summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt/Calc.pm
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt/Calc.pm')
-rw-r--r--gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt/Calc.pm609
1 files changed, 296 insertions, 313 deletions
diff --git a/gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt/Calc.pm b/gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt/Calc.pm
index 2bb06a0976b..cd8f1ee44e6 100644
--- a/gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt/Calc.pm
+++ b/gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt/Calc.pm
@@ -7,7 +7,7 @@ use warnings;
use Carp qw< carp croak >;
use Math::BigInt::Lib;
-our $VERSION = '1.999816';
+our $VERSION = '1.999818';
our @ISA = ('Math::BigInt::Lib');
@@ -35,9 +35,6 @@ our @ISA = ('Math::BigInt::Lib');
##############################################################################
# global constants, flags and accessory
-# announce that we are compatible with MBI v1.83 and up
-sub api_version () { 2; }
-
# constants for easier life
my ($BASE, $BASE_LEN, $RBASE, $MAX_VAL);
my ($AND_BITS, $XOR_BITS, $OR_BITS);
@@ -50,9 +47,7 @@ sub _base_len {
my ($class, $b, $int) = @_;
if (defined $b) {
- # avoid redefinitions
- undef &_mul;
- undef &_div;
+ no warnings "redefine";
if ($] >= 5.008 && $int && $b > 7) {
$BASE_LEN = $b;
@@ -403,13 +398,14 @@ sub _mul_use_mul {
my ($c, $xv, $yv) = @_;
if (@$yv == 1) {
- # shortcut for two very short numbers (improved by Nathan Zook)
- # works also if xv and yv are the same reference, and handles also $x == 0
+ # shortcut for two very short numbers (improved by Nathan Zook) works
+ # also if xv and yv are the same reference, and handles also $x == 0
if (@$xv == 1) {
if (($xv->[0] *= $yv->[0]) >= $BASE) {
- $xv->[0] = $xv->[0] - ($xv->[1] = int($xv->[0] * $RBASE)) * $BASE;
+ my $rem = $xv->[0] % $BASE;
+ $xv->[1] = ($xv->[0] - $rem) * $RBASE;
+ $xv->[0] = $rem;
}
- ;
return $xv;
}
# $x * 0 => 0
@@ -417,56 +413,44 @@ sub _mul_use_mul {
@$xv = (0);
return $xv;
}
+
# multiply a large number a by a single element one, so speed up
my $y = $yv->[0];
my $car = 0;
+ my $rem;
foreach my $i (@$xv) {
$i = $i * $y + $car;
- $car = int($i * $RBASE);
- $i -= $car * $BASE;
+ $rem = $i % $BASE;
+ $car = ($i - $rem) * $RBASE;
+ $i = $rem;
}
push @$xv, $car if $car != 0;
return $xv;
}
+
# shortcut for result $x == 0 => result = 0
return $xv if @$xv == 1 && $xv->[0] == 0;
# since multiplying $x with $x fails, make copy in this case
- $yv = [ @$xv ] if $xv == $yv; # same references?
+ $yv = $c->_copy($xv) if $xv == $yv; # same references?
my @prod = ();
- my ($prod, $car, $cty, $xi, $yi);
-
+ my ($prod, $rem, $car, $cty, $xi, $yi);
for $xi (@$xv) {
$car = 0;
$cty = 0;
-
- # slow variant
- # for $yi (@$yv)
- # {
- # $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
- # $prod[$cty++] =
- # $prod - ($car = int($prod * RBASE)) * $BASE; # see USE_MUL
- # }
- # $prod[$cty] += $car if $car; # need really to check for 0?
- # $xi = shift @prod;
-
- # faster variant
# looping through this if $xi == 0 is silly - so optimize it away!
- $xi = (shift @prod || 0), next if $xi == 0;
+ $xi = (shift(@prod) || 0), next if $xi == 0;
for $yi (@$yv) {
$prod = $xi * $yi + ($prod[$cty] || 0) + $car;
- ## this is actually a tad slower
- ## $prod = $prod[$cty]; $prod += ($car + $xi * $yi); # no ||0 here
- $prod[$cty++] =
- $prod - ($car = int($prod * $RBASE)) * $BASE; # see USE_MUL
+ $rem = $prod % $BASE;
+ $car = int(($prod - $rem) * $RBASE);
+ $prod[$cty++] = $rem;
}
- $prod[$cty] += $car if $car; # need really to check for 0?
- $xi = shift @prod || 0; # || 0 makes v5.005_3 happy
+ $prod[$cty] += $car if $car; # need really to check for 0?
+ $xi = shift(@prod) || 0; # || 0 makes v5.005_3 happy
}
push @$xv, @prod;
- # can't have leading zeros
- # __strip_zeros($xv);
$xv;
}
@@ -478,11 +462,11 @@ sub _mul_use_div_64 {
my ($c, $xv, $yv) = @_;
use integer;
+
if (@$yv == 1) {
- # shortcut for two small numbers, also handles $x == 0
+ # shortcut for two very short numbers (improved by Nathan Zook) works
+ # also if xv and yv are the same reference, and handles also $x == 0
if (@$xv == 1) {
- # shortcut for two very short numbers (improved by Nathan Zook)
- # works also if xv and yv are the same reference, and handles also $x == 0
if (($xv->[0] *= $yv->[0]) >= $BASE) {
$xv->[0] =
$xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE;
@@ -494,6 +478,7 @@ sub _mul_use_div_64 {
@$xv = (0);
return $xv;
}
+
# multiply a large number a by a single element one, so speed up
my $y = $yv->[0];
my $car = 0;
@@ -505,11 +490,12 @@ sub _mul_use_div_64 {
push @$xv, $car if $car != 0;
return $xv;
}
+
# shortcut for result $x == 0 => result = 0
- return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );
+ return $xv if @$xv == 1 && $xv->[0] == 0;
# since multiplying $x with $x fails, make copy in this case
- $yv = $c->_copy($xv) if $xv == $yv; # same references?
+ $yv = $c->_copy($xv) if $xv == $yv; # same references?
my @prod = ();
my ($prod, $car, $cty, $xi, $yi);
@@ -517,13 +503,13 @@ sub _mul_use_div_64 {
$car = 0;
$cty = 0;
# looping through this if $xi == 0 is silly - so optimize it away!
- $xi = (shift @prod || 0), next if $xi == 0;
+ $xi = (shift(@prod) || 0), next if $xi == 0;
for $yi (@$yv) {
$prod = $xi * $yi + ($prod[$cty] || 0) + $car;
$prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE;
}
- $prod[$cty] += $car if $car; # need really to check for 0?
- $xi = shift @prod || 0; # || 0 makes v5.005_3 happy
+ $prod[$cty] += $car if $car; # need really to check for 0?
+ $xi = shift(@prod) || 0; # || 0 makes v5.005_3 happy
}
push @$xv, @prod;
$xv;
@@ -536,15 +522,14 @@ sub _mul_use_div {
my ($c, $xv, $yv) = @_;
if (@$yv == 1) {
- # shortcut for two small numbers, also handles $x == 0
+ # shortcut for two very short numbers (improved by Nathan Zook) works
+ # also if xv and yv are the same reference, and handles also $x == 0
if (@$xv == 1) {
- # shortcut for two very short numbers (improved by Nathan Zook)
- # works also if xv and yv are the same reference, and handles also $x == 0
if (($xv->[0] *= $yv->[0]) >= $BASE) {
- $xv->[0] =
- $xv->[0] - ($xv->[1] = int($xv->[0] / $BASE)) * $BASE;
+ my $rem = $xv->[0] % $BASE;
+ $xv->[1] = ($xv->[0] - $rem) / $BASE;
+ $xv->[0] = $rem;
}
- ;
return $xv;
}
# $x * 0 => 0
@@ -552,42 +537,44 @@ sub _mul_use_div {
@$xv = (0);
return $xv;
}
+
# multiply a large number a by a single element one, so speed up
my $y = $yv->[0];
my $car = 0;
+ my $rem;
foreach my $i (@$xv) {
$i = $i * $y + $car;
- $car = int($i / $BASE);
- $i -= $car * $BASE;
- # This (together with use integer;) does not work on 32-bit Perls
- #$i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE;
+ $rem = $i % $BASE;
+ $car = ($i - $rem) / $BASE;
+ $i = $rem;
}
push @$xv, $car if $car != 0;
return $xv;
}
+
# shortcut for result $x == 0 => result = 0
- return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );
+ return $xv if @$xv == 1 && $xv->[0] == 0;
# since multiplying $x with $x fails, make copy in this case
- $yv = $c->_copy($xv) if $xv == $yv; # same references?
+ $yv = $c->_copy($xv) if $xv == $yv; # same references?
my @prod = ();
- my ($prod, $car, $cty, $xi, $yi);
+ my ($prod, $rem, $car, $cty, $xi, $yi);
for $xi (@$xv) {
$car = 0;
$cty = 0;
# looping through this if $xi == 0 is silly - so optimize it away!
- $xi = (shift @prod || 0), next if $xi == 0;
+ $xi = (shift(@prod) || 0), next if $xi == 0;
for $yi (@$yv) {
$prod = $xi * $yi + ($prod[$cty] || 0) + $car;
- $prod[$cty++] = $prod - ($car = int($prod / $BASE)) * $BASE;
+ $rem = $prod % $BASE;
+ $car = ($prod - $rem) / $BASE;
+ $prod[$cty++] = $rem;
}
- $prod[$cty] += $car if $car; # need really to check for 0?
- $xi = shift @prod || 0; # || 0 makes v5.005_3 happy
+ $prod[$cty] += $car if $car; # need really to check for 0?
+ $xi = shift(@prod) || 0; # || 0 makes v5.005_3 happy
}
push @$xv, @prod;
- # can't have leading zeros
- # __strip_zeros($xv);
$xv;
}
@@ -595,28 +582,19 @@ sub _div_use_mul {
# ref to array, ref to array, modify first array and return remainder if
# in list context
- # see comments in _div_use_div() for more explanations
-
my ($c, $x, $yorg) = @_;
# the general div algorithm here is about O(N*N) and thus quite slow, so
# we first check for some special cases and use shortcuts to handle them.
- # This works, because we store the numbers in a chunked format where each
- # element contains 5..7 digits (depending on system).
-
# if both numbers have only one element:
if (@$x == 1 && @$yorg == 1) {
# shortcut, $yorg and $x are two small numbers
- if (wantarray) {
- my $rem = [ $x->[0] % $yorg->[0] ];
- bless $rem, $c;
- $x->[0] = int($x->[0] / $yorg->[0]);
- return ($x, $rem);
- } else {
- $x->[0] = int($x->[0] / $yorg->[0]);
- return $x;
- }
+ my $rem = [ $x->[0] % $yorg->[0] ];
+ bless $rem, $c;
+ $x->[0] = ($x->[0] - $rem->[0]) / $yorg->[0];
+ return ($x, $rem) if wantarray;
+ return $x;
}
# if x has more than one, but y has only one element:
@@ -631,120 +609,120 @@ sub _div_use_mul {
my $b;
while ($j-- > 0) {
$b = $r * $BASE + $x->[$j];
- $x->[$j] = int($b/$y);
$r = $b % $y;
+ $x->[$j] = ($b - $r) / $y;
}
- pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
+ pop(@$x) if @$x > 1 && $x->[-1] == 0; # remove any trailing zero
return ($x, $rem) if wantarray;
return $x;
}
# now x and y have more than one element
- # check whether y has more elements than x, if yet, the result will be 0
+ # check whether y has more elements than x, if so, the result is 0
if (@$yorg > @$x) {
my $rem;
- $rem = $c->_copy($x) if wantarray; # make copy
- @$x = 0; # set to 0
- return ($x, $rem) if wantarray; # including remainder?
- return $x; # only x, which is [0] now
+ $rem = $c->_copy($x) if wantarray; # make copy
+ @$x = 0; # set to 0
+ return ($x, $rem) if wantarray; # including remainder?
+ return $x; # only x, which is [0] now
}
+
# check whether the numbers have the same number of elements, in that case
# the result will fit into one element and can be computed efficiently
if (@$yorg == @$x) {
+ my $cmp = 0;
+ for (my $j = $#$x ; $j >= 0 ; --$j) {
+ last if $cmp = $x->[$j] - $yorg->[$j];
+ }
- # if $yorg has more digits than $x (it's leading element is longer than
- # the one from $x), the result will also be 0:
- if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
- my $rem = $c->_copy($x) if wantarray; # make copy
- @$x = 0; # set to 0
- return ($x, $rem) if wantarray; # including remainder?
+ if ($cmp == 0) { # x = y
+ @$x = 1;
+ return $x, $c->_zero() if wantarray;
return $x;
}
- # now calculate $x / $yorg
- if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
- # same length, so make full compare
- my $a = 0;
- my $j = @$x - 1;
- # manual way (abort if unequal, good for early ne)
- while ($j >= 0) {
- last if ($a = $x->[$j] - $yorg->[$j]);
- $j--;
- }
- # $a contains the result of the compare between X and Y
- # a < 0: x < y, a == 0: x == y, a > 0: x > y
- if ($a <= 0) {
- # a = 0 => x == y => rem 0
- # a < 0 => x < y => rem = x
- my $rem = $a == 0 ? $c->_zero() : $c->_copy($x);
- @$x = 0; # if $a < 0
- $x->[0] = 1 if $a == 0; # $x == $y
- return ($x, $rem) if wantarray;
- return $x;
+ if ($cmp < 0) { # x < y
+ if (wantarray) {
+ my $rem = $c->_copy($x);
+ @$x = 0;
+ return $x, $rem;
}
- # $x >= $y, so proceed normally
+ @$x = 0;
+ return $x;
}
}
# all other cases:
- my $y = $c->_copy($yorg); # always make copy to preserve
+ my $y = $c->_copy($yorg); # always make copy to preserve
- my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, $tmp, $q, $u2, $u1, $u0);
-
- $car = $bar = $prd = 0;
- if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
- for $xi (@$x) {
+ my $tmp = $y->[-1] + 1;
+ my $rem = $BASE % $tmp;
+ my $dd = ($BASE - $rem) / $tmp;
+ if ($dd != 1) {
+ my $car = 0;
+ for my $xi (@$x) {
$xi = $xi * $dd + $car;
- $xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL
+ $xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL
}
push(@$x, $car);
$car = 0;
- for $yi (@$y) {
+ for my $yi (@$y) {
$yi = $yi * $dd + $car;
- $yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL
+ $yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL
}
} else {
push(@$x, 0);
}
- @q = ();
- ($v2, $v1) = @$y[-2, -1];
+
+ # @q will accumulate the final result, $q contains the current computed
+ # part of the final result
+
+ my @q = ();
+ my ($v2, $v1) = @$y[-2, -1];
$v2 = 0 unless $v2;
while ($#$x > $#$y) {
- ($u2, $u1, $u0) = @$x[-3 .. -1];
+ my ($u2, $u1, $u0) = @$x[-3 .. -1];
$u2 = 0 unless $u2;
#warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
# if $v1 == 0;
- $q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
- --$q while ($v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2);
+ my $tmp = $u0 * $BASE + $u1;
+ my $rem = $tmp % $v1;
+ my $q = $u0 == $v1 ? $MAX_VAL : (($tmp - $rem) / $v1);
+ --$q while $v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2;
if ($q) {
- ($car, $bar) = (0, 0);
- for ($yi = 0, $xi = $#$x - $#$y-1; $yi <= $#$y; ++$yi, ++$xi) {
+ my $prd;
+ my ($car, $bar) = (0, 0);
+ for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
$prd = $q * $y->[$yi] + $car;
- $prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL
- $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
+ $prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL
+ $x->[$xi] += $BASE if $bar = (($x->[$xi] -= $prd + $bar) < 0);
}
if ($x->[-1] < $car + $bar) {
$car = 0;
--$q;
- for ($yi = 0, $xi = $#$x - $#$y-1; $yi <= $#$y; ++$yi, ++$xi) {
+ for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
$x->[$xi] -= $BASE
- if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
+ if $car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE);
}
}
}
pop(@$x);
unshift(@q, $q);
}
+
if (wantarray) {
my $d = bless [], $c;
if ($dd != 1) {
- $car = 0;
- for $xi (reverse @$x) {
+ my $car = 0;
+ my ($prd, $rem);
+ for my $xi (reverse @$x) {
$prd = $car * $BASE + $xi;
- $car = $prd - ($tmp = int($prd / $dd)) * $dd; # see USE_MUL
- unshift(@$d, $tmp);
+ $rem = $prd % $dd;
+ $tmp = ($prd - $rem) / $dd;
+ $car = $rem;
+ unshift @$d, $tmp;
}
} else {
@$d = @$x;
@@ -762,29 +740,29 @@ sub _div_use_mul {
sub _div_use_div_64 {
# ref to array, ref to array, modify first array and return remainder if
# in list context
- # This version works on 64 bit integers
- my ($c, $x, $yorg) = @_;
+ # This version works on integers
use integer;
+
+ my ($c, $x, $yorg) = @_;
+
# the general div algorithm here is about O(N*N) and thus quite slow, so
# we first check for some special cases and use shortcuts to handle them.
- # This works, because we store the numbers in a chunked format where each
- # element contains 5..7 digits (depending on system).
-
# if both numbers have only one element:
if (@$x == 1 && @$yorg == 1) {
# shortcut, $yorg and $x are two small numbers
if (wantarray) {
my $rem = [ $x->[0] % $yorg->[0] ];
bless $rem, $c;
- $x->[0] = int($x->[0] / $yorg->[0]);
+ $x->[0] = $x->[0] / $yorg->[0];
return ($x, $rem);
} else {
- $x->[0] = int($x->[0] / $yorg->[0]);
+ $x->[0] = $x->[0] / $yorg->[0];
return $x;
}
}
+
# if x has more than one, but y has only one element:
if (@$yorg == 1) {
my $rem;
@@ -797,78 +775,67 @@ sub _div_use_div_64 {
my $b;
while ($j-- > 0) {
$b = $r * $BASE + $x->[$j];
- $x->[$j] = int($b/$y);
$r = $b % $y;
+ $x->[$j] = $b / $y;
}
- pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
+ pop(@$x) if @$x > 1 && $x->[-1] == 0; # remove any trailing zero
return ($x, $rem) if wantarray;
return $x;
}
+
# now x and y have more than one element
- # check whether y has more elements than x, if yet, the result will be 0
+ # check whether y has more elements than x, if so, the result is 0
if (@$yorg > @$x) {
my $rem;
- $rem = $c->_copy($x) if wantarray; # make copy
- @$x = 0; # set to 0
- return ($x, $rem) if wantarray; # including remainder?
- return $x; # only x, which is [0] now
+ $rem = $c->_copy($x) if wantarray; # make copy
+ @$x = 0; # set to 0
+ return ($x, $rem) if wantarray; # including remainder?
+ return $x; # only x, which is [0] now
}
+
# check whether the numbers have the same number of elements, in that case
# the result will fit into one element and can be computed efficiently
if (@$yorg == @$x) {
- my $rem;
- # if $yorg has more digits than $x (it's leading element is longer than
- # the one from $x), the result will also be 0:
- if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
- $rem = $c->_copy($x) if wantarray; # make copy
- @$x = 0; # set to 0
- return ($x, $rem) if wantarray; # including remainder?
- return $x;
+ my $cmp = 0;
+ for (my $j = $#$x ; $j >= 0 ; --$j) {
+ last if $cmp = $x->[$j] - $yorg->[$j];
}
- # now calculate $x / $yorg
- if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
- # same length, so make full compare
+ if ($cmp == 0) { # x = y
+ @$x = 1;
+ return $x, $c->_zero() if wantarray;
+ return $x;
+ }
- my $a = 0;
- my $j = @$x - 1;
- # manual way (abort if unequal, good for early ne)
- while ($j >= 0) {
- last if ($a = $x->[$j] - $yorg->[$j]);
- $j--;
- }
- # $a contains the result of the compare between X and Y
- # a < 0: x < y, a == 0: x == y, a > 0: x > y
- if ($a <= 0) {
- $rem = $c->_zero(); # a = 0 => x == y => rem 0
- $rem = $c->_copy($x) if $a != 0; # a < 0 => x < y => rem = x
- @$x = 0; # if $a < 0
- $x->[0] = 1 if $a == 0; # $x == $y
- return ($x, $rem) if wantarray; # including remainder?
- return $x;
+ if ($cmp < 0) { # x < y
+ if (wantarray) {
+ my $rem = $c->_copy($x);
+ @$x = 0;
+ return $x, $rem;
}
- # $x >= $y, so proceed normally
+ @$x = 0;
+ return $x;
}
}
# all other cases:
- my $y = $c->_copy($yorg); # always make copy to preserve
-
- my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, $tmp, $q, $u2, $u1, $u0);
+ my $y = $c->_copy($yorg); # always make copy to preserve
- $car = $bar = $prd = 0;
- if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
- for $xi (@$x) {
+ my $tmp;
+ my $dd = $BASE / ($y->[-1] + 1);
+ if ($dd != 1) {
+ my $car = 0;
+ for my $xi (@$x) {
$xi = $xi * $dd + $car;
- $xi -= ($car = int($xi / $BASE)) * $BASE;
+ $xi -= ($car = $xi / $BASE) * $BASE;
}
push(@$x, $car);
$car = 0;
- for $yi (@$y) {
+ for my $yi (@$y) {
$yi = $yi * $dd + $car;
- $yi -= ($car = int($yi / $BASE)) * $BASE;
+ $yi -= ($car = $yi / $BASE) * $BASE;
}
} else {
push(@$x, 0);
@@ -877,43 +844,48 @@ sub _div_use_div_64 {
# @q will accumulate the final result, $q contains the current computed
# part of the final result
- @q = ();
- ($v2, $v1) = @$y[-2, -1];
+ my @q = ();
+ my ($v2, $v1) = @$y[-2, -1];
$v2 = 0 unless $v2;
while ($#$x > $#$y) {
- ($u2, $u1, $u0) = @$x[-3..-1];
+ my ($u2, $u1, $u0) = @$x[-3 .. -1];
$u2 = 0 unless $u2;
#warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
# if $v1 == 0;
- $q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
- --$q while ($v2 * $q > ($u0 * $BASE +$ u1- $q*$v1) * $BASE + $u2);
+ my $tmp = $u0 * $BASE + $u1;
+ my $rem = $tmp % $v1;
+ my $q = $u0 == $v1 ? $MAX_VAL : (($tmp - $rem) / $v1);
+ --$q while $v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2;
if ($q) {
- ($car, $bar) = (0, 0);
- for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
+ my $prd;
+ my ($car, $bar) = (0, 0);
+ for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
$prd = $q * $y->[$yi] + $car;
$prd -= ($car = int($prd / $BASE)) * $BASE;
- $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
+ $x->[$xi] += $BASE if $bar = (($x->[$xi] -= $prd + $bar) < 0);
}
if ($x->[-1] < $car + $bar) {
$car = 0;
--$q;
- for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
+ for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
$x->[$xi] -= $BASE
- if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
+ if $car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE);
}
}
}
pop(@$x);
unshift(@q, $q);
}
+
if (wantarray) {
my $d = bless [], $c;
if ($dd != 1) {
- $car = 0;
- for $xi (reverse @$x) {
+ my $car = 0;
+ my $prd;
+ for my $xi (reverse @$x) {
$prd = $car * $BASE + $xi;
- $car = $prd - ($tmp = int($prd / $dd)) * $dd;
- unshift(@$d, $tmp);
+ $car = $prd - ($tmp = $prd / $dd) * $dd;
+ unshift @$d, $tmp;
}
} else {
@$d = @$x;
@@ -931,27 +903,22 @@ sub _div_use_div_64 {
sub _div_use_div {
# ref to array, ref to array, modify first array and return remainder if
# in list context
+
my ($c, $x, $yorg) = @_;
# the general div algorithm here is about O(N*N) and thus quite slow, so
# we first check for some special cases and use shortcuts to handle them.
- # This works, because we store the numbers in a chunked format where each
- # element contains 5..7 digits (depending on system).
-
# if both numbers have only one element:
if (@$x == 1 && @$yorg == 1) {
# shortcut, $yorg and $x are two small numbers
- if (wantarray) {
- my $rem = [ $x->[0] % $yorg->[0] ];
- bless $rem, $c;
- $x->[0] = int($x->[0] / $yorg->[0]);
- return ($x, $rem);
- } else {
- $x->[0] = int($x->[0] / $yorg->[0]);
- return $x;
- }
+ my $rem = [ $x->[0] % $yorg->[0] ];
+ bless $rem, $c;
+ $x->[0] = ($x->[0] - $rem->[0]) / $yorg->[0];
+ return ($x, $rem) if wantarray;
+ return $x;
}
+
# if x has more than one, but y has only one element:
if (@$yorg == 1) {
my $rem;
@@ -964,80 +931,72 @@ sub _div_use_div {
my $b;
while ($j-- > 0) {
$b = $r * $BASE + $x->[$j];
- $x->[$j] = int($b/$y);
$r = $b % $y;
+ $x->[$j] = ($b - $r) / $y;
}
- pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
+ pop(@$x) if @$x > 1 && $x->[-1] == 0; # remove any trailing zero
return ($x, $rem) if wantarray;
return $x;
}
+
# now x and y have more than one element
- # check whether y has more elements than x, if yet, the result will be 0
+ # check whether y has more elements than x, if so, the result is 0
if (@$yorg > @$x) {
my $rem;
- $rem = $c->_copy($x) if wantarray; # make copy
- @$x = 0; # set to 0
- return ($x, $rem) if wantarray; # including remainder?
- return $x; # only x, which is [0] now
+ $rem = $c->_copy($x) if wantarray; # make copy
+ @$x = 0; # set to 0
+ return ($x, $rem) if wantarray; # including remainder?
+ return $x; # only x, which is [0] now
}
+
# check whether the numbers have the same number of elements, in that case
# the result will fit into one element and can be computed efficiently
if (@$yorg == @$x) {
- my $rem;
- # if $yorg has more digits than $x (it's leading element is longer than
- # the one from $x), the result will also be 0:
- if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
- $rem = $c->_copy($x) if wantarray; # make copy
- @$x = 0; # set to 0
- return ($x, $rem) if wantarray; # including remainder?
- return $x;
+ my $cmp = 0;
+ for (my $j = $#$x ; $j >= 0 ; --$j) {
+ last if $cmp = $x->[$j] - $yorg->[$j];
}
- # now calculate $x / $yorg
- if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
- # same length, so make full compare
+ if ($cmp == 0) { # x = y
+ @$x = 1;
+ return $x, $c->_zero() if wantarray;
+ return $x;
+ }
- my $a = 0;
- my $j = @$x - 1;
- # manual way (abort if unequal, good for early ne)
- while ($j >= 0) {
- last if ($a = $x->[$j] - $yorg->[$j]);
- $j--;
- }
- # $a contains the result of the compare between X and Y
- # a < 0: x < y, a == 0: x == y, a > 0: x > y
- if ($a <= 0) {
- $rem = $c->_zero(); # a = 0 => x == y => rem 0
- $rem = $c->_copy($x) if $a != 0; # a < 0 => x < y => rem = x
+ if ($cmp < 0) { # x < y
+ if (wantarray) {
+ my $rem = $c->_copy($x);
@$x = 0;
- $x->[0] = 0; # if $a < 0
- $x->[0] = 1 if $a == 0; # $x == $y
- return ($x, $rem) if wantarray; # including remainder?
- return $x;
+ return $x, $rem;
}
- # $x >= $y, so proceed normally
-
+ @$x = 0;
+ return $x;
}
}
# all other cases:
- my $y = $c->_copy($yorg); # always make copy to preserve
-
- my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, @d, $tmp, $q, $u2, $u1, $u0);
+ my $y = $c->_copy($yorg); # always make copy to preserve
- $car = $bar = $prd = 0;
- if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
- for $xi (@$x) {
+ my $tmp = $y->[-1] + 1;
+ my $rem = $BASE % $tmp;
+ my $dd = ($BASE - $rem) / $tmp;
+ if ($dd != 1) {
+ my $car = 0;
+ for my $xi (@$x) {
$xi = $xi * $dd + $car;
- $xi -= ($car = int($xi / $BASE)) * $BASE;
+ $rem = $xi % $BASE;
+ $car = ($xi - $rem) / $BASE;
+ $xi = $rem;
}
push(@$x, $car);
$car = 0;
- for $yi (@$y) {
+ for my $yi (@$y) {
$yi = $yi * $dd + $car;
- $yi -= ($car = int($yi / $BASE)) * $BASE;
+ $rem = $yi % $BASE;
+ $car = ($yi - $rem) / $BASE;
+ $yi = $rem;
}
} else {
push(@$x, 0);
@@ -1046,43 +1005,52 @@ sub _div_use_div {
# @q will accumulate the final result, $q contains the current computed
# part of the final result
- @q = ();
- ($v2, $v1) = @$y[-2, -1];
+ my @q = ();
+ my ($v2, $v1) = @$y[-2, -1];
$v2 = 0 unless $v2;
while ($#$x > $#$y) {
- ($u2, $u1, $u0) = @$x[-3..-1];
+ my ($u2, $u1, $u0) = @$x[-3 .. -1];
$u2 = 0 unless $u2;
#warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
# if $v1 == 0;
- $q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
- --$q while ($v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2);
+ my $tmp = $u0 * $BASE + $u1;
+ my $rem = $tmp % $v1;
+ my $q = $u0 == $v1 ? $MAX_VAL : (($tmp - $rem) / $v1);
+ --$q while $v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2;
if ($q) {
- ($car, $bar) = (0, 0);
- for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
+ my $prd;
+ my ($car, $bar) = (0, 0);
+ for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
$prd = $q * $y->[$yi] + $car;
- $prd -= ($car = int($prd / $BASE)) * $BASE;
- $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
+ $rem = $prd % $BASE;
+ $car = ($prd - $rem) / $BASE;
+ $prd -= $car * $BASE;
+ $x->[$xi] += $BASE if $bar = (($x->[$xi] -= $prd + $bar) < 0);
}
if ($x->[-1] < $car + $bar) {
$car = 0;
--$q;
- for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
+ for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
$x->[$xi] -= $BASE
- if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
+ if $car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE);
}
}
}
pop(@$x);
unshift(@q, $q);
}
+
if (wantarray) {
my $d = bless [], $c;
if ($dd != 1) {
- $car = 0;
- for $xi (reverse @$x) {
+ my $car = 0;
+ my ($prd, $rem);
+ for my $xi (reverse @$x) {
$prd = $car * $BASE + $xi;
- $car = $prd - ($tmp = int($prd / $dd)) * $dd;
- unshift(@$d, $tmp);
+ $rem = $prd % $dd;
+ $tmp = ($prd - $rem) / $dd;
+ $car = $rem;
+ unshift @$d, $tmp;
}
} else {
@$d = @$x;
@@ -1385,7 +1353,7 @@ sub _rsft {
$dst++;
}
splice(@$x, $dst) if $dst > 0; # kill left-over array elems
- pop @$x if $x->[-1] == 0 && @$x > 1; # kill last element if 0
+ pop(@$x) if $x->[-1] == 0 && @$x > 1; # kill last element if 0
} # else rem == 0
$x;
}
@@ -1393,49 +1361,64 @@ sub _rsft {
sub _lsft {
my ($c, $x, $n, $b) = @_;
- return $x if $c->_is_zero($x);
-
- # Handle the special case when the base is a power of 10. Don't check
- # whether log($b)/log(10) is an integer, because log(1000)/log(10) is not
- # exactly 3.
-
- my $log10 = sprintf "%.0f", log($b) / log(10);
- if ($b == 10 ** $log10) {
- $b = 10;
- $n = $c->_mul($n, $c->_new($log10));
-
- # shortcut (faster) for shifting by 10) since we are in base 10eX
- # multiples of $BASE_LEN:
- my $src = @$x; # source
- my $len = $c->_num($n); # shift-len as normal int
- my $rem = $len % $BASE_LEN; # remainder to shift
- my $dst = $src + int($len / $BASE_LEN); # destination
- my $vd; # further speedup
- $x->[$src] = 0; # avoid first ||0 for speed
- my $z = '0' x $BASE_LEN;
- while ($src >= 0) {
- $vd = $x->[$src];
- $vd = $z . $vd;
- $vd = substr($vd, -$BASE_LEN + $rem, $BASE_LEN - $rem);
- $vd .= $src > 0 ? substr($z . $x->[$src - 1], -$BASE_LEN, $rem)
- : '0' x $rem;
- $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN;
- $x->[$dst] = int($vd);
- $dst--;
- $src--;
+ return $x if $c->_is_zero($x) || $c->_is_zero($n);
+
+ # For backwards compatibility, allow the base $b to be a scalar.
+
+ $b = $c->_new($b) unless ref $b;
+
+ # If the base is a power of 10, use shifting, since the internal
+ # representation is in base 10eX.
+
+ my $bstr = $c->_str($b);
+ if ($bstr =~ /^1(0+)\z/) {
+
+ # Adjust $n so that we're shifting in base 10. Do this by multiplying
+ # $n by the base 10 logarithm of $b: $b ** $n = 10 ** (log10($b) * $n).
+
+ my $log10b = length($1);
+ $n = $c->_mul($c->_new($log10b), $n);
+ $n = $c->_num($n); # shift-len as normal int
+
+ # $q is the number of places to shift the elements within the array,
+ # and $r is the number of places to shift the values within the
+ # elements.
+
+ my $r = $n % $BASE_LEN;
+ my $q = ($n - $r) / $BASE_LEN;
+
+ # If we must shift the values within the elements ...
+
+ if ($r) {
+ my $i = @$x; # index
+ $x->[$i] = 0; # initialize most significant element
+ my $z = '0' x $BASE_LEN;
+ my $vd;
+ while ($i >= 0) {
+ $vd = $x->[$i];
+ $vd = $z . $vd;
+ $vd = substr($vd, $r - $BASE_LEN, $BASE_LEN - $r);
+ $vd .= $i > 0 ? substr($z . $x->[$i - 1], -$BASE_LEN, $r)
+ : '0' x $r;
+ $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN;
+ $x->[$i] = int($vd); # e.g., "0...048" -> 48 etc.
+ $i--;
+ }
+
+ pop(@$x) if $x->[-1] == 0; # if most significant element is zero
}
- # set lowest parts to 0
- while ($dst >= 0) {
- $x->[$dst--] = 0;
+
+ # If we must shift the elements within the array ...
+
+ if ($q) {
+ unshift @$x, (0) x $q;
}
- # fix spurious last zero element
- splice @$x, -1 if $x->[-1] == 0;
- return $x;
+
} else {
- $b = $c->_new($b);
- #print $c->_str($b);
- return $c->_mul($x, $c->_pow($b, $n));
+ $x = $c->_mul($x, $c->_pow($b, $n));
}
+
+ return $x;
}
sub _pow {