exp, which)
+ tree exp;
+ int which;
+{
+ int val;
+ calls_function_save_exprs = 0;
+ val = calls_function_1 (exp, which);
+ calls_function_save_exprs = 0;
+ return val;
+}
+
+static int
+calls_function_1 (exp, which)
+ tree exp;
+ int which;
+{
+ register int i;
+ enum tree_code code = TREE_CODE (exp);
+ int type = TREE_CODE_CLASS (code);
+ int length = tree_code_length[(int) code];
+
+ /* If this code is language-specific, we don't know what it will do. */
+ if ((int) code >= NUM_TREE_CODES)
+ return 1;
+
+ /* Only expressions and references can contain calls. */
+ if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r'
+ && type != 'b')
+ return 0;
+
+ switch (code)
+ {
+ case CALL_EXPR:
+ if (which == 0)
+ return 1;
+ else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
+ && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
+ == FUNCTION_DECL))
+ {
+ tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
+
+ if ((DECL_BUILT_IN (fndecl)
+ && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA)
+ || (DECL_SAVED_INSNS (fndecl)
+ && (FUNCTION_FLAGS (DECL_SAVED_INSNS (fndecl))
+ & FUNCTION_FLAGS_CALLS_ALLOCA)))
+ return 1;
+ }
+
+ /* Third operand is RTL. */
+ length = 2;
+ break;
+
+ case SAVE_EXPR:
+ if (SAVE_EXPR_RTL (exp) != 0)
+ return 0;
+ if (value_member (exp, calls_function_save_exprs))
+ return 0;
+ calls_function_save_exprs = tree_cons (NULL_TREE, exp,
+ calls_function_save_exprs);
+ return (TREE_OPERAND (exp, 0) != 0
+ && calls_function_1 (TREE_OPERAND (exp, 0), which));
+
+ case BLOCK:
+ {
+ register tree local;
+
+ for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local))
+ if (DECL_INITIAL (local) != 0
+ && calls_function_1 (DECL_INITIAL (local), which))
+ return 1;
+ }
+ {
+ register tree subblock;
+
+ for (subblock = BLOCK_SUBBLOCKS (exp);
+ subblock;
+ subblock = TREE_CHAIN (subblock))
+ if (calls_function_1 (subblock, which))
+ return 1;
+ }
+ return 0;
+
+ case METHOD_CALL_EXPR:
+ length = 3;
+ break;
+
+ case WITH_CLEANUP_EXPR:
+ length = 1;
+ break;
+
+ case RTL_EXPR:
+ return 0;
+
+ default:
+ break;
+ }
+
+ for (i = 0; i < length; i++)
+ if (TREE_OPERAND (exp, i) != 0
+ && calls_function_1 (TREE_OPERAND (exp, i), which))
+ return 1;
+
+ return 0;
+}
+
+/* Force FUNEXP into a form suitable for the address of a CALL,
+ and return that as an rtx. Also load the static chain register
+ if FNDECL is a nested function.
+
+ CALL_FUSAGE points to a variable holding the prospective
+ CALL_INSN_FUNCTION_USAGE information. */
+
+rtx
+prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen)
+ rtx funexp;
+ tree fndecl;
+ rtx *call_fusage;
+ int reg_parm_seen;
+{
+ rtx static_chain_value = 0;
+
+ funexp = protect_from_queue (funexp, 0);
+
+ if (fndecl != 0)
+ /* Get possible static chain value for nested function in C. */
+ static_chain_value = lookup_static_chain (fndecl);
+
+ /* Make a valid memory address and copy constants thru pseudo-regs,
+ but not for a constant address if -fno-function-cse. */
+ if (GET_CODE (funexp) != SYMBOL_REF)
+ /* If we are using registers for parameters, force the
+ function address into a register now. */
+ funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
+ ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
+ : memory_address (FUNCTION_MODE, funexp));
+ else
+ {
+#ifndef NO_FUNCTION_CSE
+ if (optimize && ! flag_no_function_cse)
+#ifdef NO_RECURSIVE_FUNCTION_CSE
+ if (fndecl != current_function_decl)
+#endif
+ funexp = force_reg (Pmode, funexp);
+#endif
+ }
+
+ if (static_chain_value != 0)
+ {
+ emit_move_insn (static_chain_rtx, static_chain_value);
+
+ if (GET_CODE (static_chain_rtx) == REG)
+ use_reg (call_fusage, static_chain_rtx);
+ }
+
+ return funexp;
+}
+
+/* Generate instructions to call function FUNEXP,
+ and optionally pop the results.
+ The CALL_INSN is the first insn generated.
+
+ FNDECL is the declaration node of the function. This is given to the
+ macro RETURN_POPS_ARGS to determine whether this function pops its own args.
+
+ FUNTYPE is the data type of the function. This is given to the macro
+ RETURN_POPS_ARGS to determine whether this function pops its own args.
+ We used to allow an identifier for library functions, but that doesn't
+ work when the return type is an aggregate type and the calling convention
+ says that the pointer to this aggregate is to be popped by the callee.
+
+ STACK_SIZE is the number of bytes of arguments on the stack,
+ rounded up to PREFERRED_STACK_BOUNDARY; zero if the size is variable.
+ This is both to put into the call insn and
+ to generate explicit popping code if necessary.
+
+ STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
+ It is zero if this call doesn't want a structure value.
+
+ NEXT_ARG_REG is the rtx that results from executing
+ FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
+ just after all the args have had their registers assigned.
+ This could be whatever you like, but normally it is the first
+ arg-register beyond those used for args in this call,
+ or 0 if all the arg-registers are used in this call.
+ It is passed on to `gen_call' so you can put this info in the call insn.
+
+ VALREG is a hard register in which a value is returned,
+ or 0 if the call does not return a value.
+
+ OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
+ the args to this call were processed.
+ We restore `inhibit_defer_pop' to that value.
+
+ CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
+ denote registers used by the called function.
+
+ IS_CONST is true if this is a `const' call. */
+
+static void
+emit_call_1 (funexp, fndecl, funtype, stack_size, rounded_stack_size,
+ struct_value_size, next_arg_reg, valreg, old_inhibit_defer_pop,
+ call_fusage, is_const)
+ rtx funexp;
+ tree fndecl ATTRIBUTE_UNUSED;
+ tree funtype ATTRIBUTE_UNUSED;
+ HOST_WIDE_INT stack_size;
+ HOST_WIDE_INT rounded_stack_size;
+ HOST_WIDE_INT struct_value_size;
+ rtx next_arg_reg;
+ rtx valreg;
+ int old_inhibit_defer_pop;
+ rtx call_fusage;
+ int is_const;
+{
+ rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
+ rtx struct_value_size_rtx = GEN_INT (struct_value_size);
+ rtx call_insn;
+#ifndef ACCUMULATE_OUTGOING_ARGS
+ int already_popped = 0;
+ HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
+#endif
+
+ /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
+ and we don't want to load it into a register as an optimization,
+ because prepare_call_address already did it if it should be done. */
+ if (GET_CODE (funexp) != SYMBOL_REF)
+ funexp = memory_address (FUNCTION_MODE, funexp);
+
+#ifndef ACCUMULATE_OUTGOING_ARGS
+#if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
+ if (HAVE_call_pop && HAVE_call_value_pop && n_popped > 0)
+ {
+ rtx n_pop = GEN_INT (n_popped);
+ rtx pat;
+
+ /* If this subroutine pops its own args, record that in the call insn
+ if possible, for the sake of frame pointer elimination. */
+
+ if (valreg)
+ pat = gen_call_value_pop (valreg,
+ gen_rtx_MEM (FUNCTION_MODE, funexp),
+ rounded_stack_size_rtx, next_arg_reg, n_pop);
+ else
+ pat = gen_call_pop (gen_rtx_MEM (FUNCTION_MODE, funexp),
+ rounded_stack_size_rtx, next_arg_reg, n_pop);
+
+ emit_call_insn (pat);
+ already_popped = 1;
+ }
+ else
+#endif
+#endif
+
+#if defined (HAVE_call) && defined (HAVE_call_value)
+ if (HAVE_call && HAVE_call_value)
+ {
+ if (valreg)
+ emit_call_insn (gen_call_value (valreg,
+ gen_rtx_MEM (FUNCTION_MODE, funexp),
+ rounded_stack_size_rtx, next_arg_reg,
+ NULL_RTX));
+ else
+ emit_call_insn (gen_call (gen_rtx_MEM (FUNCTION_MODE, funexp),
+ rounded_stack_size_rtx, next_arg_reg,
+ struct_value_size_rtx));
+ }
+ else
+#endif
+ abort ();
+
+ /* Find the CALL insn we just emitted. */
+ for (call_insn = get_last_insn ();
+ call_insn && GET_CODE (call_insn) != CALL_INSN;
+ call_insn = PREV_INSN (call_insn))
+ ;
+
+ if (! call_insn)
+ abort ();
+
+ /* Put the register usage information on the CALL. If there is already
+ some usage information, put ours at the end. */
+ if (CALL_INSN_FUNCTION_USAGE (call_insn))
+ {
+ rtx link;
+
+ for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
+ link = XEXP (link, 1))
+ ;
+
+ XEXP (link, 1) = call_fusage;
+ }
+ else
+ CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
+
+ /* If this is a const call, then set the insn's unchanging bit. */
+ if (is_const)
+ CONST_CALL_P (call_insn) = 1;
+
+ /* Restore this now, so that we do defer pops for this call's args
+ if the context of the call as a whole permits. */
+ inhibit_defer_pop = old_inhibit_defer_pop;
+
+#ifndef ACCUMULATE_OUTGOING_ARGS
+ /* If returning from the subroutine does not automatically pop the args,
+ we need an instruction to pop them sooner or later.
+ Perhaps do it now; perhaps just record how much space to pop later.
+
+ If returning from the subroutine does pop the args, indicate that the
+ stack pointer will be changed. */
+
+ if (n_popped > 0)
+ {
+ if (!already_popped)
+ CALL_INSN_FUNCTION_USAGE (call_insn)
+ = gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
+ CALL_INSN_FUNCTION_USAGE (call_insn));
+ rounded_stack_size -= n_popped;
+ rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
+ }
+
+ if (rounded_stack_size != 0)
+ {
+ if (flag_defer_pop && inhibit_defer_pop == 0 && !is_const)
+ pending_stack_adjust += rounded_stack_size;
+ else
+ adjust_stack (rounded_stack_size_rtx);
+ }
+#endif
+}
+
+/* Determine if the function identified by NAME and FNDECL is one with
+ special properties we wish to know about.
+
+ For example, if the function might return more than one time (setjmp), then
+ set RETURNS_TWICE to a nonzero value.
+
+ Similarly set IS_LONGJMP for if the function is in the longjmp family.
+
+ Set IS_MALLOC for any of the standard memory allocation functions which
+ allocate from the heap.
+
+ Set MAY_BE_ALLOCA for any memory allocation function that might allocate
+ space from the stack such as alloca. */
+
+static void
+special_function_p (name, fndecl, returns_twice, is_longjmp,
+ is_malloc, may_be_alloca)
+ char *name;
+ tree fndecl;
+ int *returns_twice;
+ int *is_longjmp;
+ int *is_malloc;
+ int *may_be_alloca;
+{
+ *returns_twice = 0;
+ *is_longjmp = 0;
+ *is_malloc = 0;
+ *may_be_alloca = 0;
+
+ if (name != 0 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
+ /* Exclude functions not at the file scope, or not `extern',
+ since they are not the magic functions we would otherwise
+ think they are. */
+ && DECL_CONTEXT (fndecl) == NULL_TREE && TREE_PUBLIC (fndecl))
+ {
+ char *tname = name;
+
+ /* We assume that alloca will always be called by name. It
+ makes no sense to pass it as a pointer-to-function to
+ anything that does not understand its behavior. */
+ *may_be_alloca
+ = (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
+ && name[0] == 'a'
+ && ! strcmp (name, "alloca"))
+ || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
+ && name[0] == '_'
+ && ! strcmp (name, "__builtin_alloca"))));
+
+ /* Disregard prefix _, __ or __x. */
+ if (name[0] == '_')
+ {
+ if (name[1] == '_' && name[2] == 'x')
+ tname += 3;
+ else if (name[1] == '_')
+ tname += 2;
+ else
+ tname += 1;
+ }
+
+ if (tname[0] == 's')
+ {
+ *returns_twice
+ = ((tname[1] == 'e'
+ && (! strcmp (tname, "setjmp")
+ || ! strcmp (tname, "setjmp_syscall")))
+ || (tname[1] == 'i'
+ && ! strcmp (tname, "sigsetjmp"))
+ || (tname[1] == 'a'
+ && ! strcmp (tname, "savectx")));
+ if (tname[1] == 'i'
+ && ! strcmp (tname, "siglongjmp"))
+ *is_longjmp = 1;
+ }
+ else if ((tname[0] == 'q' && tname[1] == 's'
+ && ! strcmp (tname, "qsetjmp"))
+ || (tname[0] == 'v' && tname[1] == 'f'
+ && ! strcmp (tname, "vfork")))
+ *returns_twice = 1;
+
+ else if (tname[0] == 'l' && tname[1] == 'o'
+ && ! strcmp (tname, "longjmp"))
+ *is_longjmp = 1;
+ /* XXX should have "malloc" attribute on functions instead
+ of recognizing them by name. */
+ else if (! strcmp (tname, "malloc")
+ || ! strcmp (tname, "calloc")
+ || ! strcmp (tname, "realloc")
+ /* Note use of NAME rather than TNAME here. These functions
+ are only reserved when preceded with __. */
+ || ! strcmp (name, "__vn") /* mangled __builtin_vec_new */
+ || ! strcmp (name, "__nw") /* mangled __builtin_new */
+ || ! strcmp (name, "__builtin_new")
+ || ! strcmp (name, "__builtin_vec_new"))
+ *is_malloc = 1;
+ }
+}
+
+/* Precompute all register parameters as described by ARGS, storing values
+ into fields within the ARGS array.
+
+ NUM_ACTUALS indicates the total number elements in the ARGS array.
+
+ Set REG_PARM_SEEN if we encounter a register parameter. */
+
+static void
+precompute_register_parameters (num_actuals, args, reg_parm_seen)
+ int num_actuals;
+ struct arg_data *args;
+ int *reg_parm_seen;
+{
+ int i;
+
+ *reg_parm_seen = 0;
+
+ for (i = 0; i < num_actuals; i++)
+ if (args[i].reg != 0 && ! args[i].pass_on_stack)
+ {
+ *reg_parm_seen = 1;
+
+ if (args[i].value == 0)
+ {
+ push_temp_slots ();
+ args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
+ VOIDmode, 0);
+ preserve_temp_slots (args[i].value);
+ pop_temp_slots ();
+
+ /* ANSI doesn't require a sequence point here,
+ but PCC has one, so this will avoid some problems. */
+ emit_queue ();
+ }
+
+ /* If we are to promote the function arg to a wider mode,
+ do it now. */
+
+ if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
+ args[i].value
+ = convert_modes (args[i].mode,
+ TYPE_MODE (TREE_TYPE (args[i].tree_value)),
+ args[i].value, args[i].unsignedp);
+
+ /* If the value is expensive, and we are inside an appropriately
+ short loop, put the value into a pseudo and then put the pseudo
+ into the hard reg.
+
+ For small register classes, also do this if this call uses
+ register parameters. This is to avoid reload conflicts while
+ loading the parameters registers. */
+
+ if ((! (GET_CODE (args[i].value) == REG
+ || (GET_CODE (args[i].value) == SUBREG
+ && GET_CODE (SUBREG_REG (args[i].value)) == REG)))
+ && args[i].mode != BLKmode
+ && rtx_cost (args[i].value, SET) > 2
+ && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
+ || preserve_subexpressions_p ()))
+ args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
+ }
+}
+
+#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
+
+ /* The argument list is the property of the called routine and it
+ may clobber it. If the fixed area has been used for previous
+ parameters, we must save and restore it. */
+static rtx
+save_fixed_argument_area (reg_parm_stack_space, argblock,
+ low_to_save, high_to_save)
+ int reg_parm_stack_space;
+ rtx argblock;
+ int *low_to_save;
+ int *high_to_save;
+{
+ int i;
+ rtx save_area = NULL_RTX;
+
+ /* Compute the boundary of the that needs to be saved, if any. */
+#ifdef ARGS_GROW_DOWNWARD
+ for (i = 0; i < reg_parm_stack_space + 1; i++)
+#else
+ for (i = 0; i < reg_parm_stack_space; i++)
+#endif
+ {
+ if (i >= highest_outgoing_arg_in_use
+ || stack_usage_map[i] == 0)
+ continue;
+
+ if (*low_to_save == -1)
+ *low_to_save = i;
+
+ *high_to_save = i;
+ }
+
+ if (*low_to_save >= 0)
+ {
+ int num_to_save = *high_to_save - *low_to_save + 1;
+ enum machine_mode save_mode
+ = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
+ rtx stack_area;
+
+ /* If we don't have the required alignment, must do this in BLKmode. */
+ if ((*low_to_save & (MIN (GET_MODE_SIZE (save_mode),
+ BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
+ save_mode = BLKmode;
+
+#ifdef ARGS_GROW_DOWNWARD
+ stack_area = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ - *high_to_save)));
+#else
+ stack_area = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ *low_to_save)));
+#endif
+ if (save_mode == BLKmode)
+ {
+ save_area = assign_stack_temp (BLKmode, num_to_save, 0);
+ emit_block_move (validize_mem (save_area), stack_area,
+ GEN_INT (num_to_save),
+ PARM_BOUNDARY / BITS_PER_UNIT);
+ }
+ else
+ {
+ save_area = gen_reg_rtx (save_mode);
+ emit_move_insn (save_area, stack_area);
+ }
+ }
+ return save_area;
+}
+
+static void
+restore_fixed_argument_area (save_area, argblock, high_to_save, low_to_save)
+ rtx save_area;
+ rtx argblock;
+ int high_to_save;
+ int low_to_save;
+{
+ enum machine_mode save_mode = GET_MODE (save_area);
+#ifdef ARGS_GROW_DOWNWARD
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ - high_to_save)));
+#else
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ low_to_save)));
+#endif
+
+ if (save_mode != BLKmode)
+ emit_move_insn (stack_area, save_area);
+ else
+ emit_block_move (stack_area, validize_mem (save_area),
+ GEN_INT (high_to_save - low_to_save + 1),
+ PARM_BOUNDARY / BITS_PER_UNIT);
+}
+#endif
+
+/* If any elements in ARGS refer to parameters that are to be passed in
+ registers, but not in memory, and whose alignment does not permit a
+ direct copy into registers. Copy the values into a group of pseudos
+ which we will later copy into the appropriate hard registers.
+
+ Pseudos for each unaligned argument will be stored into the array
+ args[argnum].aligned_regs. The caller is responsible for deallocating
+ the aligned_regs array if it is nonzero. */
+
+static void
+store_unaligned_arguments_into_pseudos (args, num_actuals)
+ struct arg_data *args;
+ int num_actuals;
+{
+ int i, j;
+
+ for (i = 0; i < num_actuals; i++)
+ if (args[i].reg != 0 && ! args[i].pass_on_stack
+ && args[i].mode == BLKmode
+ && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
+ < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
+ {
+ int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
+ int big_endian_correction = 0;
+
+ args[i].n_aligned_regs
+ = args[i].partial ? args[i].partial
+ : (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
+
+ args[i].aligned_regs = (rtx *) xmalloc (sizeof (rtx)
+ * args[i].n_aligned_regs);
+
+ /* Structures smaller than a word are aligned to the least
+ significant byte (to the right). On a BYTES_BIG_ENDIAN machine,
+ this means we must skip the empty high order bytes when
+ calculating the bit offset. */
+ if (BYTES_BIG_ENDIAN && bytes < UNITS_PER_WORD)
+ big_endian_correction = (BITS_PER_WORD - (bytes * BITS_PER_UNIT));
+
+ for (j = 0; j < args[i].n_aligned_regs; j++)
+ {
+ rtx reg = gen_reg_rtx (word_mode);
+ rtx word = operand_subword_force (args[i].value, j, BLKmode);
+ int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
+ int bitalign = TYPE_ALIGN (TREE_TYPE (args[i].tree_value));
+
+ args[i].aligned_regs[j] = reg;
+
+ /* There is no need to restrict this code to loading items
+ in TYPE_ALIGN sized hunks. The bitfield instructions can
+ load up entire word sized registers efficiently.
+
+ ??? This may not be needed anymore.
+ We use to emit a clobber here but that doesn't let later
+ passes optimize the instructions we emit. By storing 0 into
+ the register later passes know the first AND to zero out the
+ bitfield being set in the register is unnecessary. The store
+ of 0 will be deleted as will at least the first AND. */
+
+ emit_move_insn (reg, const0_rtx);
+
+ bytes -= bitsize / BITS_PER_UNIT;
+ store_bit_field (reg, bitsize, big_endian_correction, word_mode,
+ extract_bit_field (word, bitsize, 0, 1,
+ NULL_RTX, word_mode,
+ word_mode,
+ bitalign / BITS_PER_UNIT,
+ BITS_PER_WORD),
+ bitalign / BITS_PER_UNIT, BITS_PER_WORD);
+ }
+ }
+}
+
+/* Fill in ARGS_SIZE and ARGS array based on the parameters found in
+ ACTPARMS.
+
+ NUM_ACTUALS is the total number of parameters.
+
+ N_NAMED_ARGS is the total number of named arguments.
+
+ FNDECL is the tree code for the target of this call (if known)
+
+ ARGS_SO_FAR holds state needed by the target to know where to place
+ the next argument.
+
+ REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
+ for arguments which are passed in registers.
+
+ OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
+ and may be modified by this routine.
+
+ OLD_PENDING_ADJ, MUST_PREALLOCATE and IS_CONST are pointers to integer
+ flags which may may be modified by this routine. */
+
+static void
+initialize_argument_information (num_actuals, args, args_size, n_named_args,
+ actparms, fndecl, args_so_far,
+ reg_parm_stack_space, old_stack_level,
+ old_pending_adj, must_preallocate, is_const)
+ int num_actuals ATTRIBUTE_UNUSED;
+ struct arg_data *args;
+ struct args_size *args_size;
+ int n_named_args ATTRIBUTE_UNUSED;
+ tree actparms;
+ tree fndecl;
+ CUMULATIVE_ARGS *args_so_far;
+ int reg_parm_stack_space;
+ rtx *old_stack_level;
+ int *old_pending_adj;
+ int *must_preallocate;
+ int *is_const;
+{
+ /* 1 if scanning parms front to back, -1 if scanning back to front. */
+ int inc;
+
+ /* Count arg position in order args appear. */
+ int argpos;
+
+ int i;
+ tree p;
+
+ args_size->constant = 0;
+ args_size->var = 0;
+
+ /* In this loop, we consider args in the order they are written.
+ We fill up ARGS from the front or from the back if necessary
+ so that in any case the first arg to be pushed ends up at the front. */
+
+#ifdef PUSH_ARGS_REVERSED
+ i = num_actuals - 1, inc = -1;
+ /* In this case, must reverse order of args
+ so that we compute and push the last arg first. */
+#else
+ i = 0, inc = 1;
+#endif
+
+ /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
+ for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
+ {
+ tree type = TREE_TYPE (TREE_VALUE (p));
+ int unsignedp;
+ enum machine_mode mode;
+
+ args[i].tree_value = TREE_VALUE (p);
+
+ /* Replace erroneous argument with constant zero. */
+ if (type == error_mark_node || TYPE_SIZE (type) == 0)
+ args[i].tree_value = integer_zero_node, type = integer_type_node;
+
+ /* If TYPE is a transparent union, pass things the way we would
+ pass the first field of the union. We have already verified that
+ the modes are the same. */
+ if (TYPE_TRANSPARENT_UNION (type))
+ type = TREE_TYPE (TYPE_FIELDS (type));
+
+ /* Decide where to pass this arg.
+
+ args[i].reg is nonzero if all or part is passed in registers.
+
+ args[i].partial is nonzero if part but not all is passed in registers,
+ and the exact value says how many words are passed in registers.
+
+ args[i].pass_on_stack is nonzero if the argument must at least be
+ computed on the stack. It may then be loaded back into registers
+ if args[i].reg is nonzero.
+
+ These decisions are driven by the FUNCTION_... macros and must agree
+ with those made by function.c. */
+
+ /* See if this argument should be passed by invisible reference. */
+ if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
+ && contains_placeholder_p (TYPE_SIZE (type)))
+ || TREE_ADDRESSABLE (type)
+#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
+ || FUNCTION_ARG_PASS_BY_REFERENCE (*args_so_far, TYPE_MODE (type),
+ type, argpos < n_named_args)
+#endif
+ )
+ {
+ /* If we're compiling a thunk, pass through invisible
+ references instead of making a copy. */
+ if (current_function_is_thunk
+#ifdef FUNCTION_ARG_CALLEE_COPIES
+ || (FUNCTION_ARG_CALLEE_COPIES (*args_so_far, TYPE_MODE (type),
+ type, argpos < n_named_args)
+ /* If it's in a register, we must make a copy of it too. */
+ /* ??? Is this a sufficient test? Is there a better one? */
+ && !(TREE_CODE (args[i].tree_value) == VAR_DECL
+ && REG_P (DECL_RTL (args[i].tree_value)))
+ && ! TREE_ADDRESSABLE (type))
+#endif
+ )
+ {
+ /* C++ uses a TARGET_EXPR to indicate that we want to make a
+ new object from the argument. If we are passing by
+ invisible reference, the callee will do that for us, so we
+ can strip off the TARGET_EXPR. This is not always safe,
+ but it is safe in the only case where this is a useful
+ optimization; namely, when the argument is a plain object.
+ In that case, the frontend is just asking the backend to
+ make a bitwise copy of the argument. */
+
+ if (TREE_CODE (args[i].tree_value) == TARGET_EXPR
+ && (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND
+ (args[i].tree_value, 1)))
+ == 'd')
+ && ! REG_P (DECL_RTL (TREE_OPERAND (args[i].tree_value, 1))))
+ args[i].tree_value = TREE_OPERAND (args[i].tree_value, 1);
+
+ args[i].tree_value = build1 (ADDR_EXPR,
+ build_pointer_type (type),
+ args[i].tree_value);
+ type = build_pointer_type (type);
+ }
+ else
+ {
+ /* We make a copy of the object and pass the address to the
+ function being called. */
+ rtx copy;
+
+ if (TYPE_SIZE (type) == 0
+ || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
+ || (flag_stack_check && ! STACK_CHECK_BUILTIN
+ && (TREE_INT_CST_HIGH (TYPE_SIZE (type)) != 0
+ || (TREE_INT_CST_LOW (TYPE_SIZE (type))
+ > STACK_CHECK_MAX_VAR_SIZE * BITS_PER_UNIT))))
+ {
+ /* This is a variable-sized object. Make space on the stack
+ for it. */
+ rtx size_rtx = expr_size (TREE_VALUE (p));
+
+ if (*old_stack_level == 0)
+ {
+ emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
+ *old_pending_adj = pending_stack_adjust;
+ pending_stack_adjust = 0;
+ }
+
+ copy = gen_rtx_MEM (BLKmode,
+ allocate_dynamic_stack_space (size_rtx,
+ NULL_RTX,
+ TYPE_ALIGN (type)));
+ }
+ else
+ {
+ int size = int_size_in_bytes (type);
+ copy = assign_stack_temp (TYPE_MODE (type), size, 0);
+ }
+
+ MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
+
+ store_expr (args[i].tree_value, copy, 0);
+ *is_const = 0;
+
+ args[i].tree_value = build1 (ADDR_EXPR,
+ build_pointer_type (type),
+ make_tree (type, copy));
+ type = build_pointer_type (type);
+ }
+ }
+
+ mode = TYPE_MODE (type);
+ unsignedp = TREE_UNSIGNED (type);
+
+#ifdef PROMOTE_FUNCTION_ARGS
+ mode = promote_mode (type, mode, &unsignedp, 1);
+#endif
+
+ args[i].unsignedp = unsignedp;
+ args[i].mode = mode;
+ args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
+ argpos < n_named_args);
+#ifdef FUNCTION_ARG_PARTIAL_NREGS
+ if (args[i].reg)
+ args[i].partial
+ = FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type,
+ argpos < n_named_args);
+#endif
+
+ args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type);
+
+ /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
+ it means that we are to pass this arg in the register(s) designated
+ by the PARALLEL, but also to pass it in the stack. */
+ if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
+ && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
+ args[i].pass_on_stack = 1;
+
+ /* If this is an addressable type, we must preallocate the stack
+ since we must evaluate the object into its final location.
+
+ If this is to be passed in both registers and the stack, it is simpler
+ to preallocate. */
+ if (TREE_ADDRESSABLE (type)
+ || (args[i].pass_on_stack && args[i].reg != 0))
+ *must_preallocate = 1;
+
+ /* If this is an addressable type, we cannot pre-evaluate it. Thus,
+ we cannot consider this function call constant. */
+ if (TREE_ADDRESSABLE (type))
+ *is_const = 0;
+
+ /* Compute the stack-size of this argument. */
+ if (args[i].reg == 0 || args[i].partial != 0
+ || reg_parm_stack_space > 0
+ || args[i].pass_on_stack)
+ locate_and_pad_parm (mode, type,
+#ifdef STACK_PARMS_IN_REG_PARM_AREA
+ 1,
+#else
+ args[i].reg != 0,
+#endif
+ fndecl, args_size, &args[i].offset,
+ &args[i].size);
+
+#ifndef ARGS_GROW_DOWNWARD
+ args[i].slot_offset = *args_size;
+#endif
+
+ /* If a part of the arg was put into registers,
+ don't include that part in the amount pushed. */
+ if (reg_parm_stack_space == 0 && ! args[i].pass_on_stack)
+ args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD)
+ / (PARM_BOUNDARY / BITS_PER_UNIT)
+ * (PARM_BOUNDARY / BITS_PER_UNIT));
+
+ /* Update ARGS_SIZE, the total stack space for args so far. */
+
+ args_size->constant += args[i].size.constant;
+ if (args[i].size.var)
+ {
+ ADD_PARM_SIZE (*args_size, args[i].size.var);
+ }
+
+ /* Since the slot offset points to the bottom of the slot,
+ we must record it after incrementing if the args grow down. */
+#ifdef ARGS_GROW_DOWNWARD
+ args[i].slot_offset = *args_size;
+
+ args[i].slot_offset.constant = -args_size->constant;
+ if (args_size->var)
+ {
+ SUB_PARM_SIZE (args[i].slot_offset, args_size->var);
+ }
+#endif
+
+ /* Increment ARGS_SO_FAR, which has info about which arg-registers
+ have been used, etc. */
+
+ FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
+ argpos < n_named_args);
+ }
+}
+
+/* Update ARGS_SIZE to contain the total size for the argument block.
+ Return the original constant component of the argument block's size.
+
+ REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
+ for arguments passed in registers. */
+
+static int
+compute_argument_block_size (reg_parm_stack_space, args_size)
+ int reg_parm_stack_space;
+ struct args_size *args_size;
+{
+ int unadjusted_args_size = args_size->constant;
+
+ /* Compute the actual size of the argument block required. The variable
+ and constant sizes must be combined, the size may have to be rounded,
+ and there may be a minimum required size. */
+
+ if (args_size->var)
+ {
+ args_size->var = ARGS_SIZE_TREE (*args_size);
+ args_size->constant = 0;
+
+#ifdef PREFERRED_STACK_BOUNDARY
+ if (PREFERRED_STACK_BOUNDARY != BITS_PER_UNIT)
+ args_size->var = round_up (args_size->var, STACK_BYTES);
+#endif
+
+ if (reg_parm_stack_space > 0)
+ {
+ args_size->var
+ = size_binop (MAX_EXPR, args_size->var,
+ size_int (reg_parm_stack_space));
+
+#ifndef OUTGOING_REG_PARM_STACK_SPACE
+ /* The area corresponding to register parameters is not to count in
+ the size of the block we need. So make the adjustment. */
+ args_size->var
+ = size_binop (MINUS_EXPR, args_size->var,
+ size_int (reg_parm_stack_space));
+#endif
+ }
+ }
+ else
+ {
+#ifdef PREFERRED_STACK_BOUNDARY
+ args_size->constant = (((args_size->constant
+ + pending_stack_adjust
+ + STACK_BYTES - 1)
+ / STACK_BYTES * STACK_BYTES)
+ - pending_stack_adjust);
+#endif
+
+ args_size->constant = MAX (args_size->constant,
+ reg_parm_stack_space);
+
+#ifdef MAYBE_REG_PARM_STACK_SPACE
+ if (reg_parm_stack_space == 0)
+ args_size->constant = 0;
+#endif
+
+#ifndef OUTGOING_REG_PARM_STACK_SPACE
+ args_size->constant -= reg_parm_stack_space;
+#endif
+ }
+ return unadjusted_args_size;
+}
+
+/* Precompute parameters has needed for a function call.
+
+ IS_CONST indicates the target function is a pure function.
+
+ MUST_PREALLOCATE indicates that we must preallocate stack space for
+ any stack arguments.
+
+ NUM_ACTUALS is the number of arguments.
+
+ ARGS is an array containing information for each argument; this routine
+ fills in the INITIAL_VALUE and VALUE fields for each precomputed argument.
+
+ ARGS_SIZE contains information about the size of the arg list. */
+
+static void
+precompute_arguments (is_const, must_preallocate, num_actuals, args, args_size)
+ int is_const;
+ int must_preallocate;
+ int num_actuals;
+ struct arg_data *args;
+ struct args_size *args_size;
+{
+ int i;
+
+ /* If this function call is cse'able, precompute all the parameters.
+ Note that if the parameter is constructed into a temporary, this will
+ cause an additional copy because the parameter will be constructed
+ into a temporary location and then copied into the outgoing arguments.
+ If a parameter contains a call to alloca and this function uses the
+ stack, precompute the parameter. */
+
+ /* If we preallocated the stack space, and some arguments must be passed
+ on the stack, then we must precompute any parameter which contains a
+ function call which will store arguments on the stack.
+ Otherwise, evaluating the parameter may clobber previous parameters
+ which have already been stored into the stack. */
+
+ for (i = 0; i < num_actuals; i++)
+ if (is_const
+ || ((args_size->var != 0 || args_size->constant != 0)
+ && calls_function (args[i].tree_value, 1))
+ || (must_preallocate
+ && (args_size->var != 0 || args_size->constant != 0)
+ && calls_function (args[i].tree_value, 0)))
+ {
+ /* If this is an addressable type, we cannot pre-evaluate it. */
+ if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
+ abort ();
+
+ push_temp_slots ();
+
+ args[i].initial_value = args[i].value
+ = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
+
+ preserve_temp_slots (args[i].value);
+ pop_temp_slots ();
+
+ /* ANSI doesn't require a sequence point here,
+ but PCC has one, so this will avoid some problems. */
+ emit_queue ();
+
+ args[i].initial_value = args[i].value
+ = protect_from_queue (args[i].initial_value, 0);
+
+ if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) != args[i].mode)
+ args[i].value
+ = convert_modes (args[i].mode,
+ TYPE_MODE (TREE_TYPE (args[i].tree_value)),
+ args[i].value, args[i].unsignedp);
+ }
+}
+
+/* Given the current state of MUST_PREALLOCATE and information about
+ arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
+ compute and return the final value for MUST_PREALLOCATE. */
+
+static int
+finalize_must_preallocate (must_preallocate, num_actuals, args, args_size)
+ int must_preallocate;
+ int num_actuals;
+ struct arg_data *args;
+ struct args_size *args_size;
+{
+ /* See if we have or want to preallocate stack space.
+
+ If we would have to push a partially-in-regs parm
+ before other stack parms, preallocate stack space instead.
+
+ If the size of some parm is not a multiple of the required stack
+ alignment, we must preallocate.
+
+ If the total size of arguments that would otherwise create a copy in
+ a temporary (such as a CALL) is more than half the total argument list
+ size, preallocation is faster.
+
+ Another reason to preallocate is if we have a machine (like the m88k)
+ where stack alignment is required to be maintained between every
+ pair of insns, not just when the call is made. However, we assume here
+ that such machines either do not have push insns (and hence preallocation
+ would occur anyway) or the problem is taken care of with
+ PUSH_ROUNDING. */
+
+ if (! must_preallocate)
+ {
+ int partial_seen = 0;
+ int copy_to_evaluate_size = 0;
+ int i;
+
+ for (i = 0; i < num_actuals && ! must_preallocate; i++)
+ {
+ if (args[i].partial > 0 && ! args[i].pass_on_stack)
+ partial_seen = 1;
+ else if (partial_seen && args[i].reg == 0)
+ must_preallocate = 1;
+
+ if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
+ && (TREE_CODE (args[i].tree_value) == CALL_EXPR
+ || TREE_CODE (args[i].tree_value) == TARGET_EXPR
+ || TREE_CODE (args[i].tree_value) == COND_EXPR
+ || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
+ copy_to_evaluate_size
+ += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
+ }
+
+ if (copy_to_evaluate_size * 2 >= args_size->constant
+ && args_size->constant > 0)
+ must_preallocate = 1;
+ }
+ return must_preallocate;
+}
+
+/* If we preallocated stack space, compute the address of each argument
+ and store it into the ARGS array.
+
+ We need not ensure it is a valid memory address here; it will be
+ validized when it is used.
+
+ ARGBLOCK is an rtx for the address of the outgoing arguments. */
+
+static void
+compute_argument_addresses (args, argblock, num_actuals)
+ struct arg_data *args;
+ rtx argblock;
+ int num_actuals;
+{
+ if (argblock)
+ {
+ rtx arg_reg = argblock;
+ int i, arg_offset = 0;
+
+ if (GET_CODE (argblock) == PLUS)
+ arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
+
+ for (i = 0; i < num_actuals; i++)
+ {
+ rtx offset = ARGS_SIZE_RTX (args[i].offset);
+ rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset);
+ rtx addr;
+
+ /* Skip this parm if it will not be passed on the stack. */
+ if (! args[i].pass_on_stack && args[i].reg != 0)
+ continue;
+
+ if (GET_CODE (offset) == CONST_INT)
+ addr = plus_constant (arg_reg, INTVAL (offset));
+ else
+ addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
+
+ addr = plus_constant (addr, arg_offset);
+ args[i].stack = gen_rtx_MEM (args[i].mode, addr);
+ MEM_SET_IN_STRUCT_P
+ (args[i].stack,
+ AGGREGATE_TYPE_P (TREE_TYPE (args[i].tree_value)));
+
+ if (GET_CODE (slot_offset) == CONST_INT)
+ addr = plus_constant (arg_reg, INTVAL (slot_offset));
+ else
+ addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
+
+ addr = plus_constant (addr, arg_offset);
+ args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
+ }
+ }
+}
+
+/* Given a FNDECL and EXP, return an rtx suitable for use as a target address
+ in a call instruction.
+
+ FNDECL is the tree node for the target function. For an indirect call
+ FNDECL will be NULL_TREE.
+
+ EXP is the CALL_EXPR for this call. */
+
+static rtx
+rtx_for_function_call (fndecl, exp)
+ tree fndecl;
+ tree exp;
+{
+ rtx funexp;
+
+ /* Get the function to call, in the form of RTL. */
+ if (fndecl)
+ {
+ /* If this is the first use of the function, see if we need to
+ make an external definition for it. */
+ if (! TREE_USED (fndecl))
+ {
+ assemble_external (fndecl);
+ TREE_USED (fndecl) = 1;
+ }
+
+ /* Get a SYMBOL_REF rtx for the function address. */
+ funexp = XEXP (DECL_RTL (fndecl), 0);
+ }
+ else
+ /* Generate an rtx (probably a pseudo-register) for the address. */
+ {
+ rtx funaddr;
+ push_temp_slots ();
+ funaddr = funexp =
+ expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
+ pop_temp_slots (); /* FUNEXP can't be BLKmode */
+
+ /* Check the function is executable. */
+ if (current_function_check_memory_usage)
+ {
+#ifdef POINTERS_EXTEND_UNSIGNED
+ /* It might be OK to convert funexp in place, but there's
+ a lot going on between here and when it happens naturally
+ that this seems safer. */
+ funaddr = convert_memory_address (Pmode, funexp);
+#endif
+ emit_library_call (chkr_check_exec_libfunc, 1,
+ VOIDmode, 1,
+ funaddr, Pmode);
+ }
+ emit_queue ();
+ }
+ return funexp;
+}
+
+/* Do the register loads required for any wholly-register parms or any
+ parms which are passed both on the stack and in a register. Their
+ expressions were already evaluated.
+
+ Mark all register-parms as living through the call, putting these USE
+ insns in the CALL_INSN_FUNCTION_USAGE field. */
+
+static void
+load_register_parameters (args, num_actuals, call_fusage)
+ struct arg_data *args;
+ int num_actuals;
+ rtx *call_fusage;
+{
+ int i, j;
+
+#ifdef LOAD_ARGS_REVERSED
+ for (i = num_actuals - 1; i >= 0; i--)
+#else
+ for (i = 0; i < num_actuals; i++)
+#endif
+ {
+ rtx reg = args[i].reg;
+ int partial = args[i].partial;
+ int nregs;
+
+ if (reg)
+ {
+ /* Set to non-negative if must move a word at a time, even if just
+ one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
+ we just use a normal move insn. This value can be zero if the
+ argument is a zero size structure with no fields. */
+ nregs = (partial ? partial
+ : (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
+ ? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value))
+ + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
+ : -1));
+
+ /* Handle calls that pass values in multiple non-contiguous
+ locations. The Irix 6 ABI has examples of this. */
+
+ if (GET_CODE (reg) == PARALLEL)
+ {
+ emit_group_load (reg, args[i].value,
+ int_size_in_bytes (TREE_TYPE (args[i].tree_value)),
+ (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
+ / BITS_PER_UNIT));
+ }
+
+ /* If simple case, just do move. If normal partial, store_one_arg
+ has already loaded the register for us. In all other cases,
+ load the register(s) from memory. */
+
+ else if (nregs == -1)
+ emit_move_insn (reg, args[i].value);
+
+ /* If we have pre-computed the values to put in the registers in
+ the case of non-aligned structures, copy them in now. */
+
+ else if (args[i].n_aligned_regs != 0)
+ for (j = 0; j < args[i].n_aligned_regs; j++)
+ emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
+ args[i].aligned_regs[j]);
+
+ else if (partial == 0 || args[i].pass_on_stack)
+ move_block_to_reg (REGNO (reg),
+ validize_mem (args[i].value), nregs,
+ args[i].mode);
+
+ /* Handle calls that pass values in multiple non-contiguous
+ locations. The Irix 6 ABI has examples of this. */
+ if (GET_CODE (reg) == PARALLEL)
+ use_group_regs (call_fusage, reg);
+ else if (nregs == -1)
+ use_reg (call_fusage, reg);
+ else
+ use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
+ }
+ }
+}
+
+/* Generate all the code for a function call
+ and return an rtx for its value.
+ Store the value in TARGET (specified as an rtx) if convenient.
+ If the value is stored in TARGET then TARGET is returned.
+ If IGNORE is nonzero, then we ignore the value of the function call. */
+
+rtx
+expand_call (exp, target, ignore)
+ tree exp;
+ rtx target;
+ int ignore;
+{
+ /* List of actual parameters. */
+ tree actparms = TREE_OPERAND (exp, 1);
+ /* RTX for the function to be called. */
+ rtx funexp;
+ /* Data type of the function. */
+ tree funtype;
+ /* Declaration of the function being called,
+ or 0 if the function is computed (not known by name). */
+ tree fndecl = 0;
+ char *name = 0;
+
+ /* Register in which non-BLKmode value will be returned,
+ or 0 if no value or if value is BLKmode. */
+ rtx valreg;
+ /* Address where we should return a BLKmode value;
+ 0 if value not BLKmode. */
+ rtx structure_value_addr = 0;
+ /* Nonzero if that address is being passed by treating it as
+ an extra, implicit first parameter. Otherwise,
+ it is passed by being copied directly into struct_value_rtx. */
+ int structure_value_addr_parm = 0;
+ /* Size of aggregate value wanted, or zero if none wanted
+ or if we are using the non-reentrant PCC calling convention
+ or expecting the value in registers. */
+ HOST_WIDE_INT struct_value_size = 0;
+ /* Nonzero if called function returns an aggregate in memory PCC style,
+ by returning the address of where to find it. */
+ int pcc_struct_value = 0;
+
+ /* Number of actual parameters in this call, including struct value addr. */
+ int num_actuals;
+ /* Number of named args. Args after this are anonymous ones
+ and they must all go on the stack. */
+ int n_named_args;
+
+ /* Vector of information about each argument.
+ Arguments are numbered in the order they will be pushed,
+ not the order they are written. */
+ struct arg_data *args;
+
+ /* Total size in bytes of all the stack-parms scanned so far. */
+ struct args_size args_size;
+ /* Size of arguments before any adjustments (such as rounding). */
+ int unadjusted_args_size;
+ /* Data on reg parms scanned so far. */
+ CUMULATIVE_ARGS args_so_far;
+ /* Nonzero if a reg parm has been scanned. */
+ int reg_parm_seen;
+ /* Nonzero if this is an indirect function call. */
+
+ /* Nonzero if we must avoid push-insns in the args for this call.
+ If stack space is allocated for register parameters, but not by the
+ caller, then it is preallocated in the fixed part of the stack frame.
+ So the entire argument block must then be preallocated (i.e., we
+ ignore PUSH_ROUNDING in that case). */
+
+#ifdef PUSH_ROUNDING
+ int must_preallocate = 0;
+#else
+ int must_preallocate = 1;
+#endif
+
+ /* Size of the stack reserved for parameter registers. */
+ int reg_parm_stack_space = 0;
+
+ /* Address of space preallocated for stack parms
+ (on machines that lack push insns), or 0 if space not preallocated. */
+ rtx argblock = 0;
+
+ /* Nonzero if it is plausible that this is a call to alloca. */
+ int may_be_alloca;
+ /* Nonzero if this is a call to malloc or a related function. */
+ int is_malloc;
+ /* Nonzero if this is a call to setjmp or a related function. */
+ int returns_twice;
+ /* Nonzero if this is a call to `longjmp'. */
+ int is_longjmp;
+ /* Nonzero if this is a call to an inline function. */
+ int is_integrable = 0;
+ /* Nonzero if this is a call to a `const' function.
+ Note that only explicitly named functions are handled as `const' here. */
+ int is_const = 0;
+ /* Nonzero if this is a call to a `volatile' function. */
+ int is_volatile = 0;
+#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
+ /* Define the boundary of the register parm stack space that needs to be
+ save, if any. */
+ int low_to_save = -1, high_to_save;
+ rtx save_area = 0; /* Place that it is saved */
+#endif
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
+ char *initial_stack_usage_map = stack_usage_map;
+ int old_stack_arg_under_construction;
+#endif
+
+ rtx old_stack_level = 0;
+ int old_pending_adj = 0;
+ int old_inhibit_defer_pop = inhibit_defer_pop;
+ rtx call_fusage = 0;
+ register tree p;
+ register int i;
+
+ /* The value of the function call can be put in a hard register. But
+ if -fcheck-memory-usage, code which invokes functions (and thus
+ damages some hard registers) can be inserted before using the value.
+ So, target is always a pseudo-register in that case. */
+ if (current_function_check_memory_usage)
+ target = 0;
+
+ /* See if we can find a DECL-node for the actual function.
+ As a result, decide whether this is a call to an integrable function. */
+
+ p = TREE_OPERAND (exp, 0);
+ if (TREE_CODE (p) == ADDR_EXPR)
+ {
+ fndecl = TREE_OPERAND (p, 0);
+ if (TREE_CODE (fndecl) != FUNCTION_DECL)
+ fndecl = 0;
+ else
+ {
+ if (!flag_no_inline
+ && fndecl != current_function_decl
+ && DECL_INLINE (fndecl)
+ && DECL_SAVED_INSNS (fndecl)
+ && RTX_INTEGRATED_P (DECL_SAVED_INSNS (fndecl)))
+ is_integrable = 1;
+ else if (! TREE_ADDRESSABLE (fndecl))
+ {
+ /* In case this function later becomes inlinable,
+ record that there was already a non-inline call to it.
+
+ Use abstraction instead of setting TREE_ADDRESSABLE
+ directly. */
+ if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
+ && optimize > 0)
+ {
+ warning_with_decl (fndecl, "can't inline call to `%s'");
+ warning ("called from here");
+ }
+ mark_addressable (fndecl);
+ }
+
+ if (TREE_READONLY (fndecl) && ! TREE_THIS_VOLATILE (fndecl)
+ && TYPE_MODE (TREE_TYPE (exp)) != VOIDmode)
+ is_const = 1;
+
+ if (TREE_THIS_VOLATILE (fndecl))
+ is_volatile = 1;
+ }
+ }
+
+ /* If we don't have specific function to call, see if we have a
+ constant or `noreturn' function from the type. */
+ if (fndecl == 0)
+ {
+ is_const = TREE_READONLY (TREE_TYPE (TREE_TYPE (p)));
+ is_volatile = TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (p)));
+ }
+
+#ifdef REG_PARM_STACK_SPACE
+#ifdef MAYBE_REG_PARM_STACK_SPACE
+ reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
+#else
+ reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
+#endif
+#endif
+
+#if defined(PUSH_ROUNDING) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
+ if (reg_parm_stack_space > 0)
+ must_preallocate = 1;
+#endif
+
+ /* Warn if this value is an aggregate type,
+ regardless of which calling convention we are using for it. */
+ if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
+ warning ("function call has aggregate value");
+
+ /* Set up a place to return a structure. */
+
+ /* Cater to broken compilers. */
+ if (aggregate_value_p (exp))
+ {
+ /* This call returns a big structure. */
+ is_const = 0;
+
+#ifdef PCC_STATIC_STRUCT_RETURN
+ {
+ pcc_struct_value = 1;
+ /* Easier than making that case work right. */
+ if (is_integrable)
+ {
+ /* In case this is a static function, note that it has been
+ used. */
+ if (! TREE_ADDRESSABLE (fndecl))
+ mark_addressable (fndecl);
+ is_integrable = 0;
+ }
+ }
+#else /* not PCC_STATIC_STRUCT_RETURN */
+ {
+ struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
+
+ if (target && GET_CODE (target) == MEM)
+ structure_value_addr = XEXP (target, 0);
+ else
+ {
+ /* Assign a temporary to hold the value. */
+ tree d;
+
+ /* For variable-sized objects, we must be called with a target
+ specified. If we were to allocate space on the stack here,
+ we would have no way of knowing when to free it. */
+
+ if (struct_value_size < 0)
+ abort ();
+
+ /* This DECL is just something to feed to mark_addressable;
+ it doesn't get pushed. */
+ d = build_decl (VAR_DECL, NULL_TREE, TREE_TYPE (exp));
+ DECL_RTL (d) = assign_temp (TREE_TYPE (exp), 1, 0, 1);
+ mark_addressable (d);
+ structure_value_addr = XEXP (DECL_RTL (d), 0);
+ TREE_USED (d) = 1;
+ target = 0;
+ }
+ }
+#endif /* not PCC_STATIC_STRUCT_RETURN */
+ }
+
+ /* If called function is inline, try to integrate it. */
+
+ if (is_integrable)
+ {
+ rtx temp;
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ rtx before_call = get_last_insn ();
+#endif
+
+ temp = expand_inline_function (fndecl, actparms, target,
+ ignore, TREE_TYPE (exp),
+ structure_value_addr);
+
+ /* If inlining succeeded, return. */
+ if (temp != (rtx) (HOST_WIDE_INT) -1)
+ {
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* If the outgoing argument list must be preserved, push
+ the stack before executing the inlined function if it
+ makes any calls. */
+
+ for (i = reg_parm_stack_space - 1; i >= 0; i--)
+ if (i < highest_outgoing_arg_in_use && stack_usage_map[i] != 0)
+ break;
+
+ if (stack_arg_under_construction || i >= 0)
+ {
+ rtx first_insn
+ = before_call ? NEXT_INSN (before_call) : get_insns ();
+ rtx insn, seq;
+
+ /* Look for a call in the inline function code.
+ If OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) is
+ nonzero then there is a call and it is not necessary
+ to scan the insns. */
+
+ if (OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) == 0)
+ for (insn = first_insn; insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == CALL_INSN)
+ break;
+
+ if (insn)
+ {
+ /* Reserve enough stack space so that the largest
+ argument list of any function call in the inline
+ function does not overlap the argument list being
+ evaluated. This is usually an overestimate because
+ allocate_dynamic_stack_space reserves space for an
+ outgoing argument list in addition to the requested
+ space, but there is no way to ask for stack space such
+ that an argument list of a certain length can be
+ safely constructed.
+
+ Add the stack space reserved for register arguments, if
+ any, in the inline function. What is really needed is the
+ largest value of reg_parm_stack_space in the inline
+ function, but that is not available. Using the current
+ value of reg_parm_stack_space is wrong, but gives
+ correct results on all supported machines. */
+
+ int adjust = (OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl))
+ + reg_parm_stack_space);
+
+ start_sequence ();
+ emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
+ allocate_dynamic_stack_space (GEN_INT (adjust),
+ NULL_RTX, BITS_PER_UNIT);
+ seq = get_insns ();
+ end_sequence ();
+ emit_insns_before (seq, first_insn);
+ emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
+ }
+ }
+#endif
+
+ /* If the result is equivalent to TARGET, return TARGET to simplify
+ checks in store_expr. They can be equivalent but not equal in the
+ case of a function that returns BLKmode. */
+ if (temp != target && rtx_equal_p (temp, target))
+ return target;
+ return temp;
+ }
+
+ /* If inlining failed, mark FNDECL as needing to be compiled
+ separately after all. If function was declared inline,
+ give a warning. */
+ if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
+ && optimize > 0 && ! TREE_ADDRESSABLE (fndecl))
+ {
+ warning_with_decl (fndecl, "inlining failed in call to `%s'");
+ warning ("called from here");
+ }
+ mark_addressable (fndecl);
+ }
+
+ function_call_count++;
+
+ if (fndecl && DECL_NAME (fndecl))
+ name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
+
+ /* See if this is a call to a function that can return more than once
+ or a call to longjmp or malloc. */
+ special_function_p (name, fndecl, &returns_twice, &is_longjmp,
+ &is_malloc, &may_be_alloca);
+
+ if (may_be_alloca)
+ current_function_calls_alloca = 1;
+
+ /* Operand 0 is a pointer-to-function; get the type of the function. */
+ funtype = TREE_TYPE (TREE_OPERAND (exp, 0));
+ if (! POINTER_TYPE_P (funtype))
+ abort ();
+ funtype = TREE_TYPE (funtype);
+
+ /* When calling a const function, we must pop the stack args right away,
+ so that the pop is deleted or moved with the call. */
+ if (is_const)
+ NO_DEFER_POP;
+
+ /* Don't let pending stack adjusts add up to too much.
+ Also, do all pending adjustments now
+ if there is any chance this might be a call to alloca. */
+
+ if (pending_stack_adjust >= 32
+ || (pending_stack_adjust > 0 && may_be_alloca))
+ do_pending_stack_adjust ();
+
+ /* Push the temporary stack slot level so that we can free any temporaries
+ we make. */
+ push_temp_slots ();
+
+ /* Start updating where the next arg would go.
+
+ On some machines (such as the PA) indirect calls have a different
+ calling convention than normal calls. The last argument in
+ INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
+ or not. */
+ INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, (fndecl == 0));
+
+ /* If struct_value_rtx is 0, it means pass the address
+ as if it were an extra parameter. */
+ if (structure_value_addr && struct_value_rtx == 0)
+ {
+ /* If structure_value_addr is a REG other than
+ virtual_outgoing_args_rtx, we can use always use it. If it
+ is not a REG, we must always copy it into a register.
+ If it is virtual_outgoing_args_rtx, we must copy it to another
+ register in some cases. */
+ rtx temp = (GET_CODE (structure_value_addr) != REG
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ || (stack_arg_under_construction
+ && structure_value_addr == virtual_outgoing_args_rtx)
+#endif
+ ? copy_addr_to_reg (structure_value_addr)
+ : structure_value_addr);
+
+ actparms
+ = tree_cons (error_mark_node,
+ make_tree (build_pointer_type (TREE_TYPE (funtype)),
+ temp),
+ actparms);
+ structure_value_addr_parm = 1;
+ }
+
+ /* Count the arguments and set NUM_ACTUALS. */
+ for (p = actparms, i = 0; p; p = TREE_CHAIN (p)) i++;
+ num_actuals = i;
+
+ /* Compute number of named args.
+ Normally, don't include the last named arg if anonymous args follow.
+ We do include the last named arg if STRICT_ARGUMENT_NAMING is nonzero.
+ (If no anonymous args follow, the result of list_length is actually
+ one too large. This is harmless.)
+
+ If PRETEND_OUTGOING_VARARGS_NAMED is set and STRICT_ARGUMENT_NAMING is
+ zero, this machine will be able to place unnamed args that were passed in
+ registers into the stack. So treat all args as named. This allows the
+ insns emitting for a specific argument list to be independent of the
+ function declaration.
+
+ If PRETEND_OUTGOING_VARARGS_NAMED is not set, we do not have any reliable
+ way to pass unnamed args in registers, so we must force them into
+ memory. */
+
+ if ((STRICT_ARGUMENT_NAMING
+ || ! PRETEND_OUTGOING_VARARGS_NAMED)
+ && TYPE_ARG_TYPES (funtype) != 0)
+ n_named_args
+ = (list_length (TYPE_ARG_TYPES (funtype))
+ /* Don't include the last named arg. */
+ - (STRICT_ARGUMENT_NAMING ? 0 : 1)
+ /* Count the struct value address, if it is passed as a parm. */
+ + structure_value_addr_parm);
+ else
+ /* If we know nothing, treat all args as named. */
+ n_named_args = num_actuals;
+
+ /* Make a vector to hold all the information about each arg. */
+ args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data));
+ bzero ((char *) args, num_actuals * sizeof (struct arg_data));
+
+ /* Build up entries inthe ARGS array, compute the size of the arguments
+ into ARGS_SIZE, etc. */
+ initialize_argument_information (num_actuals, args, &args_size, n_named_args,
+ actparms, fndecl, &args_so_far,
+ reg_parm_stack_space, &old_stack_level,
+ &old_pending_adj, &must_preallocate,
+ &is_const);
+
+#ifdef FINAL_REG_PARM_STACK_SPACE
+ reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
+ args_size.var);
+#endif
+
+ if (args_size.var)
+ {
+ /* If this function requires a variable-sized argument list, don't try to
+ make a cse'able block for this call. We may be able to do this
+ eventually, but it is too complicated to keep track of what insns go
+ in the cse'able block and which don't. */
+
+ is_const = 0;
+ must_preallocate = 1;
+ }
+
+ /* Compute the actual size of the argument block required. The variable
+ and constant sizes must be combined, the size may have to be rounded,
+ and there may be a minimum required size. */
+ unadjusted_args_size
+ = compute_argument_block_size (reg_parm_stack_space, &args_size);
+
+ /* Now make final decision about preallocating stack space. */
+ must_preallocate = finalize_must_preallocate (must_preallocate,
+ num_actuals, args, &args_size);
+
+ /* If the structure value address will reference the stack pointer, we must
+ stabilize it. We don't need to do this if we know that we are not going
+ to adjust the stack pointer in processing this call. */
+
+ if (structure_value_addr
+ && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
+ || reg_mentioned_p (virtual_outgoing_args_rtx, structure_value_addr))
+ && (args_size.var
+#ifndef ACCUMULATE_OUTGOING_ARGS
+ || args_size.constant
+#endif
+ ))
+ structure_value_addr = copy_to_reg (structure_value_addr);
+
+ /* Precompute any arguments as needed. */
+ precompute_arguments (is_const, must_preallocate, num_actuals,
+ args, &args_size);
+
+ /* Now we are about to start emitting insns that can be deleted
+ if a libcall is deleted. */
+ if (is_const || is_malloc)
+ start_sequence ();
+
+ /* If we have no actual push instructions, or shouldn't use them,
+ make space for all args right now. */
+
+ if (args_size.var != 0)
+ {
+ if (old_stack_level == 0)
+ {
+ emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
+ old_pending_adj = pending_stack_adjust;
+ pending_stack_adjust = 0;
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* stack_arg_under_construction says whether a stack arg is
+ being constructed at the old stack level. Pushing the stack
+ gets a clean outgoing argument block. */
+ old_stack_arg_under_construction = stack_arg_under_construction;
+ stack_arg_under_construction = 0;
+#endif
+ }
+ argblock = push_block (ARGS_SIZE_RTX (args_size), 0, 0);
+ }
+ else
+ {
+ /* Note that we must go through the motions of allocating an argument
+ block even if the size is zero because we may be storing args
+ in the area reserved for register arguments, which may be part of
+ the stack frame. */
+
+ int needed = args_size.constant;
+
+ /* Store the maximum argument space used. It will be pushed by
+ the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
+ checking). */
+
+ if (needed > current_function_outgoing_args_size)
+ current_function_outgoing_args_size = needed;
+
+ if (must_preallocate)
+ {
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* Since the stack pointer will never be pushed, it is possible for
+ the evaluation of a parm to clobber something we have already
+ written to the stack. Since most function calls on RISC machines
+ do not use the stack, this is uncommon, but must work correctly.
+
+ Therefore, we save any area of the stack that was already written
+ and that we are using. Here we set up to do this by making a new
+ stack usage map from the old one. The actual save will be done
+ by store_one_arg.
+
+ Another approach might be to try to reorder the argument
+ evaluations to avoid this conflicting stack usage. */
+
+#ifndef OUTGOING_REG_PARM_STACK_SPACE
+ /* Since we will be writing into the entire argument area, the
+ map must be allocated for its entire size, not just the part that
+ is the responsibility of the caller. */
+ needed += reg_parm_stack_space;
+#endif
+
+#ifdef ARGS_GROW_DOWNWARD
+ highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+ needed + 1);
+#else
+ highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+ needed);
+#endif
+ stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);
+
+ if (initial_highest_arg_in_use)
+ bcopy (initial_stack_usage_map, stack_usage_map,
+ initial_highest_arg_in_use);
+
+ if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
+ bzero (&stack_usage_map[initial_highest_arg_in_use],
+ highest_outgoing_arg_in_use - initial_highest_arg_in_use);
+ needed = 0;
+
+ /* The address of the outgoing argument list must not be copied to a
+ register here, because argblock would be left pointing to the
+ wrong place after the call to allocate_dynamic_stack_space below.
+ */
+
+ argblock = virtual_outgoing_args_rtx;
+
+#else /* not ACCUMULATE_OUTGOING_ARGS */
+ if (inhibit_defer_pop == 0)
+ {
+ /* Try to reuse some or all of the pending_stack_adjust
+ to get this space. Maybe we can avoid any pushing. */
+ if (needed > pending_stack_adjust)
+ {
+ needed -= pending_stack_adjust;
+ pending_stack_adjust = 0;
+ }
+ else
+ {
+ pending_stack_adjust -= needed;
+ needed = 0;
+ }
+ }
+ /* Special case this because overhead of `push_block' in this
+ case is non-trivial. */
+ if (needed == 0)
+ argblock = virtual_outgoing_args_rtx;
+ else
+ argblock = push_block (GEN_INT (needed), 0, 0);
+
+ /* We only really need to call `copy_to_reg' in the case where push
+ insns are going to be used to pass ARGBLOCK to a function
+ call in ARGS. In that case, the stack pointer changes value
+ from the allocation point to the call point, and hence
+ the value of VIRTUAL_OUTGOING_ARGS_RTX changes as well.
+ But might as well always do it. */
+ argblock = copy_to_reg (argblock);
+#endif /* not ACCUMULATE_OUTGOING_ARGS */
+ }
+ }
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* The save/restore code in store_one_arg handles all cases except one:
+ a constructor call (including a C function returning a BLKmode struct)
+ to initialize an argument. */
+ if (stack_arg_under_construction)
+ {
+#ifndef OUTGOING_REG_PARM_STACK_SPACE
+ rtx push_size = GEN_INT (reg_parm_stack_space + args_size.constant);
+#else
+ rtx push_size = GEN_INT (args_size.constant);
+#endif
+ if (old_stack_level == 0)
+ {
+ emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
+ old_pending_adj = pending_stack_adjust;
+ pending_stack_adjust = 0;
+ /* stack_arg_under_construction says whether a stack arg is
+ being constructed at the old stack level. Pushing the stack
+ gets a clean outgoing argument block. */
+ old_stack_arg_under_construction = stack_arg_under_construction;
+ stack_arg_under_construction = 0;
+ /* Make a new map for the new argument list. */
+ stack_usage_map = (char *)alloca (highest_outgoing_arg_in_use);
+ bzero (stack_usage_map, highest_outgoing_arg_in_use);
+ highest_outgoing_arg_in_use = 0;
+ }
+ allocate_dynamic_stack_space (push_size, NULL_RTX, BITS_PER_UNIT);
+ }
+ /* If argument evaluation might modify the stack pointer, copy the
+ address of the argument list to a register. */
+ for (i = 0; i < num_actuals; i++)
+ if (args[i].pass_on_stack)
+ {
+ argblock = copy_addr_to_reg (argblock);
+ break;
+ }
+#endif
+
+ compute_argument_addresses (args, argblock, num_actuals);
+
+#ifdef PUSH_ARGS_REVERSED
+#ifdef PREFERRED_STACK_BOUNDARY
+ /* If we push args individually in reverse order, perform stack alignment
+ before the first push (the last arg). */
+ if (argblock == 0)
+ anti_adjust_stack (GEN_INT (args_size.constant - unadjusted_args_size));
+#endif
+#endif
+
+ /* Don't try to defer pops if preallocating, not even from the first arg,
+ since ARGBLOCK probably refers to the SP. */
+ if (argblock)
+ NO_DEFER_POP;
+
+ funexp = rtx_for_function_call (fndecl, exp);
+
+ /* Figure out the register where the value, if any, will come back. */
+ valreg = 0;
+ if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
+ && ! structure_value_addr)
+ {
+ if (pcc_struct_value)
+ valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
+ fndecl);
+ else
+ valreg = hard_function_value (TREE_TYPE (exp), fndecl);
+ }
+
+ /* Precompute all register parameters. It isn't safe to compute anything
+ once we have started filling any specific hard regs. */
+ precompute_register_parameters (num_actuals, args, &reg_parm_seen);
+
+#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
+
+ /* Save the fixed argument area if it's part of the caller's frame and
+ is clobbered by argument setup for this call. */
+ save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
+ &low_to_save, &high_to_save);
+#endif
+
+
+ /* Now store (and compute if necessary) all non-register parms.
+ These come before register parms, since they can require block-moves,
+ which could clobber the registers used for register parms.
+ Parms which have partial registers are not stored here,
+ but we do preallocate space here if they want that. */
+
+ for (i = 0; i < num_actuals; i++)
+ if (args[i].reg == 0 || args[i].pass_on_stack)
+ store_one_arg (&args[i], argblock, may_be_alloca,
+ args_size.var != 0, reg_parm_stack_space);
+
+ /* If we have a parm that is passed in registers but not in memory
+ and whose alignment does not permit a direct copy into registers,
+ make a group of pseudos that correspond to each register that we
+ will later fill. */
+ if (STRICT_ALIGNMENT)
+ store_unaligned_arguments_into_pseudos (args, num_actuals);
+
+ /* Now store any partially-in-registers parm.
+ This is the last place a block-move can happen. */
+ if (reg_parm_seen)
+ for (i = 0; i < num_actuals; i++)
+ if (args[i].partial != 0 && ! args[i].pass_on_stack)
+ store_one_arg (&args[i], argblock, may_be_alloca,
+ args_size.var != 0, reg_parm_stack_space);
+
+#ifndef PUSH_ARGS_REVERSED
+#ifdef PREFERRED_STACK_BOUNDARY
+ /* If we pushed args in forward order, perform stack alignment
+ after pushing the last arg. */
+ if (argblock == 0)
+ anti_adjust_stack (GEN_INT (args_size.constant - unadjusted_args_size));
+#endif
+#endif
+
+ /* If register arguments require space on the stack and stack space
+ was not preallocated, allocate stack space here for arguments
+ passed in registers. */
+#if ! defined(ACCUMULATE_OUTGOING_ARGS) && defined(OUTGOING_REG_PARM_STACK_SPACE)
+ if (must_preallocate == 0 && reg_parm_stack_space > 0)
+ anti_adjust_stack (GEN_INT (reg_parm_stack_space));
+#endif
+
+ /* Pass the function the address in which to return a structure value. */
+ if (structure_value_addr && ! structure_value_addr_parm)
+ {
+ emit_move_insn (struct_value_rtx,
+ force_reg (Pmode,
+ force_operand (structure_value_addr,
+ NULL_RTX)));
+
+ /* Mark the memory for the aggregate as write-only. */
+ if (current_function_check_memory_usage)
+ emit_library_call (chkr_set_right_libfunc, 1,
+ VOIDmode, 3,
+ structure_value_addr, Pmode,
+ GEN_INT (struct_value_size), TYPE_MODE (sizetype),
+ GEN_INT (MEMORY_USE_WO),
+ TYPE_MODE (integer_type_node));
+
+ if (GET_CODE (struct_value_rtx) == REG)
+ use_reg (&call_fusage, struct_value_rtx);
+ }
+
+ funexp = prepare_call_address (funexp, fndecl, &call_fusage, reg_parm_seen);
+
+ load_register_parameters (args, num_actuals, &call_fusage);
+
+ /* Perform postincrements before actually calling the function. */
+ emit_queue ();
+
+ /* All arguments and registers used for the call must be set up by now! */
+
+ /* Generate the actual call instruction. */
+ emit_call_1 (funexp, fndecl, funtype, unadjusted_args_size,
+ args_size.constant, struct_value_size,
+ FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
+ valreg, old_inhibit_defer_pop, call_fusage, is_const);
+
+ /* If call is cse'able, make appropriate pair of reg-notes around it.
+ Test valreg so we don't crash; may safely ignore `const'
+ if return type is void. Disable for PARALLEL return values, because
+ we have no way to move such values into a pseudo register. */
+ if (is_const && valreg != 0 && GET_CODE (valreg) != PARALLEL)
+ {
+ rtx note = 0;
+ rtx temp = gen_reg_rtx (GET_MODE (valreg));
+ rtx insns;
+
+ /* Mark the return value as a pointer if needed. */
+ if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
+ {
+ tree pointed_to = TREE_TYPE (TREE_TYPE (exp));
+ mark_reg_pointer (temp, TYPE_ALIGN (pointed_to) / BITS_PER_UNIT);
+ }
+
+ /* Construct an "equal form" for the value which mentions all the
+ arguments in order as well as the function name. */
+#ifdef PUSH_ARGS_REVERSED
+ for (i = 0; i < num_actuals; i++)
+ note = gen_rtx_EXPR_LIST (VOIDmode, args[i].initial_value, note);
+#else
+ for (i = num_actuals - 1; i >= 0; i--)
+ note = gen_rtx_EXPR_LIST (VOIDmode, args[i].initial_value, note);
+#endif
+ note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
+
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_libcall_block (insns, temp, valreg, note);
+
+ valreg = temp;
+ }
+ else if (is_const)
+ {
+ /* Otherwise, just write out the sequence without a note. */
+ rtx insns = get_insns ();
+
+ end_sequence ();
+ emit_insns (insns);
+ }
+ else if (is_malloc)
+ {
+ rtx temp = gen_reg_rtx (GET_MODE (valreg));
+ rtx last, insns;
+
+ /* The return value from a malloc-like function is a pointer. */
+ if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
+ mark_reg_pointer (temp, BIGGEST_ALIGNMENT / BITS_PER_UNIT);
+
+ emit_move_insn (temp, valreg);
+
+ /* The return value from a malloc-like function can not alias
+ anything else. */
+ last = get_last_insn ();
+ REG_NOTES (last) =
+ gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
+
+ /* Write out the sequence. */
+ insns = get_insns ();
+ end_sequence ();
+ emit_insns (insns);
+ valreg = temp;
+ }
+
+ /* For calls to `setjmp', etc., inform flow.c it should complain
+ if nonvolatile values are live. */
+
+ if (returns_twice)
+ {
+ emit_note (name, NOTE_INSN_SETJMP);
+ current_function_calls_setjmp = 1;
+ }
+
+ if (is_longjmp)
+ current_function_calls_longjmp = 1;
+
+ /* Notice functions that cannot return.
+ If optimizing, insns emitted below will be dead.
+ If not optimizing, they will exist, which is useful
+ if the user uses the `return' command in the debugger. */
+
+ if (is_volatile || is_longjmp)
+ emit_barrier ();
+
+ /* If value type not void, return an rtx for the value. */
+
+ /* If there are cleanups to be called, don't use a hard reg as target.
+ We need to double check this and see if it matters anymore. */
+ if (any_pending_cleanups (1)
+ && target && REG_P (target)
+ && REGNO (target) < FIRST_PSEUDO_REGISTER)
+ target = 0;
+
+ if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
+ || ignore)
+ {
+ target = const0_rtx;
+ }
+ else if (structure_value_addr)
+ {
+ if (target == 0 || GET_CODE (target) != MEM)
+ {
+ target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
+ memory_address (TYPE_MODE (TREE_TYPE (exp)),
+ structure_value_addr));
+ MEM_SET_IN_STRUCT_P (target,
+ AGGREGATE_TYPE_P (TREE_TYPE (exp)));
+ }
+ }
+ else if (pcc_struct_value)
+ {
+ /* This is the special C++ case where we need to
+ know what the true target was. We take care to
+ never use this value more than once in one expression. */
+ target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
+ copy_to_reg (valreg));
+ MEM_SET_IN_STRUCT_P (target, AGGREGATE_TYPE_P (TREE_TYPE (exp)));
+ }
+ /* Handle calls that return values in multiple non-contiguous locations.
+ The Irix 6 ABI has examples of this. */
+ else if (GET_CODE (valreg) == PARALLEL)
+ {
+ int bytes = int_size_in_bytes (TREE_TYPE (exp));
+
+ if (target == 0)
+ {
+ target = assign_stack_temp (TYPE_MODE (TREE_TYPE (exp)), bytes, 0);
+ MEM_SET_IN_STRUCT_P (target, AGGREGATE_TYPE_P (TREE_TYPE (exp)));
+ preserve_temp_slots (target);
+ }
+
+ emit_group_store (target, valreg, bytes,
+ TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
+ }
+ else if (target && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
+ && GET_MODE (target) == GET_MODE (valreg))
+ /* TARGET and VALREG cannot be equal at this point because the latter
+ would not have REG_FUNCTION_VALUE_P true, while the former would if
+ it were referring to the same register.
+
+ If they refer to the same register, this move will be a no-op, except
+ when function inlining is being done. */
+ emit_move_insn (target, valreg);
+ else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
+ target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
+ else
+ target = copy_to_reg (valreg);
+
+#ifdef PROMOTE_FUNCTION_RETURN
+ /* If we promoted this return value, make the proper SUBREG. TARGET
+ might be const0_rtx here, so be careful. */
+ if (GET_CODE (target) == REG
+ && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
+ && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
+ {
+ tree type = TREE_TYPE (exp);
+ int unsignedp = TREE_UNSIGNED (type);
+
+ /* If we don't promote as expected, something is wrong. */
+ if (GET_MODE (target)
+ != promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
+ abort ();
+
+ target = gen_rtx_SUBREG (TYPE_MODE (type), target, 0);
+ SUBREG_PROMOTED_VAR_P (target) = 1;
+ SUBREG_PROMOTED_UNSIGNED_P (target) = unsignedp;
+ }
+#endif
+
+ /* If size of args is variable or this was a constructor call for a stack
+ argument, restore saved stack-pointer value. */
+
+ if (old_stack_level)
+ {
+ emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
+ pending_stack_adjust = old_pending_adj;
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ stack_arg_under_construction = old_stack_arg_under_construction;
+ highest_outgoing_arg_in_use = initial_highest_arg_in_use;
+ stack_usage_map = initial_stack_usage_map;
+#endif
+ }
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ else
+ {
+#ifdef REG_PARM_STACK_SPACE
+ if (save_area)
+ restore_fixed_argument_area (save_area, argblock,
+ high_to_save, low_to_save);
+#endif
+
+ /* If we saved any argument areas, restore them. */
+ for (i = 0; i < num_actuals; i++)
+ if (args[i].save_area)
+ {
+ enum machine_mode save_mode = GET_MODE (args[i].save_area);
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ XEXP (args[i].stack_slot, 0)));
+
+ if (save_mode != BLKmode)
+ emit_move_insn (stack_area, args[i].save_area);
+ else
+ emit_block_move (stack_area, validize_mem (args[i].save_area),
+ GEN_INT (args[i].size.constant),
+ PARM_BOUNDARY / BITS_PER_UNIT);
+ }
+
+ highest_outgoing_arg_in_use = initial_highest_arg_in_use;
+ stack_usage_map = initial_stack_usage_map;
+ }
+#endif
+
+ /* If this was alloca, record the new stack level for nonlocal gotos.
+ Check for the handler slots since we might not have a save area
+ for non-local gotos. */
+
+ if (may_be_alloca && nonlocal_goto_handler_slots != 0)
+ emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
+
+ pop_temp_slots ();
+
+ /* Free up storage we no longer need. */
+ for (i = 0; i < num_actuals; ++i)
+ if (args[i].aligned_regs)
+ free (args[i].aligned_regs);
+
+ return target;
+}
+
+/* Output a library call to function FUN (a SYMBOL_REF rtx)
+ (emitting the queue unless NO_QUEUE is nonzero),
+ for a value of mode OUTMODE,
+ with NARGS different arguments, passed as alternating rtx values
+ and machine_modes to convert them to.
+ The rtx values should have been passed through protect_from_queue already.
+
+ NO_QUEUE will be true if and only if the library call is a `const' call
+ which will be enclosed in REG_LIBCALL/REG_RETVAL notes; it is equivalent
+ to the variable is_const in expand_call.
+
+ NO_QUEUE must be true for const calls, because if it isn't, then
+ any pending increment will be emitted between REG_LIBCALL/REG_RETVAL notes,
+ and will be lost if the libcall sequence is optimized away.
+
+ NO_QUEUE must be false for non-const calls, because if it isn't, the
+ call insn will have its CONST_CALL_P bit set, and it will be incorrectly
+ optimized. For instance, the instruction scheduler may incorrectly
+ move memory references across the non-const call. */
+
+void
+emit_library_call VPROTO((rtx orgfun, int no_queue, enum machine_mode outmode,
+ int nargs, ...))
+{
+#ifndef ANSI_PROTOTYPES
+ rtx orgfun;
+ int no_queue;
+ enum machine_mode outmode;
+ int nargs;
+#endif
+ va_list p;
+ /* Total size in bytes of all the stack-parms scanned so far. */
+ struct args_size args_size;
+ /* Size of arguments before any adjustments (such as rounding). */
+ struct args_size original_args_size;
+ register int argnum;
+ rtx fun;
+ int inc;
+ int count;
+ rtx argblock = 0;
+ CUMULATIVE_ARGS args_so_far;
+ struct arg { rtx value; enum machine_mode mode; rtx reg; int partial;
+ struct args_size offset; struct args_size size; rtx save_area; };
+ struct arg *argvec;
+ int old_inhibit_defer_pop = inhibit_defer_pop;
+ rtx call_fusage = 0;
+ int reg_parm_stack_space = 0;
+#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
+ /* Define the boundary of the register parm stack space that needs to be
+ save, if any. */
+ int low_to_save = -1, high_to_save;
+ rtx save_area = 0; /* Place that it is saved */
+#endif
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
+ char *initial_stack_usage_map = stack_usage_map;
+ int needed;
+#endif
+
+#ifdef REG_PARM_STACK_SPACE
+ /* Size of the stack reserved for parameter registers. */
+#ifdef MAYBE_REG_PARM_STACK_SPACE
+ reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
+#else
+ reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
+#endif
+#endif
+
+ VA_START (p, nargs);
+
+#ifndef ANSI_PROTOTYPES
+ orgfun = va_arg (p, rtx);
+ no_queue = va_arg (p, int);
+ outmode = va_arg (p, enum machine_mode);
+ nargs = va_arg (p, int);
+#endif
+
+ fun = orgfun;
+
+ /* Copy all the libcall-arguments out of the varargs data
+ and into a vector ARGVEC.
+
+ Compute how to pass each argument. We only support a very small subset
+ of the full argument passing conventions to limit complexity here since
+ library functions shouldn't have many args. */
+
+ argvec = (struct arg *) alloca (nargs * sizeof (struct arg));
+ bzero ((char *) argvec, nargs * sizeof (struct arg));
+
+
+ INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0);
+
+ args_size.constant = 0;
+ args_size.var = 0;
+
+ push_temp_slots ();
+
+ for (count = 0; count < nargs; count++)
+ {
+ rtx val = va_arg (p, rtx);
+ enum machine_mode mode = va_arg (p, enum machine_mode);
+
+ /* We cannot convert the arg value to the mode the library wants here;
+ must do it earlier where we know the signedness of the arg. */
+ if (mode == BLKmode
+ || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
+ abort ();
+
+ /* On some machines, there's no way to pass a float to a library fcn.
+ Pass it as a double instead. */
+#ifdef LIBGCC_NEEDS_DOUBLE
+ if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
+ val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
+#endif
+
+ /* There's no need to call protect_from_queue, because
+ either emit_move_insn or emit_push_insn will do that. */
+
+ /* Make sure it is a reasonable operand for a move or push insn. */
+ if (GET_CODE (val) != REG && GET_CODE (val) != MEM
+ && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
+ val = force_operand (val, NULL_RTX);
+
+#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
+ if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
+ {
+ /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can
+ be viewed as just an efficiency improvement. */
+ rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
+ emit_move_insn (slot, val);
+ val = force_operand (XEXP (slot, 0), NULL_RTX);
+ mode = Pmode;
+ }
+#endif
+
+ argvec[count].value = val;
+ argvec[count].mode = mode;
+
+ argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
+ if (argvec[count].reg && GET_CODE (argvec[count].reg) == PARALLEL)
+ abort ();
+#ifdef FUNCTION_ARG_PARTIAL_NREGS
+ argvec[count].partial
+ = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
+#else
+ argvec[count].partial = 0;
+#endif
+
+ locate_and_pad_parm (mode, NULL_TREE,
+ argvec[count].reg && argvec[count].partial == 0,
+ NULL_TREE, &args_size, &argvec[count].offset,
+ &argvec[count].size);
+
+ if (argvec[count].size.var)
+ abort ();
+
+ if (reg_parm_stack_space == 0 && argvec[count].partial)
+ argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;
+
+ if (argvec[count].reg == 0 || argvec[count].partial != 0
+ || reg_parm_stack_space > 0)
+ args_size.constant += argvec[count].size.constant;
+
+ FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
+ }
+ va_end (p);
+
+#ifdef FINAL_REG_PARM_STACK_SPACE
+ reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
+ args_size.var);
+#endif
+
+ /* If this machine requires an external definition for library
+ functions, write one out. */
+ assemble_external_libcall (fun);
+
+ original_args_size = args_size;
+#ifdef PREFERRED_STACK_BOUNDARY
+ args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
+ / STACK_BYTES) * STACK_BYTES);
+#endif
+
+ args_size.constant = MAX (args_size.constant,
+ reg_parm_stack_space);
+
+#ifndef OUTGOING_REG_PARM_STACK_SPACE
+ args_size.constant -= reg_parm_stack_space;
+#endif
+
+ if (args_size.constant > current_function_outgoing_args_size)
+ current_function_outgoing_args_size = args_size.constant;
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* Since the stack pointer will never be pushed, it is possible for
+ the evaluation of a parm to clobber something we have already
+ written to the stack. Since most function calls on RISC machines
+ do not use the stack, this is uncommon, but must work correctly.
+
+ Therefore, we save any area of the stack that was already written
+ and that we are using. Here we set up to do this by making a new
+ stack usage map from the old one.
+
+ Another approach might be to try to reorder the argument
+ evaluations to avoid this conflicting stack usage. */
+
+ needed = args_size.constant;
+
+#ifndef OUTGOING_REG_PARM_STACK_SPACE
+ /* Since we will be writing into the entire argument area, the
+ map must be allocated for its entire size, not just the part that
+ is the responsibility of the caller. */
+ needed += reg_parm_stack_space;
+#endif
+
+#ifdef ARGS_GROW_DOWNWARD
+ highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+ needed + 1);
+#else
+ highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+ needed);
+#endif
+ stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);
+
+ if (initial_highest_arg_in_use)
+ bcopy (initial_stack_usage_map, stack_usage_map,
+ initial_highest_arg_in_use);
+
+ if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
+ bzero (&stack_usage_map[initial_highest_arg_in_use],
+ highest_outgoing_arg_in_use - initial_highest_arg_in_use);
+ needed = 0;
+
+ /* The address of the outgoing argument list must not be copied to a
+ register here, because argblock would be left pointing to the
+ wrong place after the call to allocate_dynamic_stack_space below.
+ */
+
+ argblock = virtual_outgoing_args_rtx;
+#else /* not ACCUMULATE_OUTGOING_ARGS */
+#ifndef PUSH_ROUNDING
+ argblock = push_block (GEN_INT (args_size.constant), 0, 0);
+#endif
+#endif
+
+#ifdef PUSH_ARGS_REVERSED
+#ifdef PREFERRED_STACK_BOUNDARY
+ /* If we push args individually in reverse order, perform stack alignment
+ before the first push (the last arg). */
+ if (argblock == 0)
+ anti_adjust_stack (GEN_INT (args_size.constant
+ - original_args_size.constant));
+#endif
+#endif
+
+#ifdef PUSH_ARGS_REVERSED
+ inc = -1;
+ argnum = nargs - 1;
+#else
+ inc = 1;
+ argnum = 0;
+#endif
+
+#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
+ /* The argument list is the property of the called routine and it
+ may clobber it. If the fixed area has been used for previous
+ parameters, we must save and restore it.
+
+ Here we compute the boundary of the that needs to be saved, if any. */
+
+#ifdef ARGS_GROW_DOWNWARD
+ for (count = 0; count < reg_parm_stack_space + 1; count++)
+#else
+ for (count = 0; count < reg_parm_stack_space; count++)
+#endif
+ {
+ if (count >= highest_outgoing_arg_in_use
+ || stack_usage_map[count] == 0)
+ continue;
+
+ if (low_to_save == -1)
+ low_to_save = count;
+
+ high_to_save = count;
+ }
+
+ if (low_to_save >= 0)
+ {
+ int num_to_save = high_to_save - low_to_save + 1;
+ enum machine_mode save_mode
+ = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
+ rtx stack_area;
+
+ /* If we don't have the required alignment, must do this in BLKmode. */
+ if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode),
+ BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
+ save_mode = BLKmode;
+
+#ifdef ARGS_GROW_DOWNWARD
+ stack_area = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ - high_to_save)));
+#else
+ stack_area = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ low_to_save)));
+#endif
+ if (save_mode == BLKmode)
+ {
+ save_area = assign_stack_temp (BLKmode, num_to_save, 0);
+ emit_block_move (validize_mem (save_area), stack_area,
+ GEN_INT (num_to_save),
+ PARM_BOUNDARY / BITS_PER_UNIT);
+ }
+ else
+ {
+ save_area = gen_reg_rtx (save_mode);
+ emit_move_insn (save_area, stack_area);
+ }
+ }
+#endif
+
+ /* Push the args that need to be pushed. */
+
+ /* ARGNUM indexes the ARGVEC array in the order in which the arguments
+ are to be pushed. */
+ for (count = 0; count < nargs; count++, argnum += inc)
+ {
+ register enum machine_mode mode = argvec[argnum].mode;
+ register rtx val = argvec[argnum].value;
+ rtx reg = argvec[argnum].reg;
+ int partial = argvec[argnum].partial;
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ int lower_bound, upper_bound, i;
+#endif
+
+ if (! (reg != 0 && partial == 0))
+ {
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* If this is being stored into a pre-allocated, fixed-size, stack
+ area, save any previous data at that location. */
+
+#ifdef ARGS_GROW_DOWNWARD
+ /* stack_slot is negative, but we want to index stack_usage_map
+ with positive values. */
+ upper_bound = -argvec[argnum].offset.constant + 1;
+ lower_bound = upper_bound - argvec[argnum].size.constant;
+#else
+ lower_bound = argvec[argnum].offset.constant;
+ upper_bound = lower_bound + argvec[argnum].size.constant;
+#endif
+
+ for (i = lower_bound; i < upper_bound; i++)
+ if (stack_usage_map[i]
+ /* Don't store things in the fixed argument area at this point;
+ it has already been saved. */
+ && i > reg_parm_stack_space)
+ break;
+
+ if (i != upper_bound)
+ {
+ /* We need to make a save area. See what mode we can make it. */
+ enum machine_mode save_mode
+ = mode_for_size (argvec[argnum].size.constant * BITS_PER_UNIT,
+ MODE_INT, 1);
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock, argvec[argnum].offset.constant)));
+ argvec[argnum].save_area = gen_reg_rtx (save_mode);
+ emit_move_insn (argvec[argnum].save_area, stack_area);
+ }
+#endif
+ emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0,
+ argblock, GEN_INT (argvec[argnum].offset.constant),
+ reg_parm_stack_space);
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* Now mark the segment we just used. */
+ for (i = lower_bound; i < upper_bound; i++)
+ stack_usage_map[i] = 1;
+#endif
+
+ NO_DEFER_POP;
+ }
+ }
+
+#ifndef PUSH_ARGS_REVERSED
+#ifdef PREFERRED_STACK_BOUNDARY
+ /* If we pushed args in forward order, perform stack alignment
+ after pushing the last arg. */
+ if (argblock == 0)
+ anti_adjust_stack (GEN_INT (args_size.constant
+ - original_args_size.constant));
+#endif
+#endif
+
+#ifdef PUSH_ARGS_REVERSED
+ argnum = nargs - 1;
+#else
+ argnum = 0;
+#endif
+
+ fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0);
+
+ /* Now load any reg parms into their regs. */
+
+ /* ARGNUM indexes the ARGVEC array in the order in which the arguments
+ are to be pushed. */
+ for (count = 0; count < nargs; count++, argnum += inc)
+ {
+ register rtx val = argvec[argnum].value;
+ rtx reg = argvec[argnum].reg;
+ int partial = argvec[argnum].partial;
+
+ if (reg != 0 && partial == 0)
+ emit_move_insn (reg, val);
+ NO_DEFER_POP;
+ }
+
+ /* For version 1.37, try deleting this entirely. */
+ if (! no_queue)
+ emit_queue ();
+
+ /* Any regs containing parms remain in use through the call. */
+ for (count = 0; count < nargs; count++)
+ if (argvec[count].reg != 0)
+ use_reg (&call_fusage, argvec[count].reg);
+
+ /* Don't allow popping to be deferred, since then
+ cse'ing of library calls could delete a call and leave the pop. */
+ NO_DEFER_POP;
+
+ /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
+ will set inhibit_defer_pop to that value. */
+
+ /* The return type is needed to decide how many bytes the function pops.
+ Signedness plays no role in that, so for simplicity, we pretend it's
+ always signed. We also assume that the list of arguments passed has
+ no impact, so we pretend it is unknown. */
+
+ emit_call_1 (fun,
+ get_identifier (XSTR (orgfun, 0)),
+ build_function_type (outmode == VOIDmode ? void_type_node
+ : type_for_mode (outmode, 0), NULL_TREE),
+ original_args_size.constant, args_size.constant, 0,
+ FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
+ outmode != VOIDmode ? hard_libcall_value (outmode) : NULL_RTX,
+ old_inhibit_defer_pop + 1, call_fusage, no_queue);
+
+ pop_temp_slots ();
+
+ /* Now restore inhibit_defer_pop to its actual original value. */
+ OK_DEFER_POP;
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+#ifdef REG_PARM_STACK_SPACE
+ if (save_area)
+ {
+ enum machine_mode save_mode = GET_MODE (save_area);
+#ifdef ARGS_GROW_DOWNWARD
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ - high_to_save)));
+#else
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock, low_to_save)));
+#endif
+
+ if (save_mode != BLKmode)
+ emit_move_insn (stack_area, save_area);
+ else
+ emit_block_move (stack_area, validize_mem (save_area),
+ GEN_INT (high_to_save - low_to_save + 1),
+ PARM_BOUNDARY / BITS_PER_UNIT);
+ }
+#endif
+
+ /* If we saved any argument areas, restore them. */
+ for (count = 0; count < nargs; count++)
+ if (argvec[count].save_area)
+ {
+ enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock, argvec[count].offset.constant)));
+
+ emit_move_insn (stack_area, argvec[count].save_area);
+ }
+
+ highest_outgoing_arg_in_use = initial_highest_arg_in_use;
+ stack_usage_map = initial_stack_usage_map;
+#endif
+}
+
+/* Like emit_library_call except that an extra argument, VALUE,
+ comes second and says where to store the result.
+ (If VALUE is zero, this function chooses a convenient way
+ to return the value.
+
+ This function returns an rtx for where the value is to be found.
+ If VALUE is nonzero, VALUE is returned. */
+
+rtx
+emit_library_call_value VPROTO((rtx orgfun, rtx value, int no_queue,
+ enum machine_mode outmode, int nargs, ...))
+{
+#ifndef ANSI_PROTOTYPES
+ rtx orgfun;
+ rtx value;
+ int no_queue;
+ enum machine_mode outmode;
+ int nargs;
+#endif
+ va_list p;
+ /* Total size in bytes of all the stack-parms scanned so far. */
+ struct args_size args_size;
+ /* Size of arguments before any adjustments (such as rounding). */
+ struct args_size original_args_size;
+ register int argnum;
+ rtx fun;
+ int inc;
+ int count;
+ rtx argblock = 0;
+ CUMULATIVE_ARGS args_so_far;
+ struct arg { rtx value; enum machine_mode mode; rtx reg; int partial;
+ struct args_size offset; struct args_size size; rtx save_area; };
+ struct arg *argvec;
+ int old_inhibit_defer_pop = inhibit_defer_pop;
+ rtx call_fusage = 0;
+ rtx mem_value = 0;
+ int pcc_struct_value = 0;
+ int struct_value_size = 0;
+ int is_const;
+ int reg_parm_stack_space = 0;
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ int needed;
+#endif
+
+#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
+ /* Define the boundary of the register parm stack space that needs to be
+ save, if any. */
+ int low_to_save = -1, high_to_save;
+ rtx save_area = 0; /* Place that it is saved */
+#endif
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* Size of the stack reserved for parameter registers. */
+ int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
+ char *initial_stack_usage_map = stack_usage_map;
+#endif
+
+#ifdef REG_PARM_STACK_SPACE
+#ifdef MAYBE_REG_PARM_STACK_SPACE
+ reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
+#else
+ reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
+#endif
+#endif
+
+ VA_START (p, nargs);
+
+#ifndef ANSI_PROTOTYPES
+ orgfun = va_arg (p, rtx);
+ value = va_arg (p, rtx);
+ no_queue = va_arg (p, int);
+ outmode = va_arg (p, enum machine_mode);
+ nargs = va_arg (p, int);
+#endif
+
+ is_const = no_queue;
+ fun = orgfun;
+
+ /* If this kind of value comes back in memory,
+ decide where in memory it should come back. */
+ if (aggregate_value_p (type_for_mode (outmode, 0)))
+ {
+#ifdef PCC_STATIC_STRUCT_RETURN
+ rtx pointer_reg
+ = hard_function_value (build_pointer_type (type_for_mode (outmode, 0)),
+ 0);
+ mem_value = gen_rtx_MEM (outmode, pointer_reg);
+ pcc_struct_value = 1;
+ if (value == 0)
+ value = gen_reg_rtx (outmode);
+#else /* not PCC_STATIC_STRUCT_RETURN */
+ struct_value_size = GET_MODE_SIZE (outmode);
+ if (value != 0 && GET_CODE (value) == MEM)
+ mem_value = value;
+ else
+ mem_value = assign_stack_temp (outmode, GET_MODE_SIZE (outmode), 0);
+#endif
+
+ /* This call returns a big structure. */
+ is_const = 0;
+ }
+
+ /* ??? Unfinished: must pass the memory address as an argument. */
+
+ /* Copy all the libcall-arguments out of the varargs data
+ and into a vector ARGVEC.
+
+ Compute how to pass each argument. We only support a very small subset
+ of the full argument passing conventions to limit complexity here since
+ library functions shouldn't have many args. */
+
+ argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg));
+ bzero ((char *) argvec, (nargs + 1) * sizeof (struct arg));
+
+ INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0);
+
+ args_size.constant = 0;
+ args_size.var = 0;
+
+ count = 0;
+
+ push_temp_slots ();
+
+ /* If there's a structure value address to be passed,
+ either pass it in the special place, or pass it as an extra argument. */
+ if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value)
+ {
+ rtx addr = XEXP (mem_value, 0);
+ nargs++;
+
+ /* Make sure it is a reasonable operand for a move or push insn. */
+ if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM
+ && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
+ addr = force_operand (addr, NULL_RTX);
+
+ argvec[count].value = addr;
+ argvec[count].mode = Pmode;
+ argvec[count].partial = 0;
+
+ argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
+#ifdef FUNCTION_ARG_PARTIAL_NREGS
+ if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
+ abort ();
+#endif
+
+ locate_and_pad_parm (Pmode, NULL_TREE,
+ argvec[count].reg && argvec[count].partial == 0,
+ NULL_TREE, &args_size, &argvec[count].offset,
+ &argvec[count].size);
+
+
+ if (argvec[count].reg == 0 || argvec[count].partial != 0
+ || reg_parm_stack_space > 0)
+ args_size.constant += argvec[count].size.constant;
+
+ FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
+
+ count++;
+ }
+
+ for (; count < nargs; count++)
+ {
+ rtx val = va_arg (p, rtx);
+ enum machine_mode mode = va_arg (p, enum machine_mode);
+
+ /* We cannot convert the arg value to the mode the library wants here;
+ must do it earlier where we know the signedness of the arg. */
+ if (mode == BLKmode
+ || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
+ abort ();
+
+ /* On some machines, there's no way to pass a float to a library fcn.
+ Pass it as a double instead. */
+#ifdef LIBGCC_NEEDS_DOUBLE
+ if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
+ val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
+#endif
+
+ /* There's no need to call protect_from_queue, because
+ either emit_move_insn or emit_push_insn will do that. */
+
+ /* Make sure it is a reasonable operand for a move or push insn. */
+ if (GET_CODE (val) != REG && GET_CODE (val) != MEM
+ && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
+ val = force_operand (val, NULL_RTX);
+
+#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
+ if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
+ {
+ /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can
+ be viewed as just an efficiency improvement. */
+ rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
+ emit_move_insn (slot, val);
+ val = XEXP (slot, 0);
+ mode = Pmode;
+ }
+#endif
+
+ argvec[count].value = val;
+ argvec[count].mode = mode;
+
+ argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
+ if (argvec[count].reg && GET_CODE (argvec[count].reg) == PARALLEL)
+ abort ();
+#ifdef FUNCTION_ARG_PARTIAL_NREGS
+ argvec[count].partial
+ = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
+#else
+ argvec[count].partial = 0;
+#endif
+
+ locate_and_pad_parm (mode, NULL_TREE,
+ argvec[count].reg && argvec[count].partial == 0,
+ NULL_TREE, &args_size, &argvec[count].offset,
+ &argvec[count].size);
+
+ if (argvec[count].size.var)
+ abort ();
+
+ if (reg_parm_stack_space == 0 && argvec[count].partial)
+ argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;
+
+ if (argvec[count].reg == 0 || argvec[count].partial != 0
+ || reg_parm_stack_space > 0)
+ args_size.constant += argvec[count].size.constant;
+
+ FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
+ }
+ va_end (p);
+
+#ifdef FINAL_REG_PARM_STACK_SPACE
+ reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
+ args_size.var);
+#endif
+ /* If this machine requires an external definition for library
+ functions, write one out. */
+ assemble_external_libcall (fun);
+
+ original_args_size = args_size;
+#ifdef PREFERRED_STACK_BOUNDARY
+ args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
+ / STACK_BYTES) * STACK_BYTES);
+#endif
+
+ args_size.constant = MAX (args_size.constant,
+ reg_parm_stack_space);
+
+#ifndef OUTGOING_REG_PARM_STACK_SPACE
+ args_size.constant -= reg_parm_stack_space;
+#endif
+
+ if (args_size.constant > current_function_outgoing_args_size)
+ current_function_outgoing_args_size = args_size.constant;
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* Since the stack pointer will never be pushed, it is possible for
+ the evaluation of a parm to clobber something we have already
+ written to the stack. Since most function calls on RISC machines
+ do not use the stack, this is uncommon, but must work correctly.
+
+ Therefore, we save any area of the stack that was already written
+ and that we are using. Here we set up to do this by making a new
+ stack usage map from the old one.
+
+ Another approach might be to try to reorder the argument
+ evaluations to avoid this conflicting stack usage. */
+
+ needed = args_size.constant;
+
+#ifndef OUTGOING_REG_PARM_STACK_SPACE
+ /* Since we will be writing into the entire argument area, the
+ map must be allocated for its entire size, not just the part that
+ is the responsibility of the caller. */
+ needed += reg_parm_stack_space;
+#endif
+
+#ifdef ARGS_GROW_DOWNWARD
+ highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+ needed + 1);
+#else
+ highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
+ needed);
+#endif
+ stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);
+
+ if (initial_highest_arg_in_use)
+ bcopy (initial_stack_usage_map, stack_usage_map,
+ initial_highest_arg_in_use);
+
+ if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
+ bzero (&stack_usage_map[initial_highest_arg_in_use],
+ highest_outgoing_arg_in_use - initial_highest_arg_in_use);
+ needed = 0;
+
+ /* The address of the outgoing argument list must not be copied to a
+ register here, because argblock would be left pointing to the
+ wrong place after the call to allocate_dynamic_stack_space below.
+ */
+
+ argblock = virtual_outgoing_args_rtx;
+#else /* not ACCUMULATE_OUTGOING_ARGS */
+#ifndef PUSH_ROUNDING
+ argblock = push_block (GEN_INT (args_size.constant), 0, 0);
+#endif
+#endif
+
+#ifdef PUSH_ARGS_REVERSED
+#ifdef PREFERRED_STACK_BOUNDARY
+ /* If we push args individually in reverse order, perform stack alignment
+ before the first push (the last arg). */
+ if (argblock == 0)
+ anti_adjust_stack (GEN_INT (args_size.constant
+ - original_args_size.constant));
+#endif
+#endif
+
+#ifdef PUSH_ARGS_REVERSED
+ inc = -1;
+ argnum = nargs - 1;
+#else
+ inc = 1;
+ argnum = 0;
+#endif
+
+#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
+ /* The argument list is the property of the called routine and it
+ may clobber it. If the fixed area has been used for previous
+ parameters, we must save and restore it.
+
+ Here we compute the boundary of the that needs to be saved, if any. */
+
+#ifdef ARGS_GROW_DOWNWARD
+ for (count = 0; count < reg_parm_stack_space + 1; count++)
+#else
+ for (count = 0; count < reg_parm_stack_space; count++)
+#endif
+ {
+ if (count >= highest_outgoing_arg_in_use
+ || stack_usage_map[count] == 0)
+ continue;
+
+ if (low_to_save == -1)
+ low_to_save = count;
+
+ high_to_save = count;
+ }
+
+ if (low_to_save >= 0)
+ {
+ int num_to_save = high_to_save - low_to_save + 1;
+ enum machine_mode save_mode
+ = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
+ rtx stack_area;
+
+ /* If we don't have the required alignment, must do this in BLKmode. */
+ if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode),
+ BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
+ save_mode = BLKmode;
+
+#ifdef ARGS_GROW_DOWNWARD
+ stack_area = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ - high_to_save)));
+#else
+ stack_area = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ low_to_save)));
+#endif
+ if (save_mode == BLKmode)
+ {
+ save_area = assign_stack_temp (BLKmode, num_to_save, 0);
+ emit_block_move (validize_mem (save_area), stack_area,
+ GEN_INT (num_to_save),
+ PARM_BOUNDARY / BITS_PER_UNIT);
+ }
+ else
+ {
+ save_area = gen_reg_rtx (save_mode);
+ emit_move_insn (save_area, stack_area);
+ }
+ }
+#endif
+
+ /* Push the args that need to be pushed. */
+
+ /* ARGNUM indexes the ARGVEC array in the order in which the arguments
+ are to be pushed. */
+ for (count = 0; count < nargs; count++, argnum += inc)
+ {
+ register enum machine_mode mode = argvec[argnum].mode;
+ register rtx val = argvec[argnum].value;
+ rtx reg = argvec[argnum].reg;
+ int partial = argvec[argnum].partial;
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ int lower_bound, upper_bound, i;
+#endif
+
+ if (! (reg != 0 && partial == 0))
+ {
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* If this is being stored into a pre-allocated, fixed-size, stack
+ area, save any previous data at that location. */
+
+#ifdef ARGS_GROW_DOWNWARD
+ /* stack_slot is negative, but we want to index stack_usage_map
+ with positive values. */
+ upper_bound = -argvec[argnum].offset.constant + 1;
+ lower_bound = upper_bound - argvec[argnum].size.constant;
+#else
+ lower_bound = argvec[argnum].offset.constant;
+ upper_bound = lower_bound + argvec[argnum].size.constant;
+#endif
+
+ for (i = lower_bound; i < upper_bound; i++)
+ if (stack_usage_map[i]
+ /* Don't store things in the fixed argument area at this point;
+ it has already been saved. */
+ && i > reg_parm_stack_space)
+ break;
+
+ if (i != upper_bound)
+ {
+ /* We need to make a save area. See what mode we can make it. */
+ enum machine_mode save_mode
+ = mode_for_size (argvec[argnum].size.constant * BITS_PER_UNIT,
+ MODE_INT, 1);
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ argvec[argnum].offset.constant)));
+ argvec[argnum].save_area = gen_reg_rtx (save_mode);
+ emit_move_insn (argvec[argnum].save_area, stack_area);
+ }
+#endif
+ emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0,
+ argblock, GEN_INT (argvec[argnum].offset.constant),
+ reg_parm_stack_space);
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* Now mark the segment we just used. */
+ for (i = lower_bound; i < upper_bound; i++)
+ stack_usage_map[i] = 1;
+#endif
+
+ NO_DEFER_POP;
+ }
+ }
+
+#ifndef PUSH_ARGS_REVERSED
+#ifdef PREFERRED_STACK_BOUNDARY
+ /* If we pushed args in forward order, perform stack alignment
+ after pushing the last arg. */
+ if (argblock == 0)
+ anti_adjust_stack (GEN_INT (args_size.constant
+ - original_args_size.constant));
+#endif
+#endif
+
+#ifdef PUSH_ARGS_REVERSED
+ argnum = nargs - 1;
+#else
+ argnum = 0;
+#endif
+
+ fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0);
+
+ /* Now load any reg parms into their regs. */
+
+ /* ARGNUM indexes the ARGVEC array in the order in which the arguments
+ are to be pushed. */
+ for (count = 0; count < nargs; count++, argnum += inc)
+ {
+ register rtx val = argvec[argnum].value;
+ rtx reg = argvec[argnum].reg;
+ int partial = argvec[argnum].partial;
+
+ if (reg != 0 && partial == 0)
+ emit_move_insn (reg, val);
+ NO_DEFER_POP;
+ }
+
+#if 0
+ /* For version 1.37, try deleting this entirely. */
+ if (! no_queue)
+ emit_queue ();
+#endif
+
+ /* Any regs containing parms remain in use through the call. */
+ for (count = 0; count < nargs; count++)
+ if (argvec[count].reg != 0)
+ use_reg (&call_fusage, argvec[count].reg);
+
+ /* Pass the function the address in which to return a structure value. */
+ if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value)
+ {
+ emit_move_insn (struct_value_rtx,
+ force_reg (Pmode,
+ force_operand (XEXP (mem_value, 0),
+ NULL_RTX)));
+ if (GET_CODE (struct_value_rtx) == REG)
+ use_reg (&call_fusage, struct_value_rtx);
+ }
+
+ /* Don't allow popping to be deferred, since then
+ cse'ing of library calls could delete a call and leave the pop. */
+ NO_DEFER_POP;
+
+ /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
+ will set inhibit_defer_pop to that value. */
+ /* See the comment in emit_library_call about the function type we build
+ and pass here. */
+
+ emit_call_1 (fun,
+ get_identifier (XSTR (orgfun, 0)),
+ build_function_type (type_for_mode (outmode, 0), NULL_TREE),
+ original_args_size.constant, args_size.constant,
+ struct_value_size,
+ FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
+ mem_value == 0 ? hard_libcall_value (outmode) : NULL_RTX,
+ old_inhibit_defer_pop + 1, call_fusage, is_const);
+
+ /* Now restore inhibit_defer_pop to its actual original value. */
+ OK_DEFER_POP;
+
+ pop_temp_slots ();
+
+ /* Copy the value to the right place. */
+ if (outmode != VOIDmode)
+ {
+ if (mem_value)
+ {
+ if (value == 0)
+ value = mem_value;
+ if (value != mem_value)
+ emit_move_insn (value, mem_value);
+ }
+ else if (value != 0)
+ emit_move_insn (value, hard_libcall_value (outmode));
+ else
+ value = hard_libcall_value (outmode);
+ }
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+#ifdef REG_PARM_STACK_SPACE
+ if (save_area)
+ {
+ enum machine_mode save_mode = GET_MODE (save_area);
+#ifdef ARGS_GROW_DOWNWARD
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock,
+ - high_to_save)));
+#else
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ plus_constant (argblock, low_to_save)));
+#endif
+ if (save_mode != BLKmode)
+ emit_move_insn (stack_area, save_area);
+ else
+ emit_block_move (stack_area, validize_mem (save_area),
+ GEN_INT (high_to_save - low_to_save + 1),
+ PARM_BOUNDARY / BITS_PER_UNIT);
+ }
+#endif
+
+ /* If we saved any argument areas, restore them. */
+ for (count = 0; count < nargs; count++)
+ if (argvec[count].save_area)
+ {
+ enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode, plus_constant (argblock,
+ argvec[count].offset.constant)));
+
+ emit_move_insn (stack_area, argvec[count].save_area);
+ }
+
+ highest_outgoing_arg_in_use = initial_highest_arg_in_use;
+ stack_usage_map = initial_stack_usage_map;
+#endif
+
+ return value;
+}
+
+#if 0
+/* Return an rtx which represents a suitable home on the stack
+ given TYPE, the type of the argument looking for a home.
+ This is called only for BLKmode arguments.
+
+ SIZE is the size needed for this target.
+ ARGS_ADDR is the address of the bottom of the argument block for this call.
+ OFFSET describes this parameter's offset into ARGS_ADDR. It is meaningless
+ if this machine uses push insns. */
+
+static rtx
+target_for_arg (type, size, args_addr, offset)
+ tree type;
+ rtx size;
+ rtx args_addr;
+ struct args_size offset;
+{
+ rtx target;
+ rtx offset_rtx = ARGS_SIZE_RTX (offset);
+
+ /* We do not call memory_address if possible,
+ because we want to address as close to the stack
+ as possible. For non-variable sized arguments,
+ this will be stack-pointer relative addressing. */
+ if (GET_CODE (offset_rtx) == CONST_INT)
+ target = plus_constant (args_addr, INTVAL (offset_rtx));
+ else
+ {
+ /* I have no idea how to guarantee that this
+ will work in the presence of register parameters. */
+ target = gen_rtx_PLUS (Pmode, args_addr, offset_rtx);
+ target = memory_address (QImode, target);
+ }
+
+ return gen_rtx_MEM (BLKmode, target);
+}
+#endif
+
+/* Store a single argument for a function call
+ into the register or memory area where it must be passed.
+ *ARG describes the argument value and where to pass it.
+
+ ARGBLOCK is the address of the stack-block for all the arguments,
+ or 0 on a machine where arguments are pushed individually.
+
+ MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
+ so must be careful about how the stack is used.
+
+ VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
+ argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
+ that we need not worry about saving and restoring the stack.
+
+ FNDECL is the declaration of the function we are calling. */
+
+static void
+store_one_arg (arg, argblock, may_be_alloca, variable_size,
+ reg_parm_stack_space)
+ struct arg_data *arg;
+ rtx argblock;
+ int may_be_alloca;
+ int variable_size ATTRIBUTE_UNUSED;
+ int reg_parm_stack_space;
+{
+ register tree pval = arg->tree_value;
+ rtx reg = 0;
+ int partial = 0;
+ int used = 0;
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ int i, lower_bound, upper_bound;
+#endif
+
+ if (TREE_CODE (pval) == ERROR_MARK)
+ return;
+
+ /* Push a new temporary level for any temporaries we make for
+ this argument. */
+ push_temp_slots ();
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* If this is being stored into a pre-allocated, fixed-size, stack area,
+ save any previous data at that location. */
+ if (argblock && ! variable_size && arg->stack)
+ {
+#ifdef ARGS_GROW_DOWNWARD
+ /* stack_slot is negative, but we want to index stack_usage_map
+ with positive values. */
+ if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
+ upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
+ else
+ upper_bound = 0;
+
+ lower_bound = upper_bound - arg->size.constant;
+#else
+ if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
+ lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
+ else
+ lower_bound = 0;
+
+ upper_bound = lower_bound + arg->size.constant;
+#endif
+
+ for (i = lower_bound; i < upper_bound; i++)
+ if (stack_usage_map[i]
+ /* Don't store things in the fixed argument area at this point;
+ it has already been saved. */
+ && i > reg_parm_stack_space)
+ break;
+
+ if (i != upper_bound)
+ {
+ /* We need to make a save area. See what mode we can make it. */
+ enum machine_mode save_mode
+ = mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1);
+ rtx stack_area
+ = gen_rtx_MEM (save_mode,
+ memory_address (save_mode,
+ XEXP (arg->stack_slot, 0)));
+
+ if (save_mode == BLKmode)
+ {
+ arg->save_area = assign_stack_temp (BLKmode,
+ arg->size.constant, 0);
+ MEM_SET_IN_STRUCT_P (arg->save_area,
+ AGGREGATE_TYPE_P (TREE_TYPE
+ (arg->tree_value)));
+ preserve_temp_slots (arg->save_area);
+ emit_block_move (validize_mem (arg->save_area), stack_area,
+ GEN_INT (arg->size.constant),
+ PARM_BOUNDARY / BITS_PER_UNIT);
+ }
+ else
+ {
+ arg->save_area = gen_reg_rtx (save_mode);
+ emit_move_insn (arg->save_area, stack_area);
+ }
+ }
+ }
+
+ /* Now that we have saved any slots that will be overwritten by this
+ store, mark all slots this store will use. We must do this before
+ we actually expand the argument since the expansion itself may
+ trigger library calls which might need to use the same stack slot. */
+ if (argblock && ! variable_size && arg->stack)
+ for (i = lower_bound; i < upper_bound; i++)
+ stack_usage_map[i] = 1;
+#endif
+
+ /* If this isn't going to be placed on both the stack and in registers,
+ set up the register and number of words. */
+ if (! arg->pass_on_stack)
+ reg = arg->reg, partial = arg->partial;
+
+ if (reg != 0 && partial == 0)
+ /* Being passed entirely in a register. We shouldn't be called in
+ this case. */
+ abort ();
+
+ /* If this arg needs special alignment, don't load the registers
+ here. */
+ if (arg->n_aligned_regs != 0)
+ reg = 0;
+
+ /* If this is being passed partially in a register, we can't evaluate
+ it directly into its stack slot. Otherwise, we can. */
+ if (arg->value == 0)
+ {
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ /* stack_arg_under_construction is nonzero if a function argument is
+ being evaluated directly into the outgoing argument list and
+ expand_call must take special action to preserve the argument list
+ if it is called recursively.
+
+ For scalar function arguments stack_usage_map is sufficient to
+ determine which stack slots must be saved and restored. Scalar
+ arguments in general have pass_on_stack == 0.
+
+ If this argument is initialized by a function which takes the
+ address of the argument (a C++ constructor or a C function
+ returning a BLKmode structure), then stack_usage_map is
+ insufficient and expand_call must push the stack around the
+ function call. Such arguments have pass_on_stack == 1.
+
+ Note that it is always safe to set stack_arg_under_construction,
+ but this generates suboptimal code if set when not needed. */
+
+ if (arg->pass_on_stack)
+ stack_arg_under_construction++;
+#endif
+ arg->value = expand_expr (pval,
+ (partial
+ || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
+ ? NULL_RTX : arg->stack,
+ VOIDmode, 0);
+
+ /* If we are promoting object (or for any other reason) the mode
+ doesn't agree, convert the mode. */
+
+ if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
+ arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
+ arg->value, arg->unsignedp);
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+ if (arg->pass_on_stack)
+ stack_arg_under_construction--;
+#endif
+ }
+
+ /* Don't allow anything left on stack from computation
+ of argument to alloca. */
+ if (may_be_alloca)
+ do_pending_stack_adjust ();
+
+ if (arg->value == arg->stack)
+ {
+ /* If the value is already in the stack slot, we are done moving
+ data. */
+ if (current_function_check_memory_usage && GET_CODE (arg->stack) == MEM)
+ {
+ emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
+ XEXP (arg->stack, 0), Pmode,
+ ARGS_SIZE_RTX (arg->size),
+ TYPE_MODE (sizetype),
+ GEN_INT (MEMORY_USE_RW),
+ TYPE_MODE (integer_type_node));
+ }
+ }
+ else if (arg->mode != BLKmode)
+ {
+ register int size;
+
+ /* Argument is a scalar, not entirely passed in registers.
+ (If part is passed in registers, arg->partial says how much
+ and emit_push_insn will take care of putting it there.)
+
+ Push it, and if its size is less than the
+ amount of space allocated to it,
+ also bump stack pointer by the additional space.
+ Note that in C the default argument promotions
+ will prevent such mismatches. */
+
+ size = GET_MODE_SIZE (arg->mode);
+ /* Compute how much space the push instruction will push.
+ On many machines, pushing a byte will advance the stack
+ pointer by a halfword. */
+#ifdef PUSH_ROUNDING
+ size = PUSH_ROUNDING (size);
+#endif
+ used = size;
+
+ /* Compute how much space the argument should get:
+ round up to a multiple of the alignment for arguments. */
+ if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
+ used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
+ / (PARM_BOUNDARY / BITS_PER_UNIT))
+ * (PARM_BOUNDARY / BITS_PER_UNIT));
+
+ /* This isn't already where we want it on the stack, so put it there.
+ This can either be done with push or copy insns. */
+ emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX, 0,
+ partial, reg, used - size, argblock,
+ ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space);
+ }
+ else
+ {
+ /* BLKmode, at least partly to be pushed. */
+
+ register int excess;
+ rtx size_rtx;
+
+ /* Pushing a nonscalar.
+ If part is passed in registers, PARTIAL says how much
+ and emit_push_insn will take care of putting it there. */
+
+ /* Round its size up to a multiple
+ of the allocation unit for arguments. */
+
+ if (arg->size.var != 0)
+ {
+ excess = 0;
+ size_rtx = ARGS_SIZE_RTX (arg->size);
+ }
+ else
+ {
+ /* PUSH_ROUNDING has no effect on us, because
+ emit_push_insn for BLKmode is careful to avoid it. */
+ excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval))
+ + partial * UNITS_PER_WORD);
+ size_rtx = expr_size (pval);
+ }
+
+ emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
+ TYPE_ALIGN (TREE_TYPE (pval)) / BITS_PER_UNIT, partial,
+ reg, excess, argblock, ARGS_SIZE_RTX (arg->offset),
+ reg_parm_stack_space);
+ }
+
+
+ /* Unless this is a partially-in-register argument, the argument is now
+ in the stack.
+
+ ??? Note that this can change arg->value from arg->stack to
+ arg->stack_slot and it matters when they are not the same.
+ It isn't totally clear that this is correct in all cases. */
+ if (partial == 0)
+ arg->value = arg->stack_slot;
+
+ /* Once we have pushed something, pops can't safely
+ be deferred during the rest of the arguments. */
+ NO_DEFER_POP;
+
+ /* ANSI doesn't require a sequence point here,
+ but PCC has one, so this will avoid some problems. */
+ emit_queue ();
+
+ /* Free any temporary slots made in processing this argument. Show
+ that we might have taken the address of something and pushed that
+ as an operand. */
+ preserve_temp_slots (NULL_RTX);
+ free_temp_slots ();
+ pop_temp_slots ();
+}