summaryrefslogtreecommitdiff
path: root/gnu/llvm/tools
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/tools')
-rw-r--r--gnu/llvm/tools/lld/ELF/Relocations.cpp1524
1 files changed, 1123 insertions, 401 deletions
diff --git a/gnu/llvm/tools/lld/ELF/Relocations.cpp b/gnu/llvm/tools/lld/ELF/Relocations.cpp
index c09cf6b2b1e..abe5498ba51 100644
--- a/gnu/llvm/tools/lld/ELF/Relocations.cpp
+++ b/gnu/llvm/tools/lld/ELF/Relocations.cpp
@@ -43,74 +43,151 @@
#include "Relocations.h"
#include "Config.h"
+#include "LinkerScript.h"
#include "OutputSections.h"
+#include "Strings.h"
#include "SymbolTable.h"
+#include "Symbols.h"
+#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
+#include "lld/Common/Memory.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;
-namespace lld {
-namespace elf {
-
-static bool refersToGotEntry(RelExpr Expr) {
- return Expr == R_GOT || Expr == R_GOT_OFF || Expr == R_MIPS_GOT_LOCAL_PAGE ||
- Expr == R_MIPS_GOT_OFF || Expr == R_MIPS_TLSGD ||
- Expr == R_MIPS_TLSLD || Expr == R_GOT_PAGE_PC || Expr == R_GOT_PC ||
- Expr == R_GOT_FROM_END || Expr == R_TLSGD || Expr == R_TLSGD_PC ||
- Expr == R_TLSDESC || Expr == R_TLSDESC_PAGE;
-}
-
-static bool isPreemptible(const SymbolBody &Body, uint32_t Type) {
- // In case of MIPS GP-relative relocations always resolve to a definition
- // in a regular input file, ignoring the one-definition rule. So we,
- // for example, should not attempt to create a dynamic relocation even
- // if the target symbol is preemptible. There are two two MIPS GP-relative
- // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16
- // can be against a preemptible symbol.
- // To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all
- // relocation types occupy eight bit. In case of N64 ABI we extract first
- // relocation from 3-in-1 packet because only the first relocation can
- // be against a real symbol.
- if (Config->EMachine == EM_MIPS && (Type & 0xff) == R_MIPS_GPREL16)
+using namespace lld;
+using namespace lld::elf;
+
+// Construct a message in the following format.
+//
+// >>> defined in /home/alice/src/foo.o
+// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
+// >>> /home/alice/src/bar.o:(.text+0x1)
+static std::string getLocation(InputSectionBase &S, const Symbol &Sym,
+ uint64_t Off) {
+ std::string Msg =
+ "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by ";
+ std::string Src = S.getSrcMsg(Sym, Off);
+ if (!Src.empty())
+ Msg += Src + "\n>>> ";
+ return Msg + S.getObjMsg(Off);
+}
+
+// This is a MIPS-specific rule.
+//
+// In case of MIPS GP-relative relocations always resolve to a definition
+// in a regular input file, ignoring the one-definition rule. So we,
+// for example, should not attempt to create a dynamic relocation even
+// if the target symbol is preemptible. There are two two MIPS GP-relative
+// relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16
+// can be against a preemptible symbol.
+//
+// To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all
+// relocation types occupy eight bit. In case of N64 ABI we extract first
+// relocation from 3-in-1 packet because only the first relocation can
+// be against a real symbol.
+static bool isMipsGprel(RelType Type) {
+ if (Config->EMachine != EM_MIPS)
return false;
- return Body.isPreemptible();
+ Type &= 0xff;
+ return Type == R_MIPS_GPREL16 || Type == R_MICROMIPS_GPREL16 ||
+ Type == R_MICROMIPS_GPREL7_S2;
}
-// This function is similar to the `handleTlsRelocation`. MIPS does not support
-// any relaxations for TLS relocations so by factoring out MIPS handling into
-// the separate function we can simplify the code and does not pollute
-// `handleTlsRelocation` by MIPS `ifs` statements.
+// This function is similar to the `handleTlsRelocation`. MIPS does not
+// support any relaxations for TLS relocations so by factoring out MIPS
+// handling in to the separate function we can simplify the code and do not
+// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
+// Mips has a custom MipsGotSection that handles the writing of GOT entries
+// without dynamic relocations.
template <class ELFT>
-static unsigned
-handleMipsTlsRelocation(uint32_t Type, SymbolBody &Body,
- InputSectionBase<ELFT> &C, typename ELFT::uint Offset,
- typename ELFT::uint Addend, RelExpr Expr) {
+static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym,
+ InputSectionBase &C, uint64_t Offset,
+ int64_t Addend, RelExpr Expr) {
if (Expr == R_MIPS_TLSLD) {
- if (Out<ELFT>::Got->addTlsIndex())
- Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got,
- Out<ELFT>::Got->getTlsIndexOff(), false,
- nullptr, 0});
- C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ if (InX::MipsGot->addTlsIndex() && Config->Pic)
+ InX::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::MipsGot,
+ InX::MipsGot->getTlsIndexOff(), false, nullptr,
+ 0});
+ C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
- if (Target->isTlsGlobalDynamicRel(Type)) {
- if (Out<ELFT>::Got->addDynTlsEntry(Body)) {
- typedef typename ELFT::uint uintX_t;
- uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body);
- Out<ELFT>::RelaDyn->addReloc(
- {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0});
- Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got,
- Off + (uintX_t)sizeof(uintX_t), false,
- &Body, 0});
+
+ if (Expr == R_MIPS_TLSGD) {
+ if (InX::MipsGot->addDynTlsEntry(Sym) && Sym.IsPreemptible) {
+ uint64_t Off = InX::MipsGot->getGlobalDynOffset(Sym);
+ InX::RelaDyn->addReloc(
+ {Target->TlsModuleIndexRel, InX::MipsGot, Off, false, &Sym, 0});
+ if (Sym.IsPreemptible)
+ InX::RelaDyn->addReloc({Target->TlsOffsetRel, InX::MipsGot,
+ Off + Config->Wordsize, false, &Sym, 0});
}
- C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
+ return 1;
+ }
+ return 0;
+}
+
+// This function is similar to the `handleMipsTlsRelocation`. ARM also does not
+// support any relaxations for TLS relocations. ARM is logically similar to Mips
+// in how it handles TLS, but Mips uses its own custom GOT which handles some
+// of the cases that ARM uses GOT relocations for.
+//
+// We look for TLS global dynamic and local dynamic relocations, these may
+// require the generation of a pair of GOT entries that have associated
+// dynamic relocations. When the results of the dynamic relocations can be
+// resolved at static link time we do so. This is necessary for static linking
+// as there will be no dynamic loader to resolve them at load-time.
+//
+// The pair of GOT entries created are of the form
+// GOT[e0] Module Index (Used to find pointer to TLS block at run-time)
+// GOT[e1] Offset of symbol in TLS block
+template <class ELFT>
+static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym,
+ InputSectionBase &C, uint64_t Offset,
+ int64_t Addend, RelExpr Expr) {
+ // The Dynamic TLS Module Index Relocation for a symbol defined in an
+ // executable is always 1. If the target Symbol is not preemptible then
+ // we know the offset into the TLS block at static link time.
+ bool NeedDynId = Sym.IsPreemptible || Config->Shared;
+ bool NeedDynOff = Sym.IsPreemptible;
+
+ auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) {
+ if (Dyn)
+ InX::RelaDyn->addReloc({Type, InX::Got, Off, false, Dest, 0});
+ else
+ InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest});
+ };
+
+ // Local Dynamic is for access to module local TLS variables, while still
+ // being suitable for being dynamically loaded via dlopen.
+ // GOT[e0] is the module index, with a special value of 0 for the current
+ // module. GOT[e1] is unused. There only needs to be one module index entry.
+ if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) {
+ AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel,
+ NeedDynId ? nullptr : &Sym, NeedDynId);
+ C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
+ return 1;
+ }
+
+ // Global Dynamic is the most general purpose access model. When we know
+ // the module index and offset of symbol in TLS block we can fill these in
+ // using static GOT relocations.
+ if (Expr == R_TLSGD_PC) {
+ if (InX::Got->addDynTlsEntry(Sym)) {
+ uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
+ AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId);
+ AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym,
+ NeedDynOff);
+ }
+ C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
return 0;
@@ -118,116 +195,122 @@ handleMipsTlsRelocation(uint32_t Type, SymbolBody &Body,
// Returns the number of relocations processed.
template <class ELFT>
-static unsigned handleTlsRelocation(uint32_t Type, SymbolBody &Body,
- InputSectionBase<ELFT> &C,
- typename ELFT::uint Offset,
- typename ELFT::uint Addend, RelExpr Expr) {
- if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC))
+static unsigned
+handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C,
+ typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) {
+ if (!(C.Flags & SHF_ALLOC))
return 0;
- if (!Body.isTls())
+ if (!Sym.isTls())
return 0;
- typedef typename ELFT::uint uintX_t;
-
+ if (Config->EMachine == EM_ARM)
+ return handleARMTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);
if (Config->EMachine == EM_MIPS)
- return handleMipsTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr);
+ return handleMipsTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);
- if ((Expr == R_TLSDESC || Expr == R_TLSDESC_PAGE || Expr == R_HINT) &&
+ if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) &&
Config->Shared) {
- if (Out<ELFT>::Got->addDynTlsEntry(Body)) {
- uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body);
- Out<ELFT>::RelaDyn->addReloc(
- {Target->TlsDescRel, Out<ELFT>::Got, Off, false, &Body, 0});
+ if (InX::Got->addDynTlsEntry(Sym)) {
+ uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
+ InX::RelaDyn->addReloc(
+ {Target->TlsDescRel, InX::Got, Off, !Sym.IsPreemptible, &Sym, 0});
}
- if (Expr != R_HINT)
- C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ if (Expr != R_TLSDESC_CALL)
+ C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
- if (Expr == R_TLSLD_PC || Expr == R_TLSLD) {
+ if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) {
// Local-Dynamic relocs can be relaxed to Local-Exec.
if (!Config->Shared) {
C.Relocations.push_back(
- {R_RELAX_TLS_LD_TO_LE, Type, &C, Offset, Addend, &Body});
+ {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
return 2;
}
- if (Out<ELFT>::Got->addTlsIndex())
- Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got,
- Out<ELFT>::Got->getTlsIndexOff(), false,
- nullptr, 0});
- C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ if (InX::Got->addTlsIndex())
+ InX::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::Got,
+ InX::Got->getTlsIndexOff(), false, nullptr, 0});
+ C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
// Local-Dynamic relocs can be relaxed to Local-Exec.
- if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) {
- C.Relocations.push_back(
- {R_RELAX_TLS_LD_TO_LE, Type, &C, Offset, Addend, &Body});
+ if (isRelExprOneOf<R_ABS, R_TLSLD, R_TLSLD_PC>(Expr) && !Config->Shared) {
+ C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
return 1;
}
- if (Expr == R_TLSDESC_PAGE || Expr == R_TLSDESC || Expr == R_HINT ||
- Target->isTlsGlobalDynamicRel(Type)) {
+ if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD,
+ R_TLSGD_PC>(Expr)) {
if (Config->Shared) {
- if (Out<ELFT>::Got->addDynTlsEntry(Body)) {
- uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body);
- Out<ELFT>::RelaDyn->addReloc(
- {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0});
+ if (InX::Got->addDynTlsEntry(Sym)) {
+ uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
+ InX::RelaDyn->addReloc(
+ {Target->TlsModuleIndexRel, InX::Got, Off, false, &Sym, 0});
// If the symbol is preemptible we need the dynamic linker to write
// the offset too.
- if (isPreemptible(Body, Type))
- Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got,
- Off + (uintX_t)sizeof(uintX_t), false,
- &Body, 0});
+ uint64_t OffsetOff = Off + Config->Wordsize;
+ if (Sym.IsPreemptible)
+ InX::RelaDyn->addReloc(
+ {Target->TlsOffsetRel, InX::Got, OffsetOff, false, &Sym, 0});
+ else
+ InX::Got->Relocations.push_back(
+ {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym});
}
- C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
return 1;
}
// Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
// depending on the symbol being locally defined or not.
- if (isPreemptible(Body, Type)) {
+ if (Sym.IsPreemptible) {
C.Relocations.push_back(
{Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
- &C, Offset, Addend, &Body});
- if (!Body.isInGot()) {
- Out<ELFT>::Got->addEntry(Body);
- Out<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, Out<ELFT>::Got,
- Body.getGotOffset<ELFT>(), false, &Body,
- 0});
+ Offset, Addend, &Sym});
+ if (!Sym.isInGot()) {
+ InX::Got->addEntry(Sym);
+ InX::RelaDyn->addReloc(
+ {Target->TlsGotRel, InX::Got, Sym.getGotOffset(), false, &Sym, 0});
}
- return Target->TlsGdRelaxSkip;
+ } else {
+ C.Relocations.push_back(
+ {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type,
+ Offset, Addend, &Sym});
}
- C.Relocations.push_back(
- {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, &C,
- Offset, Addend, &Body});
return Target->TlsGdRelaxSkip;
}
// Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
// defined.
- if (Target->isTlsInitialExecRel(Type) && !Config->Shared &&
- !isPreemptible(Body, Type)) {
- C.Relocations.push_back(
- {R_RELAX_TLS_IE_TO_LE, Type, &C, Offset, Addend, &Body});
+ if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) &&
+ !Config->Shared && !Sym.IsPreemptible) {
+ C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym});
return 1;
}
- return 0;
-}
-template <endianness E> static int16_t readSignedLo16(const uint8_t *Loc) {
- return read32<E>(Loc) & 0xffff;
+ if (Expr == R_TLSDESC_CALL)
+ return 1;
+ return 0;
}
-template <class RelTy>
-static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) {
- switch (Rel->getType(Config->Mips64EL)) {
+static RelType getMipsPairType(RelType Type, bool IsLocal) {
+ switch (Type) {
case R_MIPS_HI16:
return R_MIPS_LO16;
case R_MIPS_GOT16:
- return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE;
+ // In case of global symbol, the R_MIPS_GOT16 relocation does not
+ // have a pair. Each global symbol has a unique entry in the GOT
+ // and a corresponding instruction with help of the R_MIPS_GOT16
+ // relocation loads an address of the symbol. In case of local
+ // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
+ // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
+ // relocations handle low 16 bits of the address. That allows
+ // to allocate only one GOT entry for every 64 KBytes of local data.
+ return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE;
+ case R_MICROMIPS_GOT16:
+ return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
case R_MIPS_PCHI16:
return R_MIPS_PCLO16;
case R_MICROMIPS_HI16:
@@ -237,65 +320,58 @@ static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) {
}
}
-template <class ELFT, class RelTy>
-static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc,
- SymbolBody &Sym, const RelTy *Rel,
- const RelTy *End) {
- uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL);
- uint32_t Type = getMipsPairType(Rel, Sym);
-
- // Some MIPS relocations use addend calculated from addend of the relocation
- // itself and addend of paired relocation. ABI requires to compute such
- // combined addend in case of REL relocation record format only.
- // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- if (RelTy::IsRela || Type == R_MIPS_NONE)
- return 0;
-
- for (const RelTy *RI = Rel; RI != End; ++RI) {
- if (RI->getType(Config->Mips64EL) != Type)
- continue;
- if (RI->getSymbol(Config->Mips64EL) != SymIndex)
- continue;
- const endianness E = ELFT::TargetEndianness;
- return ((read32<E>(BufLoc) & 0xffff) << 16) +
- readSignedLo16<E>(Buf + RI->r_offset);
- }
- warning("can't find matching " + getRelName(Type) + " relocation for " +
- getRelName(Rel->getType(Config->Mips64EL)));
- return 0;
-}
-
// True if non-preemptable symbol always has the same value regardless of where
// the DSO is loaded.
-template <class ELFT> static bool isAbsolute(const SymbolBody &Body) {
- if (Body.isUndefined())
- return !Body.isLocal() && Body.symbol()->isWeak();
- if (const auto *DR = dyn_cast<DefinedRegular<ELFT>>(&Body))
+static bool isAbsolute(const Symbol &Sym) {
+ if (Sym.isUndefWeak())
+ return true;
+ if (const auto *DR = dyn_cast<Defined>(&Sym))
return DR->Section == nullptr; // Absolute symbol.
return false;
}
+static bool isAbsoluteValue(const Symbol &Sym) {
+ return isAbsolute(Sym) || Sym.isTls();
+}
+
+// Returns true if Expr refers a PLT entry.
static bool needsPlt(RelExpr Expr) {
- return Expr == R_PLT_PC || Expr == R_PPC_PLT_OPD || Expr == R_PLT ||
- Expr == R_PLT_PAGE_PC || Expr == R_THUNK_PLT_PC;
+ return isRelExprOneOf<R_PLT_PC, R_PPC_PLT_OPD, R_PLT, R_PLT_PAGE_PC>(Expr);
+}
+
+// Returns true if Expr refers a GOT entry. Note that this function
+// returns false for TLS variables even though they need GOT, because
+// TLS variables uses GOT differently than the regular variables.
+static bool needsGot(RelExpr Expr) {
+ return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
+ R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC,
+ R_GOT_FROM_END>(Expr);
}
// True if this expression is of the form Sym - X, where X is a position in the
// file (PC, or GOT for example).
static bool isRelExpr(RelExpr Expr) {
- return Expr == R_PC || Expr == R_GOTREL || Expr == R_PAGE_PC ||
- Expr == R_RELAX_GOT_PC || Expr == R_THUNK_PC || Expr == R_THUNK_PLT_PC;
+ return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL,
+ R_PAGE_PC, R_RELAX_GOT_PC>(Expr);
}
-template <class ELFT>
-static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type,
- const SymbolBody &Body) {
+// Returns true if a given relocation can be computed at link-time.
+//
+// For instance, we know the offset from a relocation to its target at
+// link-time if the relocation is PC-relative and refers a
+// non-interposable function in the same executable. This function
+// will return true for such relocation.
+//
+// If this function returns false, that means we need to emit a
+// dynamic relocation so that the relocation will be fixed at load-time.
+static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym,
+ InputSectionBase &S, uint64_t RelOff) {
// These expressions always compute a constant
- if (E == R_SIZE || E == R_GOT_FROM_END || E == R_GOT_OFF ||
- E == R_MIPS_GOT_LOCAL_PAGE || E == R_MIPS_GOT_OFF || E == R_MIPS_TLSGD ||
- E == R_GOT_PAGE_PC || E == R_GOT_PC || E == R_PLT_PC || E == R_TLSGD_PC ||
- E == R_TLSGD || E == R_PPC_PLT_OPD || E == R_TLSDESC_PAGE ||
- E == R_HINT || E == R_THUNK_PC || E == R_THUNK_PLT_PC)
+ if (isRelExprOneOf<R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE,
+ R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
+ R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC,
+ R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_PC, R_TLSGD,
+ R_PPC_PLT_OPD, R_TLSDESC_CALL, R_TLSDESC_PAGE, R_HINT>(E))
return true;
// These never do, except if the entire file is position dependent or if
@@ -303,33 +379,41 @@ static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type,
if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
return Target->usesOnlyLowPageBits(Type) || !Config->Pic;
- if (isPreemptible(Body, Type))
+ if (Sym.IsPreemptible)
return false;
-
if (!Config->Pic)
return true;
- bool AbsVal = isAbsolute<ELFT>(Body) || Body.isTls();
+ // The size of a non preemptible symbol is a constant.
+ if (E == R_SIZE)
+ return true;
+
+ // For the target and the relocation, we want to know if they are
+ // absolute or relative.
+ bool AbsVal = isAbsoluteValue(Sym);
bool RelE = isRelExpr(E);
if (AbsVal && !RelE)
return true;
if (!AbsVal && RelE)
return true;
+ if (!AbsVal && !RelE)
+ return Target->usesOnlyLowPageBits(Type);
// Relative relocation to an absolute value. This is normally unrepresentable,
// but if the relocation refers to a weak undefined symbol, we allow it to
// resolve to the image base. This is a little strange, but it allows us to
// link function calls to such symbols. Normally such a call will be guarded
// with a comparison, which will load a zero from the GOT.
- if (AbsVal && RelE) {
- if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
- return true;
- error("relocation " + getRelName(Type) +
- " cannot refer to absolute symbol " + Body.getName());
+ // Another special case is MIPS _gp_disp symbol which represents offset
+ // between start of a function and '_gp' value and defined as absolute just
+ // to simplify the code.
+ assert(AbsVal && RelE);
+ if (Sym.isUndefWeak())
return true;
- }
- return Target->usesOnlyLowPageBits(Type);
+ error("relocation " + toString(Type) + " cannot refer to absolute symbol: " +
+ toString(Sym) + getLocation(S, Sym, RelOff));
+ return true;
}
static RelExpr toPlt(RelExpr Expr) {
@@ -356,148 +440,431 @@ static RelExpr fromPlt(RelExpr Expr) {
return Expr;
}
-template <class ELFT> static uint32_t getAlignment(SharedSymbol<ELFT> *SS) {
- typedef typename ELFT::uint uintX_t;
+// Returns true if a given shared symbol is in a read-only segment in a DSO.
+template <class ELFT> static bool isReadOnly(SharedSymbol *SS) {
+ typedef typename ELFT::Phdr Elf_Phdr;
- uintX_t SecAlign = SS->file()->getSection(SS->Sym)->sh_addralign;
- uintX_t SymValue = SS->Sym.st_value;
- int TrailingZeros =
- std::min(countTrailingZeros(SecAlign), countTrailingZeros(SymValue));
- return 1 << TrailingZeros;
+ // Determine if the symbol is read-only by scanning the DSO's program headers.
+ const SharedFile<ELFT> &File = SS->getFile<ELFT>();
+ for (const Elf_Phdr &Phdr : check(File.getObj().program_headers()))
+ if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) &&
+ !(Phdr.p_flags & ELF::PF_W) && SS->Value >= Phdr.p_vaddr &&
+ SS->Value < Phdr.p_vaddr + Phdr.p_memsz)
+ return true;
+ return false;
}
-// Reserve space in .bss for copy relocation.
-template <class ELFT> static void addCopyRelSymbol(SharedSymbol<ELFT> *SS) {
- typedef typename ELFT::uint uintX_t;
+// Returns symbols at the same offset as a given symbol, including SS itself.
+//
+// If two or more symbols are at the same offset, and at least one of
+// them are copied by a copy relocation, all of them need to be copied.
+// Otherwise, they would refer different places at runtime.
+template <class ELFT>
+static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol *SS) {
typedef typename ELFT::Sym Elf_Sym;
+ SharedFile<ELFT> &File = SS->getFile<ELFT>();
+
+ std::vector<SharedSymbol *> Ret;
+ for (const Elf_Sym &S : File.getGlobalELFSyms()) {
+ if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS ||
+ S.st_value != SS->Value)
+ continue;
+ StringRef Name = check(S.getName(File.getStringTable()));
+ Symbol *Sym = Symtab->find(Name);
+ if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym))
+ Ret.push_back(Alias);
+ }
+ return Ret;
+}
+
+// Reserve space in .bss or .bss.rel.ro for copy relocation.
+//
+// The copy relocation is pretty much a hack. If you use a copy relocation
+// in your program, not only the symbol name but the symbol's size, RW/RO
+// bit and alignment become part of the ABI. In addition to that, if the
+// symbol has aliases, the aliases become part of the ABI. That's subtle,
+// but if you violate that implicit ABI, that can cause very counter-
+// intuitive consequences.
+//
+// So, what is the copy relocation? It's for linking non-position
+// independent code to DSOs. In an ideal world, all references to data
+// exported by DSOs should go indirectly through GOT. But if object files
+// are compiled as non-PIC, all data references are direct. There is no
+// way for the linker to transform the code to use GOT, as machine
+// instructions are already set in stone in object files. This is where
+// the copy relocation takes a role.
+//
+// A copy relocation instructs the dynamic linker to copy data from a DSO
+// to a specified address (which is usually in .bss) at load-time. If the
+// static linker (that's us) finds a direct data reference to a DSO
+// symbol, it creates a copy relocation, so that the symbol can be
+// resolved as if it were in .bss rather than in a DSO.
+//
+// As you can see in this function, we create a copy relocation for the
+// dynamic linker, and the relocation contains not only symbol name but
+// various other informtion about the symbol. So, such attributes become a
+// part of the ABI.
+//
+// Note for application developers: I can give you a piece of advice if
+// you are writing a shared library. You probably should export only
+// functions from your library. You shouldn't export variables.
+//
+// As an example what can happen when you export variables without knowing
+// the semantics of copy relocations, assume that you have an exported
+// variable of type T. It is an ABI-breaking change to add new members at
+// end of T even though doing that doesn't change the layout of the
+// existing members. That's because the space for the new members are not
+// reserved in .bss unless you recompile the main program. That means they
+// are likely to overlap with other data that happens to be laid out next
+// to the variable in .bss. This kind of issue is sometimes very hard to
+// debug. What's a solution? Instead of exporting a varaible V from a DSO,
+// define an accessor getV().
+template <class ELFT> static void addCopyRelSymbol(SharedSymbol *SS) {
// Copy relocation against zero-sized symbol doesn't make sense.
- uintX_t SymSize = SS->template getSize<ELFT>();
+ uint64_t SymSize = SS->getSize();
if (SymSize == 0)
- fatal("cannot create a copy relocation for " + SS->getName());
-
- uintX_t Alignment = getAlignment(SS);
- uintX_t Off = alignTo(Out<ELFT>::Bss->getSize(), Alignment);
- Out<ELFT>::Bss->setSize(Off + SymSize);
- Out<ELFT>::Bss->updateAlignment(Alignment);
- uintX_t Shndx = SS->Sym.st_shndx;
- uintX_t Value = SS->Sym.st_value;
+ fatal("cannot create a copy relocation for symbol " + toString(*SS));
+
+ // See if this symbol is in a read-only segment. If so, preserve the symbol's
+ // memory protection by reserving space in the .bss.rel.ro section.
+ bool IsReadOnly = isReadOnly<ELFT>(SS);
+ BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss",
+ SymSize, SS->Alignment);
+ if (IsReadOnly)
+ InX::BssRelRo->getParent()->addSection(Sec);
+ else
+ InX::Bss->getParent()->addSection(Sec);
+
// Look through the DSO's dynamic symbol table for aliases and create a
// dynamic symbol for each one. This causes the copy relocation to correctly
// interpose any aliases.
- for (const Elf_Sym &S : SS->file()->getElfSymbols(true)) {
- if (S.st_shndx != Shndx || S.st_value != Value)
- continue;
- auto *Alias = dyn_cast_or_null<SharedSymbol<ELFT>>(
- Symtab<ELFT>::X->find(check(S.getName(SS->file()->getStringTable()))));
- if (!Alias)
- continue;
- Alias->OffsetInBss = Off;
- Alias->NeedsCopyOrPltAddr = true;
- Alias->symbol()->IsUsedInRegularObj = true;
+ for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) {
+ Sym->CopyRelSec = Sec;
+ Sym->IsPreemptible = false;
+ Sym->IsUsedInRegularObj = true;
+ Sym->Used = true;
}
- Out<ELFT>::RelaDyn->addReloc(
- {Target->CopyRel, Out<ELFT>::Bss, SS->OffsetInBss, false, SS, 0});
+
+ InX::RelaDyn->addReloc({Target->CopyRel, Sec, 0, false, SS, 0});
+}
+
+static void errorOrWarn(const Twine &Msg) {
+ if (!Config->NoinhibitExec)
+ error(Msg);
+ else
+ warn(Msg);
+}
+
+// Returns PLT relocation expression.
+//
+// This handles a non PIC program call to function in a shared library. In
+// an ideal world, we could just report an error saying the relocation can
+// overflow at runtime. In the real world with glibc, crt1.o has a
+// R_X86_64_PC32 pointing to libc.so.
+//
+// The general idea on how to handle such cases is to create a PLT entry and
+// use that as the function value.
+//
+// For the static linking part, we just return a plt expr and everything
+// else will use the the PLT entry as the address.
+//
+// The remaining problem is making sure pointer equality still works. We
+// need the help of the dynamic linker for that. We let it know that we have
+// a direct reference to a so symbol by creating an undefined symbol with a
+// non zero st_value. Seeing that, the dynamic linker resolves the symbol to
+// the value of the symbol we created. This is true even for got entries, so
+// pointer equality is maintained. To avoid an infinite loop, the only entry
+// that points to the real function is a dedicated got entry used by the
+// plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
+// R_386_JMP_SLOT, etc).
+static RelExpr getPltExpr(Symbol &Sym, RelExpr Expr, bool &IsConstant) {
+ Sym.NeedsPltAddr = true;
+ Sym.IsPreemptible = false;
+ IsConstant = true;
+ return toPlt(Expr);
}
+// This modifies the expression if we can use a copy relocation or point the
+// symbol to the PLT.
template <class ELFT>
-static RelExpr adjustExpr(const elf::ObjectFile<ELFT> &File, SymbolBody &Body,
- bool IsWrite, RelExpr Expr, uint32_t Type,
- const uint8_t *Data) {
- bool Preemptible = isPreemptible(Body, Type);
- if (Body.isGnuIFunc()) {
- Expr = toPlt(Expr);
- } else if (!Preemptible) {
- if (needsPlt(Expr))
- Expr = fromPlt(Expr);
- if (Expr == R_GOT_PC)
- Expr = Target->adjustRelaxExpr(Type, Data, Expr);
- }
- Expr = Target->getThunkExpr(Expr, Type, File, Body);
+static RelExpr adjustExpr(Symbol &Sym, RelExpr Expr, RelType Type,
+ InputSectionBase &S, uint64_t RelOff,
+ bool &IsConstant) {
+ // If a relocation can be applied at link-time, we don't need to
+ // create a dynamic relocation in the first place.
+ if (IsConstant)
+ return Expr;
- if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body))
+ // We can create any dynamic relocation supported by the dynamic linker if a
+ // section is writable or we are passed -z notext.
+ bool CanWrite = (S.Flags & SHF_WRITE) || !Config->ZText;
+ if (CanWrite && Target->isPicRel(Type))
return Expr;
- // This relocation would require the dynamic linker to write a value to read
- // only memory. We can hack around it if we are producing an executable and
+ // If the relocation is to a weak undef, and we are producing
+ // executable, give up on it and produce a non preemptible 0.
+ if (!Config->Shared && Sym.isUndefWeak()) {
+ Sym.IsPreemptible = false;
+ IsConstant = true;
+ return Expr;
+ }
+
+ // If we got here we know that this relocation would require the dynamic
+ // linker to write a value to read only memory or use an unsupported
+ // relocation.
+
+ // We can hack around it if we are producing an executable and
// the refered symbol can be preemepted to refer to the executable.
- if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) {
- error("can't create dynamic relocation " + getRelName(Type) +
- " against readonly segment");
+ if (!CanWrite && (Config->Shared || (Config->Pic && !isRelExpr(Expr)))) {
+ error(
+ "can't create dynamic relocation " + toString(Type) + " against " +
+ (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) +
+ " in readonly segment; recompile object files with -fPIC" +
+ getLocation(S, Sym, RelOff));
return Expr;
}
- if (Body.getVisibility() != STV_DEFAULT) {
- error("cannot preempt symbol");
+
+ // Copy relocations are only possible if we are creating an executable and the
+ // symbol is shared.
+ if (!Sym.isShared() || Config->Shared)
+ return Expr;
+
+ if (Sym.getVisibility() != STV_DEFAULT &&
+ (Sym.getVisibility() != STV_PROTECTED || !Sym.isFunc())) {
+ error("cannot preempt symbol: " + toString(Sym) +
+ getLocation(S, Sym, RelOff));
return Expr;
}
- if (Body.isObject()) {
+
+ if (Sym.isObject()) {
// Produce a copy relocation.
- auto *B = cast<SharedSymbol<ELFT>>(&Body);
- if (!B->needsCopy())
- addCopyRelSymbol(B);
+ auto *B = dyn_cast<SharedSymbol>(&Sym);
+ if (B && !B->CopyRelSec) {
+ if (Config->ZNocopyreloc)
+ error("unresolvable relocation " + toString(Type) +
+ " against symbol '" + toString(*B) +
+ "'; recompile with -fPIC or remove '-z nocopyreloc'" +
+ getLocation(S, Sym, RelOff));
+
+ addCopyRelSymbol<ELFT>(B);
+ }
+ IsConstant = true;
return Expr;
}
- if (Body.isFunc()) {
- // This handles a non PIC program call to function in a shared library. In
- // an ideal world, we could just report an error saying the relocation can
- // overflow at runtime. In the real world with glibc, crt1.o has a
- // R_X86_64_PC32 pointing to libc.so.
- //
- // The general idea on how to handle such cases is to create a PLT entry and
- // use that as the function value.
- //
- // For the static linking part, we just return a plt expr and everything
- // else will use the the PLT entry as the address.
- //
- // The remaining problem is making sure pointer equality still works. We
- // need the help of the dynamic linker for that. We let it know that we have
- // a direct reference to a so symbol by creating an undefined symbol with a
- // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
- // the value of the symbol we created. This is true even for got entries, so
- // pointer equality is maintained. To avoid an infinite loop, the only entry
- // that points to the real function is a dedicated got entry used by the
- // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
- // R_386_JMP_SLOT, etc).
- Body.NeedsCopyOrPltAddr = true;
- return toPlt(Expr);
- }
- error("symbol is missing type");
+ if (Sym.isFunc())
+ return getPltExpr(Sym, Expr, IsConstant);
+
+ errorOrWarn("symbol '" + toString(Sym) + "' defined in " +
+ toString(Sym.File) + " has no type");
return Expr;
}
+// MIPS has an odd notion of "paired" relocations to calculate addends.
+// For example, if a relocation is of R_MIPS_HI16, there must be a
+// R_MIPS_LO16 relocation after that, and an addend is calculated using
+// the two relocations.
template <class ELFT, class RelTy>
-static typename ELFT::uint computeAddend(const elf::ObjectFile<ELFT> &File,
- const uint8_t *SectionData,
- const RelTy *End, const RelTy &RI,
- RelExpr Expr, SymbolBody &Body) {
- typedef typename ELFT::uint uintX_t;
-
- uint32_t Type = RI.getType(Config->Mips64EL);
- uintX_t Addend = getAddend<ELFT>(RI);
- const uint8_t *BufLoc = SectionData + RI.r_offset;
- if (!RelTy::IsRela)
- Addend += Target->getImplicitAddend(BufLoc, Type);
- if (Config->EMachine == EM_MIPS) {
- Addend += findMipsPairedAddend<ELFT>(SectionData, BufLoc, Body, &RI, End);
- if (Type == R_MIPS_LO16 && Expr == R_PC)
- // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp
- // symbol. In that case we should use the following formula for
- // calculation "AHL + GP - P + 4". Let's add 4 right here.
- // For details see p. 4-19 at
- // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- Addend += 4;
- if (Expr == R_GOTREL) {
- Addend -= MipsGPOffset;
- if (Body.isLocal())
- Addend += File.getMipsGp0();
- }
+static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End,
+ InputSectionBase &Sec, RelExpr Expr,
+ bool IsLocal) {
+ if (Expr == R_MIPS_GOTREL && IsLocal)
+ return Sec.getFile<ELFT>()->MipsGp0;
+
+ // The ABI says that the paired relocation is used only for REL.
+ // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ if (RelTy::IsRela)
+ return 0;
+
+ RelType Type = Rel.getType(Config->IsMips64EL);
+ uint32_t PairTy = getMipsPairType(Type, IsLocal);
+ if (PairTy == R_MIPS_NONE)
+ return 0;
+
+ const uint8_t *Buf = Sec.Data.data();
+ uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);
+
+ // To make things worse, paired relocations might not be contiguous in
+ // the relocation table, so we need to do linear search. *sigh*
+ for (const RelTy *RI = &Rel; RI != End; ++RI)
+ if (RI->getType(Config->IsMips64EL) == PairTy &&
+ RI->getSymbol(Config->IsMips64EL) == SymIndex)
+ return Target->getImplicitAddend(Buf + RI->r_offset, PairTy);
+
+ warn("can't find matching " + toString(PairTy) + " relocation for " +
+ toString(Type));
+ return 0;
+}
+
+// Returns an addend of a given relocation. If it is RELA, an addend
+// is in a relocation itself. If it is REL, we need to read it from an
+// input section.
+template <class ELFT, class RelTy>
+static int64_t computeAddend(const RelTy &Rel, const RelTy *End,
+ InputSectionBase &Sec, RelExpr Expr,
+ bool IsLocal) {
+ int64_t Addend;
+ RelType Type = Rel.getType(Config->IsMips64EL);
+
+ if (RelTy::IsRela) {
+ Addend = getAddend<ELFT>(Rel);
+ } else {
+ const uint8_t *Buf = Sec.Data.data();
+ Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type);
}
- if (Config->Pic && Config->EMachine == EM_PPC64 && Type == R_PPC64_TOC)
+
+ if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC)
Addend += getPPC64TocBase();
+ if (Config->EMachine == EM_MIPS)
+ Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal);
+
return Addend;
}
+// Report an undefined symbol if necessary.
+// Returns true if this function printed out an error message.
+static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec,
+ uint64_t Offset) {
+ if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll)
+ return false;
+
+ if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak())
+ return false;
+
+ bool CanBeExternal =
+ Sym.computeBinding() != STB_LOCAL && Sym.getVisibility() == STV_DEFAULT;
+ if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)
+ return false;
+
+ std::string Msg =
+ "undefined symbol: " + toString(Sym) + "\n>>> referenced by ";
+
+ std::string Src = Sec.getSrcMsg(Sym, Offset);
+ if (!Src.empty())
+ Msg += Src + "\n>>> ";
+ Msg += Sec.getObjMsg(Offset);
+
+ if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) ||
+ Config->NoinhibitExec) {
+ warn(Msg);
+ return false;
+ }
+
+ error(Msg);
+ return true;
+}
+
+// MIPS N32 ABI treats series of successive relocations with the same offset
+// as a single relocation. The similar approach used by N64 ABI, but this ABI
+// packs all relocations into the single relocation record. Here we emulate
+// this for the N32 ABI. Iterate over relocation with the same offset and put
+// theirs types into the single bit-set.
+template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) {
+ RelType Type = Rel->getType(Config->IsMips64EL);
+ uint64_t Offset = Rel->r_offset;
+
+ int N = 0;
+ while (Rel + 1 != End && (Rel + 1)->r_offset == Offset)
+ Type |= (++Rel)->getType(Config->IsMips64EL) << (8 * ++N);
+ return Type;
+}
+
+// .eh_frame sections are mergeable input sections, so their input
+// offsets are not linearly mapped to output section. For each input
+// offset, we need to find a section piece containing the offset and
+// add the piece's base address to the input offset to compute the
+// output offset. That isn't cheap.
+//
+// This class is to speed up the offset computation. When we process
+// relocations, we access offsets in the monotonically increasing
+// order. So we can optimize for that access pattern.
+//
+// For sections other than .eh_frame, this class doesn't do anything.
+namespace {
+class OffsetGetter {
+public:
+ explicit OffsetGetter(InputSectionBase &Sec) {
+ if (auto *Eh = dyn_cast<EhInputSection>(&Sec))
+ Pieces = Eh->Pieces;
+ }
+
+ // Translates offsets in input sections to offsets in output sections.
+ // Given offset must increase monotonically. We assume that Piece is
+ // sorted by InputOff.
+ uint64_t get(uint64_t Off) {
+ if (Pieces.empty())
+ return Off;
+
+ while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off)
+ ++I;
+ if (I == Pieces.size())
+ return Off;
+
+ // Pieces must be contiguous, so there must be no holes in between.
+ assert(Pieces[I].InputOff <= Off && "Relocation not in any piece");
+
+ // Offset -1 means that the piece is dead (i.e. garbage collected).
+ if (Pieces[I].OutputOff == -1)
+ return -1;
+ return Pieces[I].OutputOff + Off - Pieces[I].InputOff;
+ }
+
+private:
+ ArrayRef<EhSectionPiece> Pieces;
+ size_t I = 0;
+};
+} // namespace
+
+template <class ELFT, class GotPltSection>
+static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt,
+ RelocationBaseSection *Rel, RelType Type, Symbol &Sym,
+ bool UseSymVA) {
+ Plt->addEntry<ELFT>(Sym);
+ GotPlt->addEntry(Sym);
+ Rel->addReloc({Type, GotPlt, Sym.getGotPltOffset(), UseSymVA, &Sym, 0});
+}
+
+template <class ELFT> static void addGotEntry(Symbol &Sym, bool Preemptible) {
+ InX::Got->addEntry(Sym);
+
+ RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS;
+ uint64_t Off = Sym.getGotOffset();
+
+ // If a GOT slot value can be calculated at link-time, which is now,
+ // we can just fill that out.
+ //
+ // (We don't actually write a value to a GOT slot right now, but we
+ // add a static relocation to a Relocations vector so that
+ // InputSection::relocate will do the work for us. We may be able
+ // to just write a value now, but it is a TODO.)
+ bool IsLinkTimeConstant = !Preemptible && (!Config->Pic || isAbsolute(Sym));
+ if (IsLinkTimeConstant) {
+ InX::Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym});
+ return;
+ }
+
+ // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
+ // the GOT slot will be fixed at load-time.
+ RelType Type;
+ if (Sym.isTls())
+ Type = Target->TlsGotRel;
+ else if (!Preemptible && Config->Pic && !isAbsolute(Sym))
+ Type = Target->RelativeRel;
+ else
+ Type = Target->GotRel;
+ InX::RelaDyn->addReloc({Type, InX::Got, Off, !Preemptible, &Sym, 0});
+
+ // REL type relocations don't have addend fields unlike RELAs, and
+ // their addends are stored to the section to which they are applied.
+ // So, store addends if we need to.
+ //
+ // This is ugly -- the difference between REL and RELA should be
+ // handled in a better way. It's a TODO.
+ if (!Config->IsRela && !Preemptible)
+ InX::Got->Relocations.push_back({R_ABS, Target->GotRel, Off, 0, &Sym});
+}
+
// The reason we have to do this early scan is as follows
// * To mmap the output file, we need to know the size
// * For that, we need to know how many dynamic relocs we will have.
@@ -512,74 +879,130 @@ static typename ELFT::uint computeAddend(const elf::ObjectFile<ELFT> &File,
// complicates things for the dynamic linker and means we would have to reserve
// space for the extra PT_LOAD even if we end up not using it.
template <class ELFT, class RelTy>
-static void scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels) {
- typedef typename ELFT::uint uintX_t;
+static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) {
+ OffsetGetter GetOffset(Sec);
- bool IsWrite = C.getSectionHdr()->sh_flags & SHF_WRITE;
+ // Not all relocations end up in Sec.Relocations, but a lot do.
+ Sec.Relocations.reserve(Rels.size());
- auto AddDyn = [=](const DynamicReloc<ELFT> &Reloc) {
- Out<ELFT>::RelaDyn->addReloc(Reloc);
- };
+ for (auto I = Rels.begin(), End = Rels.end(); I != End; ++I) {
+ const RelTy &Rel = *I;
+ Symbol &Sym = Sec.getFile<ELFT>()->getRelocTargetSym(Rel);
+ RelType Type = Rel.getType(Config->IsMips64EL);
+
+ // Deal with MIPS oddity.
+ if (Config->MipsN32Abi)
+ Type = getMipsN32RelType(I, End);
+
+ // Get an offset in an output section this relocation is applied to.
+ uint64_t Offset = GetOffset.get(Rel.r_offset);
+ if (Offset == uint64_t(-1))
+ continue;
+
+ // Skip if the target symbol is an erroneous undefined symbol.
+ if (maybeReportUndefined(Sym, Sec, Rel.r_offset))
+ continue;
+
+ RelExpr Expr =
+ Target->getRelExpr(Type, Sym, Sec.Data.begin() + Rel.r_offset);
- const elf::ObjectFile<ELFT> &File = *C.getFile();
- ArrayRef<uint8_t> SectionData = C.getSectionData();
- const uint8_t *Buf = SectionData.begin();
- for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) {
- const RelTy &RI = *I;
- SymbolBody &Body = File.getRelocTargetSym(RI);
- uint32_t Type = RI.getType(Config->Mips64EL);
-
- RelExpr Expr = Target->getRelExpr(Type, Body);
- bool Preemptible = isPreemptible(Body, Type);
- Expr = adjustExpr(File, Body, IsWrite, Expr, Type, Buf + RI.r_offset);
- if (HasError)
+ // Ignore "hint" relocations because they are only markers for relaxation.
+ if (isRelExprOneOf<R_HINT, R_NONE>(Expr))
continue;
- // Skip a relocation that points to a dead piece
- // in a mergeable section.
- if (C.getOffset(RI.r_offset) == (uintX_t)-1)
+ // Handle yet another MIPS-ness.
+ if (isMipsGprel(Type)) {
+ int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());
+ Sec.Relocations.push_back({R_MIPS_GOTREL, Type, Offset, Addend, &Sym});
+ continue;
+ }
+
+ bool Preemptible = Sym.IsPreemptible;
+
+ // Strenghten or relax a PLT access.
+ //
+ // GNU ifunc symbols must be accessed via PLT because their addresses
+ // are determined by runtime.
+ //
+ // On the other hand, if we know that a PLT entry will be resolved within
+ // the same ELF module, we can skip PLT access and directly jump to the
+ // destination function. For example, if we are linking a main exectuable,
+ // all dynamic symbols that can be resolved within the executable will
+ // actually be resolved that way at runtime, because the main exectuable
+ // is always at the beginning of a search list. We can leverage that fact.
+ if (Sym.isGnuIFunc())
+ Expr = toPlt(Expr);
+ else if (!Preemptible && Expr == R_GOT_PC && !isAbsoluteValue(Sym))
+ Expr =
+ Target->adjustRelaxExpr(Type, Sec.Data.data() + Rel.r_offset, Expr);
+ else if (!Preemptible)
+ Expr = fromPlt(Expr);
+
+ bool IsConstant =
+ isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Rel.r_offset);
+
+ Expr = adjustExpr<ELFT>(Sym, Expr, Type, Sec, Rel.r_offset, IsConstant);
+ if (errorCount())
continue;
// This relocation does not require got entry, but it is relative to got and
// needs it to be created. Here we request for that.
- if (Expr == R_GOTONLY_PC || Expr == R_GOTREL || Expr == R_PPC_TOC)
- Out<ELFT>::Got->HasGotOffRel = true;
+ if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL,
+ R_GOTREL_FROM_END, R_PPC_TOC>(Expr))
+ InX::Got->HasGotOffRel = true;
- uintX_t Addend = computeAddend(File, Buf, E, RI, Expr, Body);
+ // Read an addend.
+ int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());
- if (unsigned Processed = handleTlsRelocation<ELFT>(
- Type, Body, C, RI.r_offset, Addend, Expr)) {
+ // Process some TLS relocations, including relaxing TLS relocations.
+ // Note that this function does not handle all TLS relocations.
+ if (unsigned Processed =
+ handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) {
I += (Processed - 1);
continue;
}
- // Ignore "hint" relocation because it is for optional code optimization.
- if (Expr == R_HINT)
- continue;
+ // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
+ if (needsPlt(Expr) && !Sym.isInPlt()) {
+ if (Sym.isGnuIFunc() && !Preemptible)
+ addPltEntry<ELFT>(InX::Iplt, InX::IgotPlt, InX::RelaIplt,
+ Target->IRelativeRel, Sym, true);
+ else
+ addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel,
+ Sym, !Preemptible);
+ }
- if (needsPlt(Expr) || Expr == R_THUNK_ABS || Expr == R_THUNK_PC ||
- Expr == R_THUNK_PLT_PC || refersToGotEntry(Expr) ||
- !isPreemptible(Body, Type)) {
- // If the relocation points to something in the file, we can process it.
- bool Constant = isStaticLinkTimeConstant<ELFT>(Expr, Type, Body);
-
- // If the output being produced is position independent, the final value
- // is still not known. In that case we still need some help from the
- // dynamic linker. We can however do better than just copying the incoming
- // relocation. We can process some of it and and just ask the dynamic
- // linker to add the load address.
- if (!Constant)
- AddDyn({Target->RelativeRel, &C, RI.r_offset, true, &Body, Addend});
-
- // If the produced value is a constant, we just remember to write it
- // when outputting this section. We also have to do it if the format
- // uses Elf_Rel, since in that case the written value is the addend.
- if (Constant || !RelTy::IsRela)
- C.Relocations.push_back({Expr, Type, &C, RI.r_offset, Addend, &Body});
- } else {
+ // Create a GOT slot if a relocation needs GOT.
+ if (needsGot(Expr)) {
+ if (Config->EMachine == EM_MIPS) {
+ // MIPS ABI has special rules to process GOT entries and doesn't
+ // require relocation entries for them. A special case is TLS
+ // relocations. In that case dynamic loader applies dynamic
+ // relocations to initialize TLS GOT entries.
+ // See "Global Offset Table" in Chapter 5 in the following document
+ // for detailed description:
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ InX::MipsGot->addEntry(Sym, Addend, Expr);
+ if (Sym.isTls() && Sym.IsPreemptible)
+ InX::RelaDyn->addReloc({Target->TlsGotRel, InX::MipsGot,
+ Sym.getGotOffset(), false, &Sym, 0});
+ } else if (!Sym.isInGot()) {
+ addGotEntry<ELFT>(Sym, Preemptible);
+ }
+ }
+
+ if (!needsPlt(Expr) && !needsGot(Expr) && Sym.IsPreemptible) {
// We don't know anything about the finaly symbol. Just ask the dynamic
// linker to handle the relocation for us.
- AddDyn({Target->getDynRel(Type), &C, RI.r_offset, false, &Body, Addend});
+ if (!Target->isPicRel(Type))
+ errorOrWarn(
+ "relocation " + toString(Type) +
+ " cannot be used against shared object; recompile with -fPIC" +
+ getLocation(Sec, Sym, Offset));
+
+ InX::RelaDyn->addReloc(
+ {Target->getDynRel(Type), &Sec, Offset, false, &Sym, Addend});
+
// MIPS ABI turns using of GOT and dynamic relocations inside out.
// While regular ABI uses dynamic relocations to fill up GOT entries
// MIPS ABI requires dynamic linker to fills up GOT entries using
@@ -596,109 +1019,408 @@ static void scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels) {
// a dynamic relocation.
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
if (Config->EMachine == EM_MIPS)
- Out<ELFT>::Got->addMipsEntry(Body, Addend, Expr);
+ InX::MipsGot->addEntry(Sym, Addend, Expr);
continue;
}
- // Some targets might require creation of thunks for relocations.
- // Now we support only MIPS which requires LA25 thunk to call PIC
- // code from non-PIC one, and ARM which requires interworking.
- if (Expr == R_THUNK_ABS || Expr == R_THUNK_PC || Expr == R_THUNK_PLT_PC) {
- auto *Sec = cast<InputSection<ELFT>>(&C);
- addThunk<ELFT>(Type, Body, *Sec);
+ // The size is not going to change, so we fold it in here.
+ if (Expr == R_SIZE)
+ Addend += Sym.getSize();
+
+ // If the produced value is a constant, we just remember to write it
+ // when outputting this section. We also have to do it if the format
+ // uses Elf_Rel, since in that case the written value is the addend.
+ if (IsConstant) {
+ Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
+ continue;
}
- // At this point we are done with the relocated position. Some relocations
- // also require us to create a got or plt entry.
+ // If the output being produced is position independent, the final value
+ // is still not known. In that case we still need some help from the
+ // dynamic linker. We can however do better than just copying the incoming
+ // relocation. We can process some of it and and just ask the dynamic
+ // linker to add the load address.
+ if (Config->IsRela) {
+ InX::RelaDyn->addReloc(
+ {Target->RelativeRel, &Sec, Offset, true, &Sym, Addend});
+ } else {
+ // In REL, addends are stored to the target section.
+ InX::RelaDyn->addReloc(
+ {Target->RelativeRel, &Sec, Offset, true, &Sym, 0});
+ Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
+ }
+ }
+}
- // If a relocation needs PLT, we create a PLT and a GOT slot for the symbol.
- if (needsPlt(Expr)) {
- if (Body.isInPlt())
- continue;
- Out<ELFT>::Plt->addEntry(Body);
+template <class ELFT> void elf::scanRelocations(InputSectionBase &S) {
+ if (S.AreRelocsRela)
+ scanRelocs<ELFT>(S, S.relas<ELFT>());
+ else
+ scanRelocs<ELFT>(S, S.rels<ELFT>());
+}
- uint32_t Rel;
- if (Body.isGnuIFunc() && !Preemptible)
- Rel = Target->IRelativeRel;
- else
- Rel = Target->PltRel;
+// Thunk Implementation
+//
+// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
+// of code that the linker inserts inbetween a caller and a callee. The thunks
+// are added at link time rather than compile time as the decision on whether
+// a thunk is needed, such as the caller and callee being out of range, can only
+// be made at link time.
+//
+// It is straightforward to tell given the current state of the program when a
+// thunk is needed for a particular call. The more difficult part is that
+// the thunk needs to be placed in the program such that the caller can reach
+// the thunk and the thunk can reach the callee; furthermore, adding thunks to
+// the program alters addresses, which can mean more thunks etc.
+//
+// In lld we have a synthetic ThunkSection that can hold many Thunks.
+// The decision to have a ThunkSection act as a container means that we can
+// more easily handle the most common case of a single block of contiguous
+// Thunks by inserting just a single ThunkSection.
+//
+// The implementation of Thunks in lld is split across these areas
+// Relocations.cpp : Framework for creating and placing thunks
+// Thunks.cpp : The code generated for each supported thunk
+// Target.cpp : Target specific hooks that the framework uses to decide when
+// a thunk is used
+// Synthetic.cpp : Implementation of ThunkSection
+// Writer.cpp : Iteratively call framework until no more Thunks added
+//
+// Thunk placement requirements:
+// Mips LA25 thunks. These must be placed immediately before the callee section
+// We can assume that the caller is in range of the Thunk. These are modelled
+// by Thunks that return the section they must precede with
+// getTargetInputSection().
+//
+// ARM interworking and range extension thunks. These thunks must be placed
+// within range of the caller. All implemented ARM thunks can always reach the
+// callee as they use an indirect jump via a register that has no range
+// restrictions.
+//
+// Thunk placement algorithm:
+// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
+// getTargetInputSection().
+//
+// For thunks that must be placed within range of the caller there are many
+// possible choices given that the maximum range from the caller is usually
+// much larger than the average InputSection size. Desirable properties include:
+// - Maximize reuse of thunks by multiple callers
+// - Minimize number of ThunkSections to simplify insertion
+// - Handle impact of already added Thunks on addresses
+// - Simple to understand and implement
+//
+// In lld for the first pass, we pre-create one or more ThunkSections per
+// InputSectionDescription at Target specific intervals. A ThunkSection is
+// placed so that the estimated end of the ThunkSection is within range of the
+// start of the InputSectionDescription or the previous ThunkSection. For
+// example:
+// InputSectionDescription
+// Section 0
+// ...
+// Section N
+// ThunkSection 0
+// Section N + 1
+// ...
+// Section N + K
+// Thunk Section 1
+//
+// The intention is that we can add a Thunk to a ThunkSection that is well
+// spaced enough to service a number of callers without having to do a lot
+// of work. An important principle is that it is not an error if a Thunk cannot
+// be placed in a pre-created ThunkSection; when this happens we create a new
+// ThunkSection placed next to the caller. This allows us to handle the vast
+// majority of thunks simply, but also handle rare cases where the branch range
+// is smaller than the target specific spacing.
+//
+// The algorithm is expected to create all the thunks that are needed in a
+// single pass, with a small number of programs needing a second pass due to
+// the insertion of thunks in the first pass increasing the offset between
+// callers and callees that were only just in range.
+//
+// A consequence of allowing new ThunkSections to be created outside of the
+// pre-created ThunkSections is that in rare cases calls to Thunks that were in
+// range in pass K, are out of range in some pass > K due to the insertion of
+// more Thunks in between the caller and callee. When this happens we retarget
+// the relocation back to the original target and create another Thunk.
+
+// Remove ThunkSections that are empty, this should only be the initial set
+// precreated on pass 0.
+
+// Insert the Thunks for OutputSection OS into their designated place
+// in the Sections vector, and recalculate the InputSection output section
+// offsets.
+// This may invalidate any output section offsets stored outside of InputSection
+void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) {
+ forEachInputSectionDescription(
+ OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
+ if (ISD->ThunkSections.empty())
+ return;
+
+ // Remove any zero sized precreated Thunks.
+ llvm::erase_if(ISD->ThunkSections,
+ [](const std::pair<ThunkSection *, uint32_t> &TS) {
+ return TS.first->getSize() == 0;
+ });
+ // ISD->ThunkSections contains all created ThunkSections, including
+ // those inserted in previous passes. Extract the Thunks created this
+ // pass and order them in ascending OutSecOff.
+ std::vector<ThunkSection *> NewThunks;
+ for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections)
+ if (TS.second == Pass)
+ NewThunks.push_back(TS.first);
+ std::stable_sort(NewThunks.begin(), NewThunks.end(),
+ [](const ThunkSection *A, const ThunkSection *B) {
+ return A->OutSecOff < B->OutSecOff;
+ });
+
+ // Merge sorted vectors of Thunks and InputSections by OutSecOff
+ std::vector<InputSection *> Tmp;
+ Tmp.reserve(ISD->Sections.size() + NewThunks.size());
+ auto MergeCmp = [](const InputSection *A, const InputSection *B) {
+ // std::merge requires a strict weak ordering.
+ if (A->OutSecOff < B->OutSecOff)
+ return true;
+ if (A->OutSecOff == B->OutSecOff) {
+ auto *TA = dyn_cast<ThunkSection>(A);
+ auto *TB = dyn_cast<ThunkSection>(B);
+ // Check if Thunk is immediately before any specific Target
+ // InputSection for example Mips LA25 Thunks.
+ if (TA && TA->getTargetInputSection() == B)
+ return true;
+ if (TA && !TB && !TA->getTargetInputSection())
+ // Place Thunk Sections without specific targets before
+ // non-Thunk Sections.
+ return true;
+ }
+ return false;
+ };
+ std::merge(ISD->Sections.begin(), ISD->Sections.end(),
+ NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp),
+ MergeCmp);
+ ISD->Sections = std::move(Tmp);
+ });
+}
- Out<ELFT>::GotPlt->addEntry(Body);
- Out<ELFT>::RelaPlt->addReloc({Rel, Out<ELFT>::GotPlt,
- Body.getGotPltOffset<ELFT>(), !Preemptible,
- &Body, 0});
- continue;
- }
+// Find or create a ThunkSection within the InputSectionDescription (ISD) that
+// is in range of Src. An ISD maps to a range of InputSections described by a
+// linker script section pattern such as { .text .text.* }.
+ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS,
+ InputSectionDescription *ISD,
+ uint32_t Type, uint64_t Src) {
+ for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) {
+ ThunkSection *TS = TP.first;
+ uint64_t TSBase = OS->Addr + TS->OutSecOff;
+ uint64_t TSLimit = TSBase + TS->getSize();
+ if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit))
+ return TS;
+ }
- if (refersToGotEntry(Expr)) {
- if (Config->EMachine == EM_MIPS) {
- // MIPS ABI has special rules to process GOT entries
- // and doesn't require relocation entries for them.
- // See "Global Offset Table" in Chapter 5 in the following document
- // for detailed description:
- // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- Out<ELFT>::Got->addMipsEntry(Body, Addend, Expr);
- if (Body.isTls())
- AddDyn({Target->TlsGotRel, Out<ELFT>::Got, Body.getGotOffset<ELFT>(),
- !Preemptible, &Body, 0});
- continue;
- }
+ // No suitable ThunkSection exists. This can happen when there is a branch
+ // with lower range than the ThunkSection spacing or when there are too
+ // many Thunks. Create a new ThunkSection as close to the InputSection as
+ // possible. Error if InputSection is so large we cannot place ThunkSection
+ // anywhere in Range.
+ uint64_t ThunkSecOff = IS->OutSecOff;
+ if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) {
+ ThunkSecOff = IS->OutSecOff + IS->getSize();
+ if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff))
+ fatal("InputSection too large for range extension thunk " +
+ IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff)));
+ }
+ return addThunkSection(OS, ISD, ThunkSecOff);
+}
- if (Body.isInGot())
+// Add a Thunk that needs to be placed in a ThunkSection that immediately
+// precedes its Target.
+ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) {
+ ThunkSection *TS = ThunkedSections.lookup(IS);
+ if (TS)
+ return TS;
+
+ // Find InputSectionRange within Target Output Section (TOS) that the
+ // InputSection (IS) that we need to precede is in.
+ OutputSection *TOS = IS->getParent();
+ for (BaseCommand *BC : TOS->SectionCommands)
+ if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
+ if (ISD->Sections.empty())
continue;
-
- Out<ELFT>::Got->addEntry(Body);
- if (Preemptible || (Config->Pic && !isAbsolute<ELFT>(Body))) {
- uint32_t DynType;
- if (Body.isTls())
- DynType = Target->TlsGotRel;
- else if (Preemptible)
- DynType = Target->GotRel;
- else
- DynType = Target->RelativeRel;
- AddDyn({DynType, Out<ELFT>::Got, Body.getGotOffset<ELFT>(),
- !Preemptible, &Body, 0});
+ InputSection *first = ISD->Sections.front();
+ InputSection *last = ISD->Sections.back();
+ if (IS->OutSecOff >= first->OutSecOff &&
+ IS->OutSecOff <= last->OutSecOff) {
+ TS = addThunkSection(TOS, ISD, IS->OutSecOff);
+ ThunkedSections[IS] = TS;
+ break;
}
- continue;
}
- }
+ return TS;
}
-template <class ELFT> void scanRelocations(InputSection<ELFT> &C) {
- typedef typename ELFT::Shdr Elf_Shdr;
+// Create one or more ThunkSections per OS that can be used to place Thunks.
+// We attempt to place the ThunkSections using the following desirable
+// properties:
+// - Within range of the maximum number of callers
+// - Minimise the number of ThunkSections
+//
+// We follow a simple but conservative heuristic to place ThunkSections at
+// offsets that are multiples of a Target specific branch range.
+// For an InputSectionRange that is smaller than the range, a single
+// ThunkSection at the end of the range will do.
+void ThunkCreator::createInitialThunkSections(
+ ArrayRef<OutputSection *> OutputSections) {
+ forEachInputSectionDescription(
+ OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
+ if (ISD->Sections.empty())
+ return;
+ uint32_t ISLimit;
+ uint32_t PrevISLimit = ISD->Sections.front()->OutSecOff;
+ uint32_t ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
+
+ for (const InputSection *IS : ISD->Sections) {
+ ISLimit = IS->OutSecOff + IS->getSize();
+ if (ISLimit > ThunkUpperBound) {
+ addThunkSection(OS, ISD, PrevISLimit);
+ ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
+ }
+ PrevISLimit = ISLimit;
+ }
+ addThunkSection(OS, ISD, ISLimit);
+ });
+}
- // Scan all relocations. Each relocation goes through a series
- // of tests to determine if it needs special treatment, such as
- // creating GOT, PLT, copy relocations, etc.
- // Note that relocations for non-alloc sections are directly
- // processed by InputSection::relocateNonAlloc.
- if (C.getSectionHdr()->sh_flags & SHF_ALLOC)
- for (const Elf_Shdr *RelSec : C.RelocSections)
- scanRelocations(C, *RelSec);
+ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS,
+ InputSectionDescription *ISD,
+ uint64_t Off) {
+ auto *TS = make<ThunkSection>(OS, Off);
+ ISD->ThunkSections.push_back(std::make_pair(TS, Pass));
+ return TS;
}
-template <class ELFT>
-void scanRelocations(InputSectionBase<ELFT> &S,
- const typename ELFT::Shdr &RelSec) {
- ELFFile<ELFT> &EObj = S.getFile()->getObj();
- if (RelSec.sh_type == SHT_RELA)
- scanRelocs(S, EObj.relas(&RelSec));
- else
- scanRelocs(S, EObj.rels(&RelSec));
+std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type,
+ uint64_t Src) {
+ auto Res = ThunkedSymbols.insert({&Sym, std::vector<Thunk *>()});
+ if (!Res.second) {
+ // Check existing Thunks for Sym to see if they can be reused
+ for (Thunk *ET : Res.first->second)
+ if (ET->isCompatibleWith(Type) &&
+ Target->inBranchRange(Type, Src, ET->ThunkSym->getVA()))
+ return std::make_pair(ET, false);
+ }
+ // No existing compatible Thunk in range, create a new one
+ Thunk *T = addThunk(Type, Sym);
+ Res.first->second.push_back(T);
+ return std::make_pair(T, true);
}
-template void scanRelocations<ELF32LE>(InputSection<ELF32LE> &);
-template void scanRelocations<ELF32BE>(InputSection<ELF32BE> &);
-template void scanRelocations<ELF64LE>(InputSection<ELF64LE> &);
-template void scanRelocations<ELF64BE>(InputSection<ELF64BE> &);
+// Call Fn on every executable InputSection accessed via the linker script
+// InputSectionDescription::Sections.
+void ThunkCreator::forEachInputSectionDescription(
+ ArrayRef<OutputSection *> OutputSections,
+ std::function<void(OutputSection *, InputSectionDescription *)> Fn) {
+ for (OutputSection *OS : OutputSections) {
+ if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
+ continue;
+ for (BaseCommand *BC : OS->SectionCommands)
+ if (auto *ISD = dyn_cast<InputSectionDescription>(BC))
+ Fn(OS, ISD);
+ }
+}
-template void scanRelocations<ELF32LE>(InputSectionBase<ELF32LE> &,
- const ELF32LE::Shdr &);
-template void scanRelocations<ELF32BE>(InputSectionBase<ELF32BE> &,
- const ELF32BE::Shdr &);
-template void scanRelocations<ELF64LE>(InputSectionBase<ELF64LE> &,
- const ELF64LE::Shdr &);
-template void scanRelocations<ELF64BE>(InputSectionBase<ELF64BE> &,
- const ELF64BE::Shdr &);
+// Return true if the relocation target is an in range Thunk.
+// Return false if the relocation is not to a Thunk. If the relocation target
+// was originally to a Thunk, but is no longer in range we revert the
+// relocation back to its original non-Thunk target.
+bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) {
+ if (Thunk *ET = Thunks.lookup(Rel.Sym)) {
+ if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA()))
+ return true;
+ Rel.Sym = &ET->Destination;
+ if (Rel.Sym->isInPlt())
+ Rel.Expr = toPlt(Rel.Expr);
+ }
+ return false;
}
+
+// Process all relocations from the InputSections that have been assigned
+// to InputSectionDescriptions and redirect through Thunks if needed. The
+// function should be called iteratively until it returns false.
+//
+// PreConditions:
+// All InputSections that may need a Thunk are reachable from
+// OutputSectionCommands.
+//
+// All OutputSections have an address and all InputSections have an offset
+// within the OutputSection.
+//
+// The offsets between caller (relocation place) and callee
+// (relocation target) will not be modified outside of createThunks().
+//
+// PostConditions:
+// If return value is true then ThunkSections have been inserted into
+// OutputSections. All relocations that needed a Thunk based on the information
+// available to createThunks() on entry have been redirected to a Thunk. Note
+// that adding Thunks changes offsets between caller and callee so more Thunks
+// may be required.
+//
+// If return value is false then no more Thunks are needed, and createThunks has
+// made no changes. If the target requires range extension thunks, currently
+// ARM, then any future change in offset between caller and callee risks a
+// relocation out of range error.
+bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) {
+ bool AddressesChanged = false;
+ if (Pass == 0 && Target->ThunkSectionSpacing)
+ createInitialThunkSections(OutputSections);
+ else if (Pass == 10)
+ // With Thunk Size much smaller than branch range we expect to
+ // converge quickly; if we get to 10 something has gone wrong.
+ fatal("thunk creation not converged");
+
+ // Create all the Thunks and insert them into synthetic ThunkSections. The
+ // ThunkSections are later inserted back into InputSectionDescriptions.
+ // We separate the creation of ThunkSections from the insertion of the
+ // ThunkSections as ThunkSections are not always inserted into the same
+ // InputSectionDescription as the caller.
+ forEachInputSectionDescription(
+ OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
+ for (InputSection *IS : ISD->Sections)
+ for (Relocation &Rel : IS->Relocations) {
+ uint64_t Src = OS->Addr + IS->OutSecOff + Rel.Offset;
+
+ // If we are a relocation to an existing Thunk, check if it is
+ // still in range. If not then Rel will be altered to point to its
+ // original target so another Thunk can be generated.
+ if (Pass > 0 && normalizeExistingThunk(Rel, Src))
+ continue;
+
+ if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src,
+ *Rel.Sym))
+ continue;
+ Thunk *T;
+ bool IsNew;
+ std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src);
+ if (IsNew) {
+ AddressesChanged = true;
+ // Find or create a ThunkSection for the new Thunk
+ ThunkSection *TS;
+ if (auto *TIS = T->getTargetInputSection())
+ TS = getISThunkSec(TIS);
+ else
+ TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src);
+ TS->addThunk(T);
+ Thunks[T->ThunkSym] = T;
+ }
+ // Redirect relocation to Thunk, we never go via the PLT to a Thunk
+ Rel.Sym = T->ThunkSym;
+ Rel.Expr = fromPlt(Rel.Expr);
+ }
+ });
+ // Merge all created synthetic ThunkSections back into OutputSection
+ mergeThunks(OutputSections);
+ ++Pass;
+ return AddressesChanged;
}
+
+template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
+template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
+template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
+template void elf::scanRelocations<ELF64BE>(InputSectionBase &);