summaryrefslogtreecommitdiff
path: root/lib/libm/noieee_src
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libm/noieee_src')
-rw-r--r--lib/libm/noieee_src/mathimpl.h99
-rw-r--r--lib/libm/noieee_src/n_acosh.c104
-rw-r--r--lib/libm/noieee_src/n_asincos.c174
-rw-r--r--lib/libm/noieee_src/n_asinh.c102
-rw-r--r--lib/libm/noieee_src/n_atan.c88
-rw-r--r--lib/libm/noieee_src/n_atan2.c282
-rw-r--r--lib/libm/noieee_src/n_atanh.c84
-rw-r--r--lib/libm/noieee_src/n_cabs.c231
-rw-r--r--lib/libm/noieee_src/n_cbrt.c121
-rw-r--r--lib/libm/noieee_src/n_cosh.c134
-rw-r--r--lib/libm/noieee_src/n_erf.c399
-rw-r--r--lib/libm/noieee_src/n_exp.c204
-rw-r--r--lib/libm/noieee_src/n_exp__E.c137
-rw-r--r--lib/libm/noieee_src/n_expm1.c168
-rw-r--r--lib/libm/noieee_src/n_floor.c138
-rw-r--r--lib/libm/noieee_src/n_fmod.c158
-rw-r--r--lib/libm/noieee_src/n_gamma.c337
-rw-r--r--lib/libm/noieee_src/n_j0.c442
-rw-r--r--lib/libm/noieee_src/n_j1.c448
-rw-r--r--lib/libm/noieee_src/n_jn.c312
-rw-r--r--lib/libm/noieee_src/n_lgamma.c308
-rw-r--r--lib/libm/noieee_src/n_log.c487
-rw-r--r--lib/libm/noieee_src/n_log10.c96
-rw-r--r--lib/libm/noieee_src/n_log1p.c171
-rw-r--r--lib/libm/noieee_src/n_log__L.c111
-rw-r--r--lib/libm/noieee_src/n_pow.c216
-rw-r--r--lib/libm/noieee_src/n_sincos.c100
-rw-r--r--lib/libm/noieee_src/n_sinh.c122
-rw-r--r--lib/libm/noieee_src/n_support.c525
-rw-r--r--lib/libm/noieee_src/n_tan.c76
-rw-r--r--lib/libm/noieee_src/n_tanh.c100
31 files changed, 6474 insertions, 0 deletions
diff --git a/lib/libm/noieee_src/mathimpl.h b/lib/libm/noieee_src/mathimpl.h
new file mode 100644
index 00000000000..30e94f03b01
--- /dev/null
+++ b/lib/libm/noieee_src/mathimpl.h
@@ -0,0 +1,99 @@
+/* $NetBSD: mathimpl.h,v 1.1 1995/10/10 23:36:31 ragge Exp $ */
+/*
+ * Copyright (c) 1988, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)mathimpl.h 8.1 (Berkeley) 6/4/93
+ */
+
+#include <sys/cdefs.h>
+#include <math.h>
+
+#if defined(vax)||defined(tahoe)
+
+/* Deal with different ways to concatenate in cpp */
+# ifdef __STDC__
+# define cat3(a,b,c) a ## b ## c
+# else
+# define cat3(a,b,c) a/**/b/**/c
+# endif
+
+/* Deal with vax/tahoe byte order issues */
+# ifdef vax
+# define cat3t(a,b,c) cat3(a,b,c)
+# else
+# define cat3t(a,b,c) cat3(a,c,b)
+# endif
+
+# define vccast(name) (*(const double *)(cat3(name,,x)))
+
+ /*
+ * Define a constant to high precision on a Vax or Tahoe.
+ *
+ * Args are the name to define, the decimal floating point value,
+ * four 16-bit chunks of the float value in hex
+ * (because the vax and tahoe differ in float format!), the power
+ * of 2 of the hex-float exponent, and the hex-float mantissa.
+ * Most of these arguments are not used at compile time; they are
+ * used in a post-check to make sure the constants were compiled
+ * correctly.
+ *
+ * People who want to use the constant will have to do their own
+ * #define foo vccast(foo)
+ * since CPP cannot do this for them from inside another macro (sigh).
+ * We define "vccast" if this needs doing.
+ */
+# define vc(name, value, x1,x2,x3,x4, bexp, xval) \
+ const static long cat3(name,,x)[] = {cat3t(0x,x1,x2), cat3t(0x,x3,x4)};
+
+# define ic(name, value, bexp, xval) ;
+
+#else /* vax or tahoe */
+
+ /* Hooray, we have an IEEE machine */
+# undef vccast
+# define vc(name, value, x1,x2,x3,x4, bexp, xval) ;
+
+# define ic(name, value, bexp, xval) \
+ const static double name = value;
+
+#endif /* defined(vax)||defined(tahoe) */
+
+
+/*
+ * Functions internal to the math package, yet not static.
+ */
+extern double __exp__E();
+extern double __log__L();
+
+struct Double {double a, b;};
+double __exp__D __P((double, double));
+struct Double __log__D __P((double));
diff --git a/lib/libm/noieee_src/n_acosh.c b/lib/libm/noieee_src/n_acosh.c
new file mode 100644
index 00000000000..ce909d16ea3
--- /dev/null
+++ b/lib/libm/noieee_src/n_acosh.c
@@ -0,0 +1,104 @@
+/* $NetBSD: n_acosh.c,v 1.1 1995/10/10 23:36:33 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)acosh.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* ACOSH(X)
+ * RETURN THE INVERSE HYPERBOLIC COSINE OF X
+ * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 2/16/85;
+ * REVISED BY K.C. NG on 3/6/85, 3/24/85, 4/16/85, 8/17/85.
+ *
+ * Required system supported functions :
+ * sqrt(x)
+ *
+ * Required kernel function:
+ * log1p(x) ...return log(1+x)
+ *
+ * Method :
+ * Based on
+ * acosh(x) = log [ x + sqrt(x*x-1) ]
+ * we have
+ * acosh(x) := log1p(x)+ln2, if (x > 1.0E20); else
+ * acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
+ * These formulae avoid the over/underflow complication.
+ *
+ * Special cases:
+ * acosh(x) is NaN with signal if x<1.
+ * acosh(NaN) is NaN without signal.
+ *
+ * Accuracy:
+ * acosh(x) returns the exact inverse hyperbolic cosine of x nearly
+ * rounded. In a test run with 512,000 random arguments on a VAX, the
+ * maximum observed error was 3.30 ulps (units of the last place) at
+ * x=1.0070493753568216 .
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "mathimpl.h"
+
+vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
+vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
+
+ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
+ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)
+
+#ifdef vccast
+#define ln2hi vccast(ln2hi)
+#define ln2lo vccast(ln2lo)
+#endif
+
+double
+acosh(x)
+ double x;
+{
+ double t,big=1.E20; /* big+1==big */
+
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+
+ /* return log1p(x) + log(2) if x is large */
+ if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);}
+
+ t=sqrt(x-1.0);
+ return(log1p(t*(t+sqrt(x+1.0))));
+}
diff --git a/lib/libm/noieee_src/n_asincos.c b/lib/libm/noieee_src/n_asincos.c
new file mode 100644
index 00000000000..581e978fe59
--- /dev/null
+++ b/lib/libm/noieee_src/n_asincos.c
@@ -0,0 +1,174 @@
+/* $NetBSD: n_asincos.c,v 1.1 1995/10/10 23:36:34 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)asincos.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* ASIN(X)
+ * RETURNS ARC SINE OF X
+ * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
+ * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
+ *
+ * Required system supported functions:
+ * copysign(x,y)
+ * sqrt(x)
+ *
+ * Required kernel function:
+ * atan2(y,x)
+ *
+ * Method :
+ * asin(x) = atan2(x,sqrt(1-x*x)); for better accuracy, 1-x*x is
+ * computed as follows
+ * 1-x*x if x < 0.5,
+ * 2*(1-|x|)-(1-|x|)*(1-|x|) if x >= 0.5.
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN.
+ *
+ * Accuracy:
+ * 1) If atan2() uses machine PI, then
+ *
+ * asin(x) returns (PI/pi) * (the exact arc sine of x) nearly rounded;
+ * and PI is the exact pi rounded to machine precision (see atan2 for
+ * details):
+ *
+ * in decimal:
+ * pi = 3.141592653589793 23846264338327 .....
+ * 53 bits PI = 3.141592653589793 115997963 ..... ,
+ * 56 bits PI = 3.141592653589793 227020265 ..... ,
+ *
+ * in hexadecimal:
+ * pi = 3.243F6A8885A308D313198A2E....
+ * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps
+ * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps
+ *
+ * In a test run with more than 200,000 random arguments on a VAX, the
+ * maximum observed error in ulps (units in the last place) was
+ * 2.06 ulps. (comparing against (PI/pi)*(exact asin(x)));
+ *
+ * 2) If atan2() uses true pi, then
+ *
+ * asin(x) returns the exact asin(x) with error below about 2 ulps.
+ *
+ * In a test run with more than 1,024,000 random arguments on a VAX, the
+ * maximum observed error in ulps (units in the last place) was
+ * 1.99 ulps.
+ */
+
+#include "mathimpl.h"
+
+double
+asin(x)
+ double x;
+{
+ double s,t,copysign(),atan2(),sqrt(),one=1.0;
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+ s=copysign(x,one);
+ if(s <= 0.5)
+ return(atan2(x,sqrt(one-x*x)));
+ else
+ { t=one-s; s=t+t; return(atan2(x,sqrt(s-t*t))); }
+
+}
+
+/* ACOS(X)
+ * RETURNS ARC COS OF X
+ * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
+ * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
+ *
+ * Required system supported functions:
+ * copysign(x,y)
+ * sqrt(x)
+ *
+ * Required kernel function:
+ * atan2(y,x)
+ *
+ * Method :
+ * ________
+ * / 1 - x
+ * acos(x) = 2*atan2( / -------- , 1 ) .
+ * \/ 1 + x
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN.
+ *
+ * Accuracy:
+ * 1) If atan2() uses machine PI, then
+ *
+ * acos(x) returns (PI/pi) * (the exact arc cosine of x) nearly rounded;
+ * and PI is the exact pi rounded to machine precision (see atan2 for
+ * details):
+ *
+ * in decimal:
+ * pi = 3.141592653589793 23846264338327 .....
+ * 53 bits PI = 3.141592653589793 115997963 ..... ,
+ * 56 bits PI = 3.141592653589793 227020265 ..... ,
+ *
+ * in hexadecimal:
+ * pi = 3.243F6A8885A308D313198A2E....
+ * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps
+ * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps
+ *
+ * In a test run with more than 200,000 random arguments on a VAX, the
+ * maximum observed error in ulps (units in the last place) was
+ * 2.07 ulps. (comparing against (PI/pi)*(exact acos(x)));
+ *
+ * 2) If atan2() uses true pi, then
+ *
+ * acos(x) returns the exact acos(x) with error below about 2 ulps.
+ *
+ * In a test run with more than 1,024,000 random arguments on a VAX, the
+ * maximum observed error in ulps (units in the last place) was
+ * 2.15 ulps.
+ */
+
+double
+acos(x)
+ double x;
+{
+ double t,copysign(),atan2(),sqrt(),one=1.0;
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x);
+#endif /* !defined(vax)&&!defined(tahoe) */
+ if( x != -1.0)
+ t=atan2(sqrt((one-x)/(one+x)),one);
+ else
+ t=atan2(one,0.0); /* t = PI/2 */
+ return(t+t);
+}
diff --git a/lib/libm/noieee_src/n_asinh.c b/lib/libm/noieee_src/n_asinh.c
new file mode 100644
index 00000000000..05b325ed86a
--- /dev/null
+++ b/lib/libm/noieee_src/n_asinh.c
@@ -0,0 +1,102 @@
+/* $NetBSD: n_asinh.c,v 1.1 1995/10/10 23:36:35 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)asinh.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* ASINH(X)
+ * RETURN THE INVERSE HYPERBOLIC SINE OF X
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 2/16/85;
+ * REVISED BY K.C. NG on 3/7/85, 3/24/85, 4/16/85.
+ *
+ * Required system supported functions :
+ * copysign(x,y)
+ * sqrt(x)
+ *
+ * Required kernel function:
+ * log1p(x) ...return log(1+x)
+ *
+ * Method :
+ * Based on
+ * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
+ * we have
+ * asinh(x) := x if 1+x*x=1,
+ * := sign(x)*(log1p(x)+ln2)) if sqrt(1+x*x)=x, else
+ * := sign(x)*log1p(|x| + |x|/(1/|x| + sqrt(1+(1/|x|)^2)) )
+ *
+ * Accuracy:
+ * asinh(x) returns the exact inverse hyperbolic sine of x nearly rounded.
+ * In a test run with 52,000 random arguments on a VAX, the maximum
+ * observed error was 1.58 ulps (units in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+#include "mathimpl.h"
+
+vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
+vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
+
+ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
+ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
+
+#ifdef vccast
+#define ln2hi vccast(ln2hi)
+#define ln2lo vccast(ln2lo)
+#endif
+
+double asinh(x)
+double x;
+{
+ double t,s;
+ const static double small=1.0E-10, /* fl(1+small*small) == 1 */
+ big =1.0E20, /* fl(1+big) == big */
+ one =1.0 ;
+
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+ if((t=copysign(x,one))>small)
+ if(t<big) {
+ s=one/t; return(copysign(log1p(t+t/(s+sqrt(one+s*s))),x)); }
+ else /* if |x| > big */
+ {s=log1p(t)+ln2lo; return(copysign(s+ln2hi,x));}
+ else /* if |x| < small */
+ return(x);
+}
diff --git a/lib/libm/noieee_src/n_atan.c b/lib/libm/noieee_src/n_atan.c
new file mode 100644
index 00000000000..6b9c97eb42d
--- /dev/null
+++ b/lib/libm/noieee_src/n_atan.c
@@ -0,0 +1,88 @@
+/* $NetBSD: n_atan.c,v 1.1 1995/10/10 23:36:36 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)atan.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* ATAN(X)
+ * RETURNS ARC TANGENT OF X
+ * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
+ * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
+ *
+ * Required kernel function:
+ * atan2(y,x)
+ *
+ * Method:
+ * atan(x) = atan2(x,1.0).
+ *
+ * Special case:
+ * if x is NaN, return x itself.
+ *
+ * Accuracy:
+ * 1) If atan2() uses machine PI, then
+ *
+ * atan(x) returns (PI/pi) * (the exact arc tangent of x) nearly rounded;
+ * and PI is the exact pi rounded to machine precision (see atan2 for
+ * details):
+ *
+ * in decimal:
+ * pi = 3.141592653589793 23846264338327 .....
+ * 53 bits PI = 3.141592653589793 115997963 ..... ,
+ * 56 bits PI = 3.141592653589793 227020265 ..... ,
+ *
+ * in hexadecimal:
+ * pi = 3.243F6A8885A308D313198A2E....
+ * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps
+ * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps
+ *
+ * In a test run with more than 200,000 random arguments on a VAX, the
+ * maximum observed error in ulps (units in the last place) was
+ * 0.86 ulps. (comparing against (PI/pi)*(exact atan(x))).
+ *
+ * 2) If atan2() uses true pi, then
+ *
+ * atan(x) returns the exact atan(x) with error below about 2 ulps.
+ *
+ * In a test run with more than 1,024,000 random arguments on a VAX, the
+ * maximum observed error in ulps (units in the last place) was
+ * 0.85 ulps.
+ */
+
+double atan(x)
+double x;
+{
+ double atan2(),one=1.0;
+ return(atan2(x,one));
+}
diff --git a/lib/libm/noieee_src/n_atan2.c b/lib/libm/noieee_src/n_atan2.c
new file mode 100644
index 00000000000..042f40d0863
--- /dev/null
+++ b/lib/libm/noieee_src/n_atan2.c
@@ -0,0 +1,282 @@
+/* $NetBSD: n_atan2.c,v 1.1 1995/10/10 23:36:37 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)atan2.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* ATAN2(Y,X)
+ * RETURN ARG (X+iY)
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 1/8/85;
+ * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
+ *
+ * Required system supported functions :
+ * copysign(x,y)
+ * scalb(x,y)
+ * logb(x)
+ *
+ * Method :
+ * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
+ * 2. Reduce x to positive by (if x and y are unexceptional):
+ * ARG (x+iy) = arctan(y/x) ... if x > 0,
+ * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
+ * 3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
+ * is further reduced to one of the following intervals and the
+ * arctangent of y/x is evaluated by the corresponding formula:
+ *
+ * [0,7/16] atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
+ * [7/16,11/16] atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
+ * [11/16.19/16] atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
+ * [19/16,39/16] atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
+ * [39/16,INF] atan(y/x) = atan(INF) + atan( -x/y )
+ *
+ * Special cases:
+ * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
+ *
+ * ARG( NAN , (anything) ) is NaN;
+ * ARG( (anything), NaN ) is NaN;
+ * ARG(+(anything but NaN), +-0) is +-0 ;
+ * ARG(-(anything but NaN), +-0) is +-PI ;
+ * ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
+ * ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
+ * ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
+ * ARG( +INF,+-INF ) is +-PI/4 ;
+ * ARG( -INF,+-INF ) is +-3PI/4;
+ * ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
+ *
+ * Accuracy:
+ * atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
+ * where
+ *
+ * in decimal:
+ * pi = 3.141592653589793 23846264338327 .....
+ * 53 bits PI = 3.141592653589793 115997963 ..... ,
+ * 56 bits PI = 3.141592653589793 227020265 ..... ,
+ *
+ * in hexadecimal:
+ * pi = 3.243F6A8885A308D313198A2E....
+ * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps
+ * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps
+ *
+ * In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
+ * VAX, the maximum observed error was 1.41 ulps (units of the last place)
+ * compared with (PI/pi)*(the exact ARG(x+iy)).
+ *
+ * Note:
+ * We use machine PI (the true pi rounded) in place of the actual
+ * value of pi for all the trig and inverse trig functions. In general,
+ * if trig is one of sin, cos, tan, then computed trig(y) returns the
+ * exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
+ * returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
+ * trig functions have period PI, and trig(arctrig(x)) returns x for
+ * all critical values x.
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "mathimpl.h"
+
+vc(athfhi, 4.6364760900080611433E-1 ,6338,3fed,da7b,2b0d, -1, .ED63382B0DDA7B)
+vc(athflo, 1.9338828231967579916E-19 ,5005,2164,92c0,9cfe, -62, .E450059CFE92C0)
+vc(PIo4, 7.8539816339744830676E-1 ,0fda,4049,68c2,a221, 0, .C90FDAA22168C2)
+vc(at1fhi, 9.8279372324732906796E-1 ,985e,407b,b4d9,940f, 0, .FB985E940FB4D9)
+vc(at1flo,-3.5540295636764633916E-18 ,1edc,a383,eaea,34d6, -57,-.831EDC34D6EAEA)
+vc(PIo2, 1.5707963267948966135E0 ,0fda,40c9,68c2,a221, 1, .C90FDAA22168C2)
+vc(PI, 3.1415926535897932270E0 ,0fda,4149,68c2,a221, 2, .C90FDAA22168C2)
+vc(a1, 3.3333333333333473730E-1 ,aaaa,3faa,ab75,aaaa, -1, .AAAAAAAAAAAB75)
+vc(a2, -2.0000000000017730678E-1 ,cccc,bf4c,946e,cccd, -2,-.CCCCCCCCCD946E)
+vc(a3, 1.4285714286694640301E-1 ,4924,3f12,4262,9274, -2, .92492492744262)
+vc(a4, -1.1111111135032672795E-1 ,8e38,bee3,6292,ebc6, -3,-.E38E38EBC66292)
+vc(a5, 9.0909091380563043783E-2 ,2e8b,3eba,d70c,b31b, -3, .BA2E8BB31BD70C)
+vc(a6, -7.6922954286089459397E-2 ,89c8,be9d,7f18,27c3, -3,-.9D89C827C37F18)
+vc(a7, 6.6663180891693915586E-2 ,86b4,3e88,9e58,ae37, -3, .8886B4AE379E58)
+vc(a8, -5.8772703698290408927E-2 ,bba5,be70,a942,8481, -4,-.F0BBA58481A942)
+vc(a9, 5.2170707402812969804E-2 ,b0f3,3e55,13ab,a1ab, -4, .D5B0F3A1AB13AB)
+vc(a10, -4.4895863157820361210E-2 ,e4b9,be37,048f,7fd1, -4,-.B7E4B97FD1048F)
+vc(a11, 3.3006147437343875094E-2 ,3174,3e07,2d87,3cf7, -4, .8731743CF72D87)
+vc(a12, -1.4614844866464185439E-2 ,731a,bd6f,76d9,2f34, -6,-.EF731A2F3476D9)
+
+ic(athfhi, 4.6364760900080609352E-1 , -2, 1.DAC670561BB4F)
+ic(athflo, 4.6249969567426939759E-18 , -58, 1.5543B8F253271)
+ic(PIo4, 7.8539816339744827900E-1 , -1, 1.921FB54442D18)
+ic(at1fhi, 9.8279372324732905408E-1 , -1, 1.F730BD281F69B)
+ic(at1flo,-2.4407677060164810007E-17 , -56, -1.C23DFEFEAE6B5)
+ic(PIo2, 1.5707963267948965580E0 , 0, 1.921FB54442D18)
+ic(PI, 3.1415926535897931160E0 , 1, 1.921FB54442D18)
+ic(a1, 3.3333333333333942106E-1 , -2, 1.55555555555C3)
+ic(a2, -1.9999999999979536924E-1 , -3, -1.9999999997CCD)
+ic(a3, 1.4285714278004377209E-1 , -3, 1.24924921EC1D7)
+ic(a4, -1.1111110579344973814E-1 , -4, -1.C71C7059AF280)
+ic(a5, 9.0908906105474668324E-2 , -4, 1.745CE5AA35DB2)
+ic(a6, -7.6919217767468239799E-2 , -4, -1.3B0FA54BEC400)
+ic(a7, 6.6614695906082474486E-2 , -4, 1.10DA924597FFF)
+ic(a8, -5.8358371008508623523E-2 , -5, -1.DE125FDDBD793)
+ic(a9, 4.9850617156082015213E-2 , -5, 1.9860524BDD807)
+ic(a10, -3.6700606902093604877E-2 , -5, -1.2CA6C04C6937A)
+ic(a11, 1.6438029044759730479E-2 , -6, 1.0D52174A1BB54)
+
+#ifdef vccast
+#define athfhi vccast(athfhi)
+#define athflo vccast(athflo)
+#define PIo4 vccast(PIo4)
+#define at1fhi vccast(at1fhi)
+#define at1flo vccast(at1flo)
+#define PIo2 vccast(PIo2)
+#define PI vccast(PI)
+#define a1 vccast(a1)
+#define a2 vccast(a2)
+#define a3 vccast(a3)
+#define a4 vccast(a4)
+#define a5 vccast(a5)
+#define a6 vccast(a6)
+#define a7 vccast(a7)
+#define a8 vccast(a8)
+#define a9 vccast(a9)
+#define a10 vccast(a10)
+#define a11 vccast(a11)
+#define a12 vccast(a12)
+#endif
+
+double atan2(y,x)
+double y,x;
+{
+ static const double zero=0, one=1, small=1.0E-9, big=1.0E18;
+ double t,z,signy,signx,hi,lo;
+ int k,m;
+
+#if !defined(vax)&&!defined(tahoe)
+ /* if x or y is NAN */
+ if(x!=x) return(x); if(y!=y) return(y);
+#endif /* !defined(vax)&&!defined(tahoe) */
+
+ /* copy down the sign of y and x */
+ signy = copysign(one,y) ;
+ signx = copysign(one,x) ;
+
+ /* if x is 1.0, goto begin */
+ if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}
+
+ /* when y = 0 */
+ if(y==zero) return((signx==one)?y:copysign(PI,signy));
+
+ /* when x = 0 */
+ if(x==zero) return(copysign(PIo2,signy));
+
+ /* when x is INF */
+ if(!finite(x))
+ if(!finite(y))
+ return(copysign((signx==one)?PIo4:3*PIo4,signy));
+ else
+ return(copysign((signx==one)?zero:PI,signy));
+
+ /* when y is INF */
+ if(!finite(y)) return(copysign(PIo2,signy));
+
+ /* compute y/x */
+ x=copysign(x,one);
+ y=copysign(y,one);
+ if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
+ else if(m < -80 ) t=y/x;
+ else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }
+
+ /* begin argument reduction */
+begin:
+ if (t < 2.4375) {
+
+ /* truncate 4(t+1/16) to integer for branching */
+ k = 4 * (t+0.0625);
+ switch (k) {
+
+ /* t is in [0,7/16] */
+ case 0:
+ case 1:
+ if (t < small)
+ { big + small ; /* raise inexact flag */
+ return (copysign((signx>zero)?t:PI-t,signy)); }
+
+ hi = zero; lo = zero; break;
+
+ /* t is in [7/16,11/16] */
+ case 2:
+ hi = athfhi; lo = athflo;
+ z = x+x;
+ t = ( (y+y) - x ) / ( z + y ); break;
+
+ /* t is in [11/16,19/16] */
+ case 3:
+ case 4:
+ hi = PIo4; lo = zero;
+ t = ( y - x ) / ( x + y ); break;
+
+ /* t is in [19/16,39/16] */
+ default:
+ hi = at1fhi; lo = at1flo;
+ z = y-x; y=y+y+y; t = x+x;
+ t = ( (z+z)-x ) / ( t + y ); break;
+ }
+ }
+ /* end of if (t < 2.4375) */
+
+ else
+ {
+ hi = PIo2; lo = zero;
+
+ /* t is in [2.4375, big] */
+ if (t <= big) t = - x / y;
+
+ /* t is in [big, INF] */
+ else
+ { big+small; /* raise inexact flag */
+ t = zero; }
+ }
+ /* end of argument reduction */
+
+ /* compute atan(t) for t in [-.4375, .4375] */
+ z = t*t;
+#if defined(vax)||defined(tahoe)
+ z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
+ z*(a9+z*(a10+z*(a11+z*a12))))))))))));
+#else /* defined(vax)||defined(tahoe) */
+ z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
+ z*(a9+z*(a10+z*a11)))))))))));
+#endif /* defined(vax)||defined(tahoe) */
+ z = lo - z; z += t; z += hi;
+
+ return(copysign((signx>zero)?z:PI-z,signy));
+}
diff --git a/lib/libm/noieee_src/n_atanh.c b/lib/libm/noieee_src/n_atanh.c
new file mode 100644
index 00000000000..7fce056b3a1
--- /dev/null
+++ b/lib/libm/noieee_src/n_atanh.c
@@ -0,0 +1,84 @@
+/* $NetBSD: n_atanh.c,v 1.1 1995/10/10 23:36:38 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)atanh.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* ATANH(X)
+ * RETURN THE HYPERBOLIC ARC TANGENT OF X
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 1/8/85;
+ * REVISED BY K.C. NG on 2/7/85, 3/7/85, 8/18/85.
+ *
+ * Required kernel function:
+ * log1p(x) ...return log(1+x)
+ *
+ * Method :
+ * Return
+ * 1 2x x
+ * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
+ * 2 1 - x 1 - x
+ *
+ * Special cases:
+ * atanh(x) is NaN if |x| > 1 with signal;
+ * atanh(NaN) is that NaN with no signal;
+ * atanh(+-1) is +-INF with signal.
+ *
+ * Accuracy:
+ * atanh(x) returns the exact hyperbolic arc tangent of x nearly rounded.
+ * In a test run with 512,000 random arguments on a VAX, the maximum
+ * observed error was 1.87 ulps (units in the last place) at
+ * x= -3.8962076028810414000e-03.
+ */
+#include "mathimpl.h"
+
+#if defined(vax)||defined(tahoe)
+#include <errno.h>
+#endif /* defined(vax)||defined(tahoe) */
+
+double atanh(x)
+double x;
+{
+ double z;
+ z = copysign(0.5,x);
+ x = copysign(x,1.0);
+#if defined(vax)||defined(tahoe)
+ if (x == 1.0) {
+ return(copysign(1.0,z)*infnan(ERANGE)); /* sign(x)*INF */
+ }
+#endif /* defined(vax)||defined(tahoe) */
+ x = x/(1.0-x);
+ return( z*log1p(x+x) );
+}
diff --git a/lib/libm/noieee_src/n_cabs.c b/lib/libm/noieee_src/n_cabs.c
new file mode 100644
index 00000000000..6a823572078
--- /dev/null
+++ b/lib/libm/noieee_src/n_cabs.c
@@ -0,0 +1,231 @@
+/* $NetBSD: n_cabs.c,v 1.1 1995/10/10 23:36:39 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)cabs.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* HYPOT(X,Y)
+ * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 11/28/84;
+ * REVISED BY K.C. NG, 7/12/85.
+ *
+ * Required system supported functions :
+ * copysign(x,y)
+ * finite(x)
+ * scalb(x,N)
+ * sqrt(x)
+ *
+ * Method :
+ * 1. replace x by |x| and y by |y|, and swap x and
+ * y if y > x (hence x is never smaller than y).
+ * 2. Hypot(x,y) is computed by:
+ * Case I, x/y > 2
+ *
+ * y
+ * hypot = x + -----------------------------
+ * 2
+ * sqrt ( 1 + [x/y] ) + x/y
+ *
+ * Case II, x/y <= 2
+ * y
+ * hypot = x + --------------------------------------------------
+ * 2
+ * [x/y] - 2
+ * (sqrt(2)+1) + (x-y)/y + -----------------------------
+ * 2
+ * sqrt ( 1 + [x/y] ) + sqrt(2)
+ *
+ *
+ *
+ * Special cases:
+ * hypot(x,y) is INF if x or y is +INF or -INF; else
+ * hypot(x,y) is NAN if x or y is NAN.
+ *
+ * Accuracy:
+ * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
+ * in the last place). See Kahan's "Interval Arithmetic Options in the
+ * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
+ * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
+ * code follows in comments.) In a test run with 500,000 random arguments
+ * on a VAX, the maximum observed error was .959 ulps.
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+#include "mathimpl.h"
+
+vc(r2p1hi, 2.4142135623730950345E0 ,8279,411a,ef32,99fc, 2, .9A827999FCEF32)
+vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
+vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
+
+ic(r2p1hi, 2.4142135623730949234E0 , 1, 1.3504F333F9DE6)
+ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
+ic(sqrt2, 1.4142135623730951455E0 , 0, 1.6A09E667F3BCD)
+
+#ifdef vccast
+#define r2p1hi vccast(r2p1hi)
+#define r2p1lo vccast(r2p1lo)
+#define sqrt2 vccast(sqrt2)
+#endif
+
+double
+hypot(x,y)
+double x, y;
+{
+ static const double zero=0, one=1,
+ small=1.0E-18; /* fl(1+small)==1 */
+ static const ibig=30; /* fl(1+2**(2*ibig))==1 */
+ double t,r;
+ int exp;
+
+ if(finite(x))
+ if(finite(y))
+ {
+ x=copysign(x,one);
+ y=copysign(y,one);
+ if(y > x)
+ { t=x; x=y; y=t; }
+ if(x == zero) return(zero);
+ if(y == zero) return(x);
+ exp= logb(x);
+ if(exp-(int)logb(y) > ibig )
+ /* raise inexact flag and return |x| */
+ { one+small; return(x); }
+
+ /* start computing sqrt(x^2 + y^2) */
+ r=x-y;
+ if(r>y) { /* x/y > 2 */
+ r=x/y;
+ r=r+sqrt(one+r*r); }
+ else { /* 1 <= x/y <= 2 */
+ r/=y; t=r*(r+2.0);
+ r+=t/(sqrt2+sqrt(2.0+t));
+ r+=r2p1lo; r+=r2p1hi; }
+
+ r=y/r;
+ return(x+r);
+
+ }
+
+ else if(y==y) /* y is +-INF */
+ return(copysign(y,one));
+ else
+ return(y); /* y is NaN and x is finite */
+
+ else if(x==x) /* x is +-INF */
+ return (copysign(x,one));
+ else if(finite(y))
+ return(x); /* x is NaN, y is finite */
+#if !defined(vax)&&!defined(tahoe)
+ else if(y!=y) return(y); /* x and y is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+ else return(copysign(y,one)); /* y is INF */
+}
+
+/* CABS(Z)
+ * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 11/28/84.
+ * REVISED BY K.C. NG, 7/12/85.
+ *
+ * Required kernel function :
+ * hypot(x,y)
+ *
+ * Method :
+ * cabs(z) = hypot(x,y) .
+ */
+
+struct complex { double x, y; };
+
+double
+cabs(z)
+struct complex z;
+{
+ return hypot(z.x,z.y);
+}
+
+double
+z_abs(z)
+struct complex *z;
+{
+ return hypot(z->x,z->y);
+}
+
+/* A faster but less accurate version of cabs(x,y) */
+#if 0
+double hypot(x,y)
+double x, y;
+{
+ static const double zero=0, one=1;
+ small=1.0E-18; /* fl(1+small)==1 */
+ static const ibig=30; /* fl(1+2**(2*ibig))==1 */
+ double temp;
+ int exp;
+
+ if(finite(x))
+ if(finite(y))
+ {
+ x=copysign(x,one);
+ y=copysign(y,one);
+ if(y > x)
+ { temp=x; x=y; y=temp; }
+ if(x == zero) return(zero);
+ if(y == zero) return(x);
+ exp= logb(x);
+ x=scalb(x,-exp);
+ if(exp-(int)logb(y) > ibig )
+ /* raise inexact flag and return |x| */
+ { one+small; return(scalb(x,exp)); }
+ else y=scalb(y,-exp);
+ return(scalb(sqrt(x*x+y*y),exp));
+ }
+
+ else if(y==y) /* y is +-INF */
+ return(copysign(y,one));
+ else
+ return(y); /* y is NaN and x is finite */
+
+ else if(x==x) /* x is +-INF */
+ return (copysign(x,one));
+ else if(finite(y))
+ return(x); /* x is NaN, y is finite */
+ else if(y!=y) return(y); /* x and y is NaN */
+ else return(copysign(y,one)); /* y is INF */
+}
+#endif
diff --git a/lib/libm/noieee_src/n_cbrt.c b/lib/libm/noieee_src/n_cbrt.c
new file mode 100644
index 00000000000..9be6c50dffa
--- /dev/null
+++ b/lib/libm/noieee_src/n_cbrt.c
@@ -0,0 +1,121 @@
+/* $NetBSD: n_cbrt.c,v 1.1 1995/10/10 23:36:40 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)cbrt.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+#include <sys/cdefs.h>
+
+/* kahan's cube root (53 bits IEEE double precision)
+ * for IEEE machines only
+ * coded in C by K.C. Ng, 4/30/85
+ *
+ * Accuracy:
+ * better than 0.667 ulps according to an error analysis. Maximum
+ * error observed was 0.666 ulps in an 1,000,000 random arguments test.
+ *
+ * Warning: this code is semi machine dependent; the ordering of words in
+ * a floating point number must be known in advance. I assume that the
+ * long interger at the address of a floating point number will be the
+ * leading 32 bits of that floating point number (i.e., sign, exponent,
+ * and the 20 most significant bits).
+ * On a National machine, it has different ordering; therefore, this code
+ * must be compiled with flag -DNATIONAL.
+ */
+#if !defined(vax)&&!defined(tahoe)
+
+static const unsigned long
+ B1 = 715094163, /* B1 = (682-0.03306235651)*2**20 */
+ B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
+static const double
+ C= 19./35.,
+ D= -864./1225.,
+ E= 99./70.,
+ F= 45./28.,
+ G= 5./14.;
+
+double cbrt(x)
+double x;
+{
+ double r,s,t=0.0,w;
+ unsigned long *px = (unsigned long *) &x,
+ *pt = (unsigned long *) &t,
+ mexp,sign;
+
+#ifdef national /* ordering of words in a floating points number */
+ const int n0=1,n1=0;
+#else /* national */
+ const int n0=0,n1=1;
+#endif /* national */
+
+ mexp=px[n0]&0x7ff00000;
+ if(mexp==0x7ff00000) return(x); /* cbrt(NaN,INF) is itself */
+ if(x==0.0) return(x); /* cbrt(0) is itself */
+
+ sign=px[n0]&0x80000000; /* sign= sign(x) */
+ px[n0] ^= sign; /* x=|x| */
+
+
+ /* rough cbrt to 5 bits */
+ if(mexp==0) /* subnormal number */
+ {pt[n0]=0x43500000; /* set t= 2**54 */
+ t*=x; pt[n0]=pt[n0]/3+B2;
+ }
+ else
+ pt[n0]=px[n0]/3+B1;
+
+
+ /* new cbrt to 23 bits, may be implemented in single precision */
+ r=t*t/x;
+ s=C+r*t;
+ t*=G+F/(s+E+D/s);
+
+ /* chopped to 20 bits and make it larger than cbrt(x) */
+ pt[n1]=0; pt[n0]+=0x00000001;
+
+
+ /* one step newton iteration to 53 bits with error less than 0.667 ulps */
+ s=t*t; /* t*t is exact */
+ r=x/s;
+ w=t+t;
+ r=(r-t)/(w+r); /* r-t is exact */
+ t=t+t*r;
+
+
+ /* retore the sign bit */
+ pt[n0] |= sign;
+ return(t);
+}
+#endif
diff --git a/lib/libm/noieee_src/n_cosh.c b/lib/libm/noieee_src/n_cosh.c
new file mode 100644
index 00000000000..bba92d10897
--- /dev/null
+++ b/lib/libm/noieee_src/n_cosh.c
@@ -0,0 +1,134 @@
+/* $NetBSD: n_cosh.c,v 1.1 1995/10/10 23:36:42 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)cosh.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* COSH(X)
+ * RETURN THE HYPERBOLIC COSINE OF X
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 1/8/85;
+ * REVISED BY K.C. NG on 2/8/85, 2/23/85, 3/7/85, 3/29/85, 4/16/85.
+ *
+ * Required system supported functions :
+ * copysign(x,y)
+ * scalb(x,N)
+ *
+ * Required kernel function:
+ * exp(x)
+ * exp__E(x,c) ...return exp(x+c)-1-x for |x|<0.3465
+ *
+ * Method :
+ * 1. Replace x by |x|.
+ * 2.
+ * [ exp(x) - 1 ]^2
+ * 0 <= x <= 0.3465 : cosh(x) := 1 + -------------------
+ * 2*exp(x)
+ *
+ * exp(x) + 1/exp(x)
+ * 0.3465 <= x <= 22 : cosh(x) := -------------------
+ * 2
+ * 22 <= x <= lnovfl : cosh(x) := exp(x)/2
+ * lnovfl <= x <= lnovfl+log(2)
+ * : cosh(x) := exp(x)/2 (avoid overflow)
+ * log(2)+lnovfl < x < INF: overflow to INF
+ *
+ * Note: .3465 is a number near one half of ln2.
+ *
+ * Special cases:
+ * cosh(x) is x if x is +INF, -INF, or NaN.
+ * only cosh(0)=1 is exact for finite x.
+ *
+ * Accuracy:
+ * cosh(x) returns the exact hyperbolic cosine of x nearly rounded.
+ * In a test run with 768,000 random arguments on a VAX, the maximum
+ * observed error was 1.23 ulps (units in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "mathimpl.h"
+
+vc(mln2hi, 8.8029691931113054792E1 ,0f33,43b0,2bdb,c7e2, 7, .B00F33C7E22BDB)
+vc(mln2lo,-4.9650192275318476525E-16 ,1b60,a70f,582a,279e, -50,-.8F1B60279E582A)
+vc(lnovfl, 8.8029691931113053016E1 ,0f33,43b0,2bda,c7e2, 7, .B00F33C7E22BDA)
+
+ic(mln2hi, 7.0978271289338397310E2, 10, 1.62E42FEFA39EF)
+ic(mln2lo, 2.3747039373786107478E-14, -45, 1.ABC9E3B39803F)
+ic(lnovfl, 7.0978271289338397310E2, 9, 1.62E42FEFA39EF)
+
+#ifdef vccast
+#define mln2hi vccast(mln2hi)
+#define mln2lo vccast(mln2lo)
+#define lnovfl vccast(lnovfl)
+#endif
+
+#if defined(vax)||defined(tahoe)
+static max = 126 ;
+#else /* defined(vax)||defined(tahoe) */
+static max = 1023 ;
+#endif /* defined(vax)||defined(tahoe) */
+
+double cosh(x)
+double x;
+{
+ static const double half=1.0/2.0,
+ one=1.0, small=1.0E-18; /* fl(1+small)==1 */
+ double t;
+
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+ if((x=copysign(x,one)) <= 22)
+ if(x<0.3465)
+ if(x<small) return(one+x);
+ else {t=x+__exp__E(x,0.0);x=t+t; return(one+t*t/(2.0+x)); }
+
+ else /* for x lies in [0.3465,22] */
+ { t=exp(x); return((t+one/t)*half); }
+
+ if( lnovfl <= x && x <= (lnovfl+0.7))
+ /* for x lies in [lnovfl, lnovfl+ln2], decrease x by ln(2^(max+1))
+ * and return 2^max*exp(x) to avoid unnecessary overflow
+ */
+ return(scalb(exp((x-mln2hi)-mln2lo), max));
+
+ else
+ return(exp(x)*half); /* for large x, cosh(x)=exp(x)/2 */
+}
diff --git a/lib/libm/noieee_src/n_erf.c b/lib/libm/noieee_src/n_erf.c
new file mode 100644
index 00000000000..c0bf8273bc6
--- /dev/null
+++ b/lib/libm/noieee_src/n_erf.c
@@ -0,0 +1,399 @@
+/* $NetBSD: n_erf.c,v 1.1 1995/10/10 23:36:43 ragge Exp $ */
+/*-
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)erf.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+#include "mathimpl.h"
+
+/* Modified Nov 30, 1992 P. McILROY:
+ * Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
+ * Replaced even+odd with direct calculation for x < .84375,
+ * to avoid destructive cancellation.
+ *
+ * Performance of erfc(x):
+ * In 300000 trials in the range [.83, .84375] the
+ * maximum observed error was 3.6ulp.
+ *
+ * In [.84735,1.25] the maximum observed error was <2.5ulp in
+ * 100000 runs in the range [1.2, 1.25].
+ *
+ * In [1.25,26] (Not including subnormal results)
+ * the error is < 1.7ulp.
+ */
+
+/* double erf(double x)
+ * double erfc(double x)
+ * x
+ * 2 |\
+ * erf(x) = --------- | exp(-t*t)dt
+ * sqrt(pi) \|
+ * 0
+ *
+ * erfc(x) = 1-erf(x)
+ *
+ * Method:
+ * 1. Reduce x to |x| by erf(-x) = -erf(x)
+ * 2. For x in [0, 0.84375]
+ * erf(x) = x + x*P(x^2)
+ * erfc(x) = 1 - erf(x) if x<=0.25
+ * = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375]
+ * where
+ * 2 2 4 20
+ * P = P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x )
+ * is an approximation to (erf(x)-x)/x with precision
+ *
+ * -56.45
+ * | P - (erf(x)-x)/x | <= 2
+ *
+ *
+ * Remark. The formula is derived by noting
+ * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ * and that
+ * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ * is close to one. The interval is chosen because the fixed
+ * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ * near 0.6174), and by some experiment, 0.84375 is chosen to
+ * guarantee the error is less than one ulp for erf.
+ *
+ * 3. For x in [0.84375,1.25], let s = x - 1, and
+ * c = 0.84506291151 rounded to single (24 bits)
+ * erf(x) = c + P1(s)/Q1(s)
+ * erfc(x) = (1-c) - P1(s)/Q1(s)
+ * |P1/Q1 - (erf(x)-c)| <= 2**-59.06
+ * Remark: here we use the taylor series expansion at x=1.
+ * erf(1+s) = erf(1) + s*Poly(s)
+ * = 0.845.. + P1(s)/Q1(s)
+ * That is, we use rational approximation to approximate
+ * erf(1+s) - (c = (single)0.84506291151)
+ * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ * where
+ * P1(s) = degree 6 poly in s
+ * Q1(s) = degree 6 poly in s
+ *
+ * 4. For x in [1.25, 2]; [2, 4]
+ * erf(x) = 1.0 - tiny
+ * erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
+ *
+ * Where z = 1/(x*x), R is degree 9, and S is degree 3;
+ *
+ * 5. For x in [4,28]
+ * erf(x) = 1.0 - tiny
+ * erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
+ *
+ * Where P is degree 14 polynomial in 1/(x*x).
+ *
+ * Notes:
+ * Here 4 and 5 make use of the asymptotic series
+ * exp(-x*x)
+ * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
+ * x*sqrt(pi)
+ *
+ * where for z = 1/(x*x)
+ * P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
+ *
+ * Thus we use rational approximation to approximate
+ * erfc*x*exp(x*x) ~ 1/sqrt(pi);
+ *
+ * The error bound for the target function, G(z) for
+ * the interval
+ * [4, 28]:
+ * |eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
+ * for [2, 4]:
+ * |R(z)/S(z) - G(z)| < 2**(-58.24)
+ * for [1.25, 2]:
+ * |R(z)/S(z) - G(z)| < 2**(-58.12)
+ *
+ * 6. For inf > x >= 28
+ * erf(x) = 1 - tiny (raise inexact)
+ * erfc(x) = tiny*tiny (raise underflow)
+ *
+ * 7. Special cases:
+ * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
+ * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ * erfc/erf(NaN) is NaN
+ */
+
+#if defined(vax) || defined(tahoe)
+#define _IEEE 0
+#define TRUNC(x) (double) (float) (x)
+#else
+#define _IEEE 1
+#define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
+#define infnan(x) 0.0
+#endif
+
+#ifdef _IEEE_LIBM
+/*
+ * redefining "___function" to "function" in _IEEE_LIBM mode
+ */
+#include "ieee_libm.h"
+#endif
+
+static double
+tiny = 1e-300,
+half = 0.5,
+one = 1.0,
+two = 2.0,
+c = 8.45062911510467529297e-01, /* (float)0.84506291151 */
+/*
+ * Coefficients for approximation to erf in [0,0.84375]
+ */
+p0t8 = 1.02703333676410051049867154944018394163280,
+p0 = 1.283791670955125638123339436800229927041e-0001,
+p1 = -3.761263890318340796574473028946097022260e-0001,
+p2 = 1.128379167093567004871858633779992337238e-0001,
+p3 = -2.686617064084433642889526516177508374437e-0002,
+p4 = 5.223977576966219409445780927846432273191e-0003,
+p5 = -8.548323822001639515038738961618255438422e-0004,
+p6 = 1.205520092530505090384383082516403772317e-0004,
+p7 = -1.492214100762529635365672665955239554276e-0005,
+p8 = 1.640186161764254363152286358441771740838e-0006,
+p9 = -1.571599331700515057841960987689515895479e-0007,
+p10= 1.073087585213621540635426191486561494058e-0008;
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+static double
+pa0 = -2.362118560752659485957248365514511540287e-0003,
+pa1 = 4.148561186837483359654781492060070469522e-0001,
+pa2 = -3.722078760357013107593507594535478633044e-0001,
+pa3 = 3.183466199011617316853636418691420262160e-0001,
+pa4 = -1.108946942823966771253985510891237782544e-0001,
+pa5 = 3.547830432561823343969797140537411825179e-0002,
+pa6 = -2.166375594868790886906539848893221184820e-0003,
+qa1 = 1.064208804008442270765369280952419863524e-0001,
+qa2 = 5.403979177021710663441167681878575087235e-0001,
+qa3 = 7.182865441419627066207655332170665812023e-0002,
+qa4 = 1.261712198087616469108438860983447773726e-0001,
+qa5 = 1.363708391202905087876983523620537833157e-0002,
+qa6 = 1.198449984679910764099772682882189711364e-0002;
+/*
+ * log(sqrt(pi)) for large x expansions.
+ * The tail (lsqrtPI_lo) is included in the rational
+ * approximations.
+*/
+static double
+ lsqrtPI_hi = .5723649429247000819387380943226;
+/*
+ * lsqrtPI_lo = .000000000000000005132975581353913;
+ *
+ * Coefficients for approximation to erfc in [2, 4]
+*/
+static double
+rb0 = -1.5306508387410807582e-010, /* includes lsqrtPI_lo */
+rb1 = 2.15592846101742183841910806188e-008,
+rb2 = 6.24998557732436510470108714799e-001,
+rb3 = 8.24849222231141787631258921465e+000,
+rb4 = 2.63974967372233173534823436057e+001,
+rb5 = 9.86383092541570505318304640241e+000,
+rb6 = -7.28024154841991322228977878694e+000,
+rb7 = 5.96303287280680116566600190708e+000,
+rb8 = -4.40070358507372993983608466806e+000,
+rb9 = 2.39923700182518073731330332521e+000,
+rb10 = -6.89257464785841156285073338950e-001,
+sb1 = 1.56641558965626774835300238919e+001,
+sb2 = 7.20522741000949622502957936376e+001,
+sb3 = 9.60121069770492994166488642804e+001;
+/*
+ * Coefficients for approximation to erfc in [1.25, 2]
+*/
+static double
+rc0 = -2.47925334685189288817e-007, /* includes lsqrtPI_lo */
+rc1 = 1.28735722546372485255126993930e-005,
+rc2 = 6.24664954087883916855616917019e-001,
+rc3 = 4.69798884785807402408863708843e+000,
+rc4 = 7.61618295853929705430118701770e+000,
+rc5 = 9.15640208659364240872946538730e-001,
+rc6 = -3.59753040425048631334448145935e-001,
+rc7 = 1.42862267989304403403849619281e-001,
+rc8 = -4.74392758811439801958087514322e-002,
+rc9 = 1.09964787987580810135757047874e-002,
+rc10 = -1.28856240494889325194638463046e-003,
+sc1 = 9.97395106984001955652274773456e+000,
+sc2 = 2.80952153365721279953959310660e+001,
+sc3 = 2.19826478142545234106819407316e+001;
+/*
+ * Coefficients for approximation to erfc in [4,28]
+ */
+static double
+rd0 = -2.1491361969012978677e-016, /* includes lsqrtPI_lo */
+rd1 = -4.99999999999640086151350330820e-001,
+rd2 = 6.24999999772906433825880867516e-001,
+rd3 = -1.54166659428052432723177389562e+000,
+rd4 = 5.51561147405411844601985649206e+000,
+rd5 = -2.55046307982949826964613748714e+001,
+rd6 = 1.43631424382843846387913799845e+002,
+rd7 = -9.45789244999420134263345971704e+002,
+rd8 = 6.94834146607051206956384703517e+003,
+rd9 = -5.27176414235983393155038356781e+004,
+rd10 = 3.68530281128672766499221324921e+005,
+rd11 = -2.06466642800404317677021026611e+006,
+rd12 = 7.78293889471135381609201431274e+006,
+rd13 = -1.42821001129434127360582351685e+007;
+
+double erf(x)
+ double x;
+{
+ double R,S,P,Q,ax,s,y,z,r,fabs(),exp();
+ if(!finite(x)) { /* erf(nan)=nan */
+ if (isnan(x))
+ return(x);
+ return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
+ }
+ if ((ax = x) < 0)
+ ax = - ax;
+ if (ax < .84375) {
+ if (ax < 3.7e-09) {
+ if (ax < 1.0e-308)
+ return 0.125*(8.0*x+p0t8*x); /*avoid underflow */
+ return x + p0*x;
+ }
+ y = x*x;
+ r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
+ y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
+ return x + x*(p0+r);
+ }
+ if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
+ s = fabs(x)-one;
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+ if (x>=0)
+ return (c + P/Q);
+ else
+ return (-c - P/Q);
+ }
+ if (ax >= 6.0) { /* inf>|x|>=6 */
+ if (x >= 0.0)
+ return (one-tiny);
+ else
+ return (tiny-one);
+ }
+ /* 1.25 <= |x| < 6 */
+ z = -ax*ax;
+ s = -one/z;
+ if (ax < 2.0) {
+ R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
+ s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
+ S = one+s*(sc1+s*(sc2+s*sc3));
+ } else {
+ R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
+ s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
+ S = one+s*(sb1+s*(sb2+s*sb3));
+ }
+ y = (R/S -.5*s) - lsqrtPI_hi;
+ z += y;
+ z = exp(z)/ax;
+ if (x >= 0)
+ return (one-z);
+ else
+ return (z-one);
+}
+
+double erfc(x)
+ double x;
+{
+ double R,S,P,Q,s,ax,y,z,r,fabs(),__exp__D();
+ if (!finite(x)) {
+ if (isnan(x)) /* erfc(NaN) = NaN */
+ return(x);
+ else if (x > 0) /* erfc(+-inf)=0,2 */
+ return 0.0;
+ else
+ return 2.0;
+ }
+ if ((ax = x) < 0)
+ ax = -ax;
+ if (ax < .84375) { /* |x|<0.84375 */
+ if (ax < 1.38777878078144568e-17) /* |x|<2**-56 */
+ return one-x;
+ y = x*x;
+ r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
+ y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
+ if (ax < .0625) { /* |x|<2**-4 */
+ return (one-(x+x*(p0+r)));
+ } else {
+ r = x*(p0+r);
+ r += (x-half);
+ return (half - r);
+ }
+ }
+ if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
+ s = ax-one;
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+ if (x>=0) {
+ z = one-c; return z - P/Q;
+ } else {
+ z = c+P/Q; return one+z;
+ }
+ }
+ if (ax >= 28) /* Out of range */
+ if (x>0)
+ return (tiny*tiny);
+ else
+ return (two-tiny);
+ z = ax;
+ TRUNC(z);
+ y = z - ax; y *= (ax+z);
+ z *= -z; /* Here z + y = -x^2 */
+ s = one/(-z-y); /* 1/(x*x) */
+ if (ax >= 4) { /* 6 <= ax */
+ R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
+ s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
+ +s*(rd11+s*(rd12+s*rd13))))))))))));
+ y += rd0;
+ } else if (ax >= 2) {
+ R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
+ s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
+ S = one+s*(sb1+s*(sb2+s*sb3));
+ y += R/S;
+ R = -.5*s;
+ } else {
+ R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
+ s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
+ S = one+s*(sc1+s*(sc2+s*sc3));
+ y += R/S;
+ R = -.5*s;
+ }
+ /* return exp(-x^2 - lsqrtPI_hi + R + y)/x; */
+ s = ((R + y) - lsqrtPI_hi) + z;
+ y = (((z-s) - lsqrtPI_hi) + R) + y;
+ r = __exp__D(s, y)/x;
+ if (x>0)
+ return r;
+ else
+ return two-r;
+}
diff --git a/lib/libm/noieee_src/n_exp.c b/lib/libm/noieee_src/n_exp.c
new file mode 100644
index 00000000000..d242054a329
--- /dev/null
+++ b/lib/libm/noieee_src/n_exp.c
@@ -0,0 +1,204 @@
+/* $NetBSD: n_exp.c,v 1.1 1995/10/10 23:36:44 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* EXP(X)
+ * RETURN THE EXPONENTIAL OF X
+ * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
+ * CODED IN C BY K.C. NG, 1/19/85;
+ * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
+ *
+ * Required system supported functions:
+ * scalb(x,n)
+ * copysign(x,y)
+ * finite(x)
+ *
+ * Method:
+ * 1. Argument Reduction: given the input x, find r and integer k such
+ * that
+ * x = k*ln2 + r, |r| <= 0.5*ln2 .
+ * r will be represented as r := z+c for better accuracy.
+ *
+ * 2. Compute exp(r) by
+ *
+ * exp(r) = 1 + r + r*R1/(2-R1),
+ * where
+ * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
+ *
+ * 3. exp(x) = 2^k * exp(r) .
+ *
+ * Special cases:
+ * exp(INF) is INF, exp(NaN) is NaN;
+ * exp(-INF)= 0;
+ * for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ * exp(x) returns the exponential of x nearly rounded. In a test run
+ * with 1,156,000 random arguments on a VAX, the maximum observed
+ * error was 0.869 ulps (units in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "mathimpl.h"
+
+vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
+vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
+vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
+vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF)
+vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
+vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1)
+vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94)
+vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
+vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
+vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
+
+#ifdef vccast
+#define ln2hi vccast(ln2hi)
+#define ln2lo vccast(ln2lo)
+#define lnhuge vccast(lnhuge)
+#define lntiny vccast(lntiny)
+#define invln2 vccast(invln2)
+#define p1 vccast(p1)
+#define p2 vccast(p2)
+#define p3 vccast(p3)
+#define p4 vccast(p4)
+#define p5 vccast(p5)
+#endif
+
+ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E)
+ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93)
+ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C)
+ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
+ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0)
+ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
+ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)
+ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
+ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354)
+ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
+
+double exp(x)
+double x;
+{
+ double z,hi,lo,c;
+ int k;
+
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+ if( x <= lnhuge ) {
+ if( x >= lntiny ) {
+
+ /* argument reduction : x --> x - k*ln2 */
+
+ k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
+
+ /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
+
+ hi=x-k*ln2hi;
+ x=hi-(lo=k*ln2lo);
+
+ /* return 2^k*[1+x+x*c/(2+c)] */
+ z=x*x;
+ c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
+ return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
+
+ }
+ /* end of x > lntiny */
+
+ else
+ /* exp(-big#) underflows to zero */
+ if(finite(x)) return(scalb(1.0,-5000));
+
+ /* exp(-INF) is zero */
+ else return(0.0);
+ }
+ /* end of x < lnhuge */
+
+ else
+ /* exp(INF) is INF, exp(+big#) overflows to INF */
+ return( finite(x) ? scalb(1.0,5000) : x);
+}
+
+/* returns exp(r = x + c) for |c| < |x| with no overlap. */
+
+double __exp__D(x, c)
+double x, c;
+{
+ double z,hi,lo, t;
+ int k;
+
+#if !defined(vax)&&!defined(tahoe)
+ if (x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+ if ( x <= lnhuge ) {
+ if ( x >= lntiny ) {
+
+ /* argument reduction : x --> x - k*ln2 */
+ z = invln2*x;
+ k = z + copysign(.5, x);
+
+ /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
+
+ hi=(x-k*ln2hi); /* Exact. */
+ x= hi - (lo = k*ln2lo-c);
+ /* return 2^k*[1+x+x*c/(2+c)] */
+ z=x*x;
+ c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
+ c = (x*c)/(2.0-c);
+
+ return scalb(1.+(hi-(lo - c)), k);
+ }
+ /* end of x > lntiny */
+
+ else
+ /* exp(-big#) underflows to zero */
+ if(finite(x)) return(scalb(1.0,-5000));
+
+ /* exp(-INF) is zero */
+ else return(0.0);
+ }
+ /* end of x < lnhuge */
+
+ else
+ /* exp(INF) is INF, exp(+big#) overflows to INF */
+ return( finite(x) ? scalb(1.0,5000) : x);
+}
diff --git a/lib/libm/noieee_src/n_exp__E.c b/lib/libm/noieee_src/n_exp__E.c
new file mode 100644
index 00000000000..f03ed43ba33
--- /dev/null
+++ b/lib/libm/noieee_src/n_exp__E.c
@@ -0,0 +1,137 @@
+/* $NetBSD: n_exp__E.c,v 1.1 1995/10/10 23:36:45 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)exp__E.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* exp__E(x,c)
+ * ASSUMPTION: c << x SO THAT fl(x+c)=x.
+ * (c is the correction term for x)
+ * exp__E RETURNS
+ *
+ * / exp(x+c) - 1 - x , 1E-19 < |x| < .3465736
+ * exp__E(x,c) = |
+ * \ 0 , |x| < 1E-19.
+ *
+ * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
+ * KERNEL FUNCTION OF EXP, EXPM1, POW FUNCTIONS
+ * CODED IN C BY K.C. NG, 1/31/85;
+ * REVISED BY K.C. NG on 3/16/85, 4/16/85.
+ *
+ * Required system supported function:
+ * copysign(x,y)
+ *
+ * Method:
+ * 1. Rational approximation. Let r=x+c.
+ * Based on
+ * 2 * sinh(r/2)
+ * exp(r) - 1 = ---------------------- ,
+ * cosh(r/2) - sinh(r/2)
+ * exp__E(r) is computed using
+ * x*x (x/2)*W - ( Q - ( 2*P + x*P ) )
+ * --- + (c + x*[---------------------------------- + c ])
+ * 2 1 - W
+ * where P := p1*x^2 + p2*x^4,
+ * Q := q1*x^2 + q2*x^4 (for 56 bits precision, add q3*x^6)
+ * W := x/2-(Q-x*P),
+ *
+ * (See the listing below for the values of p1,p2,q1,q2,q3. The poly-
+ * nomials P and Q may be regarded as the approximations to sinh
+ * and cosh :
+ * sinh(r/2) = r/2 + r * P , cosh(r/2) = 1 + Q . )
+ *
+ * The coefficients were obtained by a special Remez algorithm.
+ *
+ * Approximation error:
+ *
+ * | exp(x) - 1 | 2**(-57), (IEEE double)
+ * | ------------ - (exp__E(x,0)+x)/x | <=
+ * | x | 2**(-69). (VAX D)
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "mathimpl.h"
+
+vc(p1, 1.5150724356786683059E-2 ,3abe,3d78,066a,67e1, -6, .F83ABE67E1066A)
+vc(p2, 6.3112487873718332688E-5 ,5b42,3984,0173,48cd, -13, .845B4248CD0173)
+vc(q1, 1.1363478204690669916E-1 ,b95a,3ee8,ec45,44a2, -3, .E8B95A44A2EC45)
+vc(q2, 1.2624568129896839182E-3 ,7905,3ba5,f5e7,72e4, -9, .A5790572E4F5E7)
+vc(q3, 1.5021856115869022674E-6 ,9eb4,36c9,c395,604a, -19, .C99EB4604AC395)
+
+ic(p1, 1.3887401997267371720E-2, -7, 1.C70FF8B3CC2CF)
+ic(p2, 3.3044019718331897649E-5, -15, 1.15317DF4526C4)
+ic(q1, 1.1110813732786649355E-1, -4, 1.C719538248597)
+ic(q2, 9.9176615021572857300E-4, -10, 1.03FC4CB8C98E8)
+
+#ifdef vccast
+#define p1 vccast(p1)
+#define p2 vccast(p2)
+#define q1 vccast(q1)
+#define q2 vccast(q2)
+#define q3 vccast(q3)
+#endif
+
+double __exp__E(x,c)
+double x,c;
+{
+ const static double zero=0.0, one=1.0, half=1.0/2.0, small=1.0E-19;
+ double z,p,q,xp,xh,w;
+ if(copysign(x,one)>small) {
+ z = x*x ;
+ p = z*( p1 +z* p2 );
+#if defined(vax)||defined(tahoe)
+ q = z*( q1 +z*( q2 +z* q3 ));
+#else /* defined(vax)||defined(tahoe) */
+ q = z*( q1 +z* q2 );
+#endif /* defined(vax)||defined(tahoe) */
+ xp= x*p ;
+ xh= x*half ;
+ w = xh-(q-xp) ;
+ p = p+p;
+ c += x*((xh*w-(q-(p+xp)))/(one-w)+c);
+ return(z*half+c);
+ }
+ /* end of |x| > small */
+
+ else {
+ if(x!=zero) one+small; /* raise the inexact flag */
+ return(copysign(zero,x));
+ }
+}
diff --git a/lib/libm/noieee_src/n_expm1.c b/lib/libm/noieee_src/n_expm1.c
new file mode 100644
index 00000000000..4c95d35e3cc
--- /dev/null
+++ b/lib/libm/noieee_src/n_expm1.c
@@ -0,0 +1,168 @@
+/* $NetBSD: n_expm1.c,v 1.1 1995/10/10 23:36:46 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* EXPM1(X)
+ * RETURN THE EXPONENTIAL OF X MINUS ONE
+ * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
+ * CODED IN C BY K.C. NG, 1/19/85;
+ * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
+ *
+ * Required system supported functions:
+ * scalb(x,n)
+ * copysign(x,y)
+ * finite(x)
+ *
+ * Kernel function:
+ * exp__E(x,c)
+ *
+ * Method:
+ * 1. Argument Reduction: given the input x, find r and integer k such
+ * that
+ * x = k*ln2 + r, |r| <= 0.5*ln2 .
+ * r will be represented as r := z+c for better accuracy.
+ *
+ * 2. Compute EXPM1(r)=exp(r)-1 by
+ *
+ * EXPM1(r=z+c) := z + exp__E(z,c)
+ *
+ * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
+ *
+ * Remarks:
+ * 1. When k=1 and z < -0.25, we use the following formula for
+ * better accuracy:
+ * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
+ * 2. To avoid rounding error in 1-2^-k where k is large, we use
+ * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
+ * when k>56.
+ *
+ * Special cases:
+ * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
+ * EXPM1(-INF)= -1;
+ * for finite argument, only EXPM1(0)=0 is exact.
+ *
+ * Accuracy:
+ * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
+ * 1,166,000 random arguments on a VAX, the maximum observed error was
+ * .872 ulps (units of the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "mathimpl.h"
+
+vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
+vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
+vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
+vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
+
+ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
+ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
+ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
+ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
+
+#ifdef vccast
+#define ln2hi vccast(ln2hi)
+#define ln2lo vccast(ln2lo)
+#define lnhuge vccast(lnhuge)
+#define invln2 vccast(invln2)
+#endif
+
+double expm1(x)
+double x;
+{
+ const static double one=1.0, half=1.0/2.0;
+ double z,hi,lo,c;
+ int k;
+#if defined(vax)||defined(tahoe)
+ static prec=56;
+#else /* defined(vax)||defined(tahoe) */
+ static prec=53;
+#endif /* defined(vax)||defined(tahoe) */
+
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+
+ if( x <= lnhuge ) {
+ if( x >= -40.0 ) {
+
+ /* argument reduction : x - k*ln2 */
+ k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
+ hi=x-k*ln2hi ;
+ z=hi-(lo=k*ln2lo);
+ c=(hi-z)-lo;
+
+ if(k==0) return(z+__exp__E(z,c));
+ if(k==1)
+ if(z< -0.25)
+ {x=z+half;x +=__exp__E(z,c); return(x+x);}
+ else
+ {z+=__exp__E(z,c); x=half+z; return(x+x);}
+ /* end of k=1 */
+
+ else {
+ if(k<=prec)
+ { x=one-scalb(one,-k); z += __exp__E(z,c);}
+ else if(k<100)
+ { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
+ else
+ { x = __exp__E(z,c)+z; z=one;}
+
+ return (scalb(x+z,k));
+ }
+ }
+ /* end of x > lnunfl */
+
+ else
+ /* expm1(-big#) rounded to -1 (inexact) */
+ if(finite(x))
+ { ln2hi+ln2lo; return(-one);}
+
+ /* expm1(-INF) is -1 */
+ else return(-one);
+ }
+ /* end of x < lnhuge */
+
+ else
+ /* expm1(INF) is INF, expm1(+big#) overflows to INF */
+ return( finite(x) ? scalb(one,5000) : x);
+}
diff --git a/lib/libm/noieee_src/n_floor.c b/lib/libm/noieee_src/n_floor.c
new file mode 100644
index 00000000000..48786df8527
--- /dev/null
+++ b/lib/libm/noieee_src/n_floor.c
@@ -0,0 +1,138 @@
+/* $NetBSD: n_floor.c,v 1.1 1995/10/10 23:36:48 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)floor.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+#include "mathimpl.h"
+
+vc(L, 4503599627370496.0E0 ,0000,5c00,0000,0000, 55, 1.0) /* 2**55 */
+
+ic(L, 4503599627370496.0E0, 52, 1.0) /* 2**52 */
+
+#ifdef vccast
+#define L vccast(L)
+#endif
+
+/*
+ * floor(x) := the largest integer no larger than x;
+ * ceil(x) := -floor(-x), for all real x.
+ *
+ * Note: Inexact will be signaled if x is not an integer, as is
+ * customary for IEEE 754. No other signal can be emitted.
+ */
+double
+floor(x)
+double x;
+{
+ volatile double y;
+
+ if (
+#if !defined(vax)&&!defined(tahoe)
+ x != x || /* NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+ x >= L) /* already an even integer */
+ return x;
+ else if (x < (double)0)
+ return -ceil(-x);
+ else { /* now 0 <= x < L */
+ y = L+x; /* destructive store must be forced */
+ y -= L; /* an integer, and |x-y| < 1 */
+ return x < y ? y-(double)1 : y;
+ }
+}
+
+double
+ceil(x)
+double x;
+{
+ volatile double y;
+
+ if (
+#if !defined(vax)&&!defined(tahoe)
+ x != x || /* NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+ x >= L) /* already an even integer */
+ return x;
+ else if (x < (double)0)
+ return -floor(-x);
+ else { /* now 0 <= x < L */
+ y = L+x; /* destructive store must be forced */
+ y -= L; /* an integer, and |x-y| < 1 */
+ return x > y ? y+(double)1 : y;
+ }
+}
+
+#ifndef ns32000 /* rint() is in ./NATIONAL/support.s */
+/*
+ * algorithm for rint(x) in pseudo-pascal form ...
+ *
+ * real rint(x): real x;
+ * ... delivers integer nearest x in direction of prevailing rounding
+ * ... mode
+ * const L = (last consecutive integer)/2
+ * = 2**55; for VAX D
+ * = 2**52; for IEEE 754 Double
+ * real s,t;
+ * begin
+ * if x != x then return x; ... NaN
+ * if |x| >= L then return x; ... already an integer
+ * s := copysign(L,x);
+ * t := x + s; ... = (x+s) rounded to integer
+ * return t - s
+ * end;
+ *
+ * Note: Inexact will be signaled if x is not an integer, as is
+ * customary for IEEE 754. No other signal can be emitted.
+ */
+double
+rint(x)
+double x;
+{
+ double s;
+ volatile double t;
+ const double one = 1.0;
+
+#if !defined(vax)&&!defined(tahoe)
+ if (x != x) /* NaN */
+ return (x);
+#endif /* !defined(vax)&&!defined(tahoe) */
+ if (copysign(x,one) >= L) /* already an integer */
+ return (x);
+ s = copysign(L,x);
+ t = x + s; /* x+s rounded to integer */
+ return (t - s);
+}
+#endif /* not national */
diff --git a/lib/libm/noieee_src/n_fmod.c b/lib/libm/noieee_src/n_fmod.c
new file mode 100644
index 00000000000..99cdf9ca5cd
--- /dev/null
+++ b/lib/libm/noieee_src/n_fmod.c
@@ -0,0 +1,158 @@
+/* $NetBSD: n_fmod.c,v 1.1 1995/10/10 23:36:49 ragge Exp $ */
+/*
+ * Copyright (c) 1989, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)fmod.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+#include "mathimpl.h"
+
+/* fmod.c
+ *
+ * SYNOPSIS
+ *
+ * #include <math.h>
+ * double fmod(double x, double y)
+ *
+ * DESCRIPTION
+ *
+ * The fmod function computes the floating-point remainder of x/y.
+ *
+ * RETURNS
+ *
+ * The fmod function returns the value x-i*y, for some integer i
+ * such that, if y is nonzero, the result has the same sign as x and
+ * magnitude less than the magnitude of y.
+ *
+ * On a VAX or CCI,
+ *
+ * fmod(x,0) traps/faults on floating-point divided-by-zero.
+ *
+ * On IEEE-754 conforming machines with "isnan()" primitive,
+ *
+ * fmod(x,0), fmod(INF,y) are invalid operations and NaN is returned.
+ *
+ */
+#if !defined(vax) && !defined(tahoe)
+extern int isnan(),finite();
+#endif /* !defined(vax) && !defined(tahoe) */
+extern double frexp(),ldexp(),fabs();
+
+#ifdef TEST_FMOD
+static double
+_fmod(x,y)
+#else /* TEST_FMOD */
+double
+fmod(x,y)
+#endif /* TEST_FMOD */
+double x,y;
+{
+ int ir,iy;
+ double r,w;
+
+ if (y == (double)0
+#if !defined(vax) && !defined(tahoe) /* per "fmod" manual entry, SunOS 4.0 */
+ || isnan(y) || !finite(x)
+#endif /* !defined(vax) && !defined(tahoe) */
+ )
+ return (x*y)/(x*y);
+
+ r = fabs(x);
+ y = fabs(y);
+ (void)frexp(y,&iy);
+ while (r >= y) {
+ (void)frexp(r,&ir);
+ w = ldexp(y,ir-iy);
+ r -= w <= r ? w : w*(double)0.5;
+ }
+ return x >= (double)0 ? r : -r;
+}
+
+#ifdef TEST_FMOD
+extern long random();
+extern double fmod();
+
+#define NTEST 10000
+#define NCASES 3
+
+static int nfail = 0;
+
+static void
+doit(x,y)
+double x,y;
+{
+ double ro = fmod(x,y),rn = _fmod(x,y);
+ if (ro != rn) {
+ (void)printf(" x = 0x%08.8x %08.8x (%24.16e)\n",x,x);
+ (void)printf(" y = 0x%08.8x %08.8x (%24.16e)\n",y,y);
+ (void)printf(" fmod = 0x%08.8x %08.8x (%24.16e)\n",ro,ro);
+ (void)printf("_fmod = 0x%08.8x %08.8x (%24.16e)\n",rn,rn);
+ (void)printf("\n");
+ }
+}
+
+main()
+{
+ register int i,cases;
+ double x,y;
+
+ srandom(12345);
+ for (i = 0; i < NTEST; i++) {
+ x = (double)random();
+ y = (double)random();
+ for (cases = 0; cases < NCASES; cases++) {
+ switch (cases) {
+ case 0:
+ break;
+ case 1:
+ y = (double)1/y; break;
+ case 2:
+ x = (double)1/x; break;
+ default:
+ abort(); break;
+ }
+ doit(x,y);
+ doit(x,-y);
+ doit(-x,y);
+ doit(-x,-y);
+ }
+ }
+ if (nfail)
+ (void)printf("Number of failures: %d (out of a total of %d)\n",
+ nfail,NTEST*NCASES*4);
+ else
+ (void)printf("No discrepancies were found\n");
+ exit(0);
+}
+#endif /* TEST_FMOD */
diff --git a/lib/libm/noieee_src/n_gamma.c b/lib/libm/noieee_src/n_gamma.c
new file mode 100644
index 00000000000..a5d5e949898
--- /dev/null
+++ b/lib/libm/noieee_src/n_gamma.c
@@ -0,0 +1,337 @@
+/* $NetBSD: n_gamma.c,v 1.1 1995/10/10 23:36:50 ragge Exp $ */
+/*-
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)gamma.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/*
+ * This code by P. McIlroy, Oct 1992;
+ *
+ * The financial support of UUNET Communications Services is greatfully
+ * acknowledged.
+ */
+
+#include <math.h>
+#include "mathimpl.h"
+#include <errno.h>
+
+/* METHOD:
+ * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
+ * At negative integers, return +Inf, and set errno.
+ *
+ * x < 6.5:
+ * Use argument reduction G(x+1) = xG(x) to reach the
+ * range [1.066124,2.066124]. Use a rational
+ * approximation centered at the minimum (x0+1) to
+ * ensure monotonicity.
+ *
+ * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
+ * adjusted for equal-ripples:
+ *
+ * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
+ *
+ * Keep extra precision in multiplying (x-.5)(log(x)-1), to
+ * avoid premature round-off.
+ *
+ * Special values:
+ * non-positive integer: Set overflow trap; return +Inf;
+ * x > 171.63: Set overflow trap; return +Inf;
+ * NaN: Set invalid trap; return NaN
+ *
+ * Accuracy: Gamma(x) is accurate to within
+ * x > 0: error provably < 0.9ulp.
+ * Maximum observed in 1,000,000 trials was .87ulp.
+ * x < 0:
+ * Maximum observed error < 4ulp in 1,000,000 trials.
+ */
+
+static double neg_gam __P((double));
+static double small_gam __P((double));
+static double smaller_gam __P((double));
+static struct Double large_gam __P((double));
+static struct Double ratfun_gam __P((double, double));
+
+/*
+ * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
+ * [1.066.., 2.066..] accurate to 4.25e-19.
+ */
+#define LEFT -.3955078125 /* left boundary for rat. approx */
+#define x0 .461632144968362356785 /* xmin - 1 */
+
+#define a0_hi 0.88560319441088874992
+#define a0_lo -.00000000000000004996427036469019695
+#define P0 6.21389571821820863029017800727e-01
+#define P1 2.65757198651533466104979197553e-01
+#define P2 5.53859446429917461063308081748e-03
+#define P3 1.38456698304096573887145282811e-03
+#define P4 2.40659950032711365819348969808e-03
+#define Q0 1.45019531250000000000000000000e+00
+#define Q1 1.06258521948016171343454061571e+00
+#define Q2 -2.07474561943859936441469926649e-01
+#define Q3 -1.46734131782005422506287573015e-01
+#define Q4 3.07878176156175520361557573779e-02
+#define Q5 5.12449347980666221336054633184e-03
+#define Q6 -1.76012741431666995019222898833e-03
+#define Q7 9.35021023573788935372153030556e-05
+#define Q8 6.13275507472443958924745652239e-06
+/*
+ * Constants for large x approximation (x in [6, Inf])
+ * (Accurate to 2.8*10^-19 absolute)
+ */
+#define lns2pi_hi 0.418945312500000
+#define lns2pi_lo -.000006779295327258219670263595
+#define Pa0 8.33333333333333148296162562474e-02
+#define Pa1 -2.77777777774548123579378966497e-03
+#define Pa2 7.93650778754435631476282786423e-04
+#define Pa3 -5.95235082566672847950717262222e-04
+#define Pa4 8.41428560346653702135821806252e-04
+#define Pa5 -1.89773526463879200348872089421e-03
+#define Pa6 5.69394463439411649408050664078e-03
+#define Pa7 -1.44705562421428915453880392761e-02
+
+static const double zero = 0., one = 1.0, tiny = 1e-300;
+static int endian;
+/*
+ * TRUNC sets trailing bits in a floating-point number to zero.
+ * is a temporary variable.
+ */
+#if defined(vax) || defined(tahoe)
+#define _IEEE 0
+#define TRUNC(x) x = (double) (float) (x)
+#else
+#define _IEEE 1
+#define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
+#define infnan(x) 0.0
+#endif
+
+double
+gamma(x)
+ double x;
+{
+ struct Double u;
+ endian = (*(int *) &one) ? 1 : 0;
+
+ if (x >= 6) {
+ if(x > 171.63)
+ return(one/zero);
+ u = large_gam(x);
+ return(__exp__D(u.a, u.b));
+ } else if (x >= 1.0 + LEFT + x0)
+ return (small_gam(x));
+ else if (x > 1.e-17)
+ return (smaller_gam(x));
+ else if (x > -1.e-17) {
+ if (x == 0.0)
+ if (!_IEEE) return (infnan(ERANGE));
+ else return (one/x);
+ one+1e-20; /* Raise inexact flag. */
+ return (one/x);
+ } else if (!finite(x)) {
+ if (_IEEE) /* x = NaN, -Inf */
+ return (x*x);
+ else
+ return (infnan(EDOM));
+ } else
+ return (neg_gam(x));
+}
+/*
+ * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
+ */
+static struct Double
+large_gam(x)
+ double x;
+{
+ double z, p;
+ int i;
+ struct Double t, u, v;
+
+ z = one/(x*x);
+ p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
+ p = p/x;
+
+ u = __log__D(x);
+ u.a -= one;
+ v.a = (x -= .5);
+ TRUNC(v.a);
+ v.b = x - v.a;
+ t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
+ t.b = v.b*u.a + x*u.b;
+ /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
+ t.b += lns2pi_lo; t.b += p;
+ u.a = lns2pi_hi + t.b; u.a += t.a;
+ u.b = t.a - u.a;
+ u.b += lns2pi_hi; u.b += t.b;
+ return (u);
+}
+/*
+ * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
+ * It also has correct monotonicity.
+ */
+static double
+small_gam(x)
+ double x;
+{
+ double y, ym1, t, x1;
+ struct Double yy, r;
+ y = x - one;
+ ym1 = y - one;
+ if (y <= 1.0 + (LEFT + x0)) {
+ yy = ratfun_gam(y - x0, 0);
+ return (yy.a + yy.b);
+ }
+ r.a = y;
+ TRUNC(r.a);
+ yy.a = r.a - one;
+ y = ym1;
+ yy.b = r.b = y - yy.a;
+ /* Argument reduction: G(x+1) = x*G(x) */
+ for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
+ t = r.a*yy.a;
+ r.b = r.a*yy.b + y*r.b;
+ r.a = t;
+ TRUNC(r.a);
+ r.b += (t - r.a);
+ }
+ /* Return r*gamma(y). */
+ yy = ratfun_gam(y - x0, 0);
+ y = r.b*(yy.a + yy.b) + r.a*yy.b;
+ y += yy.a*r.a;
+ return (y);
+}
+/*
+ * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
+ */
+static double
+smaller_gam(x)
+ double x;
+{
+ double t, d;
+ struct Double r, xx;
+ if (x < x0 + LEFT) {
+ t = x, TRUNC(t);
+ d = (t+x)*(x-t);
+ t *= t;
+ xx.a = (t + x), TRUNC(xx.a);
+ xx.b = x - xx.a; xx.b += t; xx.b += d;
+ t = (one-x0); t += x;
+ d = (one-x0); d -= t; d += x;
+ x = xx.a + xx.b;
+ } else {
+ xx.a = x, TRUNC(xx.a);
+ xx.b = x - xx.a;
+ t = x - x0;
+ d = (-x0 -t); d += x;
+ }
+ r = ratfun_gam(t, d);
+ d = r.a/x, TRUNC(d);
+ r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
+ return (d + r.a/x);
+}
+/*
+ * returns (z+c)^2 * P(z)/Q(z) + a0
+ */
+static struct Double
+ratfun_gam(z, c)
+ double z, c;
+{
+ int i;
+ double p, q;
+ struct Double r, t;
+
+ q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
+ p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
+
+ /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
+ p = p/q;
+ t.a = z, TRUNC(t.a); /* t ~= z + c */
+ t.b = (z - t.a) + c;
+ t.b *= (t.a + z);
+ q = (t.a *= t.a); /* t = (z+c)^2 */
+ TRUNC(t.a);
+ t.b += (q - t.a);
+ r.a = p, TRUNC(r.a); /* r = P/Q */
+ r.b = p - r.a;
+ t.b = t.b*p + t.a*r.b + a0_lo;
+ t.a *= r.a; /* t = (z+c)^2*(P/Q) */
+ r.a = t.a + a0_hi, TRUNC(r.a);
+ r.b = ((a0_hi-r.a) + t.a) + t.b;
+ return (r); /* r = a0 + t */
+}
+
+static double
+neg_gam(x)
+ double x;
+{
+ int sgn = 1;
+ struct Double lg, lsine;
+ double y, z;
+
+ y = floor(x + .5);
+ if (y == x) /* Negative integer. */
+ if(!_IEEE)
+ return (infnan(ERANGE));
+ else
+ return (one/zero);
+ z = fabs(x - y);
+ y = .5*ceil(x);
+ if (y == ceil(y))
+ sgn = -1;
+ if (z < .25)
+ z = sin(M_PI*z);
+ else
+ z = cos(M_PI*(0.5-z));
+ /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
+ if (x < -170) {
+ if (x < -190)
+ return ((double)sgn*tiny*tiny);
+ y = one - x; /* exact: 128 < |x| < 255 */
+ lg = large_gam(y);
+ lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
+ lg.a -= lsine.a; /* exact (opposite signs) */
+ lg.b -= lsine.b;
+ y = -(lg.a + lg.b);
+ z = (y + lg.a) + lg.b;
+ y = __exp__D(y, z);
+ if (sgn < 0) y = -y;
+ return (y);
+ }
+ y = one-x;
+ if (one-y == x)
+ y = gamma(y);
+ else /* 1-x is inexact */
+ y = -x*gamma(-x);
+ if (sgn < 0) y = -y;
+ return (M_PI / (y*z));
+}
diff --git a/lib/libm/noieee_src/n_j0.c b/lib/libm/noieee_src/n_j0.c
new file mode 100644
index 00000000000..3148fb18e32
--- /dev/null
+++ b/lib/libm/noieee_src/n_j0.c
@@ -0,0 +1,442 @@
+/* $NetBSD: n_j0.c,v 1.1 1995/10/10 23:36:52 ragge Exp $ */
+/*-
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)j0.c 8.2 (Berkeley) 11/30/93";
+#endif /* not lint */
+
+/*
+ * 16 December 1992
+ * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1992 by Sun Microsystems, Inc.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ * ******************* WARNING ********************
+ * This is an alpha version of SunPro's FDLIBM (Freely
+ * Distributable Math Library) for IEEE double precision
+ * arithmetic. FDLIBM is a basic math library written
+ * in C that runs on machines that conform to IEEE
+ * Standard 754/854. This alpha version is distributed
+ * for testing purpose. Those who use this software
+ * should report any bugs to
+ *
+ * fdlibm-comments@sunpro.eng.sun.com
+ *
+ * -- K.C. Ng, Oct 12, 1992
+ * ************************************************
+ */
+
+/* double j0(double x), y0(double x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j0(x):
+ * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
+ * 2. Reduce x to |x| since j0(x)=j0(-x), and
+ * for x in (0,2)
+ * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
+ * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
+ * for x in (2,inf)
+ * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
+ * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ * as follow:
+ * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ * = 1/sqrt(2) * (cos(x) + sin(x))
+ * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * (To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.)
+ *
+ * 3 Special cases
+ * j0(nan)= nan
+ * j0(0) = 1
+ * j0(inf) = 0
+ *
+ * Method -- y0(x):
+ * 1. For x<2.
+ * Since
+ * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
+ * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
+ * We use the following function to approximate y0,
+ * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
+ * where
+ * U(z) = u0 + u1*z + ... + u6*z^6
+ * V(z) = 1 + v1*z + ... + v4*z^4
+ * with absolute approximation error bounded by 2**-72.
+ * Note: For tiny x, U/V = u0 and j0(x)~1, hence
+ * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
+ * 2. For x>=2.
+ * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
+ * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ * by the method mentioned above.
+ * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
+ */
+
+#include <math.h>
+#include <float.h>
+#include <errno.h>
+
+#if defined(vax) || defined(tahoe)
+#define _IEEE 0
+#else
+#define _IEEE 1
+#define infnan(x) (0.0)
+#endif
+
+static double pzero __P((double)), qzero __P((double));
+
+static double
+huge = 1e300,
+zero = 0.0,
+one = 1.0,
+invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
+tpi = 0.636619772367581343075535053490057448,
+ /* R0/S0 on [0, 2.00] */
+r02 = 1.562499999999999408594634421055018003102e-0002,
+r03 = -1.899792942388547334476601771991800712355e-0004,
+r04 = 1.829540495327006565964161150603950916854e-0006,
+r05 = -4.618326885321032060803075217804816988758e-0009,
+s01 = 1.561910294648900170180789369288114642057e-0002,
+s02 = 1.169267846633374484918570613449245536323e-0004,
+s03 = 5.135465502073181376284426245689510134134e-0007,
+s04 = 1.166140033337900097836930825478674320464e-0009;
+
+double
+j0(x)
+ double x;
+{
+ double z, s,c,ss,cc,r,u,v;
+
+ if (!finite(x))
+ if (_IEEE) return one/(x*x);
+ else return (0);
+ x = fabs(x);
+ if (x >= 2.0) { /* |x| >= 2.0 */
+ s = sin(x);
+ c = cos(x);
+ ss = s-c;
+ cc = s+c;
+ if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */
+ z = -cos(x+x);
+ if ((s*c)<zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ /*
+ * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+ * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+ */
+ if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
+ z = (invsqrtpi*cc)/sqrt(x);
+ else {
+ u = pzero(x); v = qzero(x);
+ z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
+ }
+ return z;
+ }
+ if (x < 1.220703125e-004) { /* |x| < 2**-13 */
+ if (huge+x > one) { /* raise inexact if x != 0 */
+ if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
+ return one;
+ else return (one - 0.25*x*x);
+ }
+ }
+ z = x*x;
+ r = z*(r02+z*(r03+z*(r04+z*r05)));
+ s = one+z*(s01+z*(s02+z*(s03+z*s04)));
+ if (x < one) { /* |x| < 1.00 */
+ return (one + z*(-0.25+(r/s)));
+ } else {
+ u = 0.5*x;
+ return ((one+u)*(one-u)+z*(r/s));
+ }
+}
+
+static double
+u00 = -7.380429510868722527422411862872999615628e-0002,
+u01 = 1.766664525091811069896442906220827182707e-0001,
+u02 = -1.381856719455968955440002438182885835344e-0002,
+u03 = 3.474534320936836562092566861515617053954e-0004,
+u04 = -3.814070537243641752631729276103284491172e-0006,
+u05 = 1.955901370350229170025509706510038090009e-0008,
+u06 = -3.982051941321034108350630097330144576337e-0011,
+v01 = 1.273048348341237002944554656529224780561e-0002,
+v02 = 7.600686273503532807462101309675806839635e-0005,
+v03 = 2.591508518404578033173189144579208685163e-0007,
+v04 = 4.411103113326754838596529339004302243157e-0010;
+
+double
+y0(x)
+ double x;
+{
+ double z, s, c, ss, cc, u, v;
+ /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
+ if (!finite(x))
+ if (_IEEE)
+ return (one/(x+x*x));
+ else
+ return (0);
+ if (x == 0)
+ if (_IEEE) return (-one/zero);
+ else return(infnan(-ERANGE));
+ if (x<0)
+ if (_IEEE) return (zero/zero);
+ else return (infnan(EDOM));
+ if (x >= 2.00) { /* |x| >= 2.0 */
+ /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
+ * where x0 = x-pi/4
+ * Better formula:
+ * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ * = 1/sqrt(2) * (sin(x) + cos(x))
+ * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.
+ */
+ s = sin(x);
+ c = cos(x);
+ ss = s-c;
+ cc = s+c;
+ /*
+ * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+ * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+ */
+ if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */
+ z = -cos(x+x);
+ if ((s*c)<zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
+ z = (invsqrtpi*ss)/sqrt(x);
+ else {
+ u = pzero(x); v = qzero(x);
+ z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
+ }
+ return z;
+ }
+ if (x <= 7.450580596923828125e-009) { /* x < 2**-27 */
+ return (u00 + tpi*log(x));
+ }
+ z = x*x;
+ u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+ v = one+z*(v01+z*(v02+z*(v03+z*v04)));
+ return (u/v + tpi*(j0(x)*log(x)));
+}
+
+/* The asymptotic expansions of pzero is
+ * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * pzero(x) = 1 + (R/S)
+ * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
+ */
+static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0,
+ -7.031249999999003994151563066182798210142e-0002,
+ -8.081670412753498508883963849859423939871e+0000,
+ -2.570631056797048755890526455854482662510e+0002,
+ -2.485216410094288379417154382189125598962e+0003,
+ -5.253043804907295692946647153614119665649e+0003,
+};
+static double ps8[5] = {
+ 1.165343646196681758075176077627332052048e+0002,
+ 3.833744753641218451213253490882686307027e+0003,
+ 4.059785726484725470626341023967186966531e+0004,
+ 1.167529725643759169416844015694440325519e+0005,
+ 4.762772841467309430100106254805711722972e+0004,
+};
+
+static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -1.141254646918944974922813501362824060117e-0011,
+ -7.031249408735992804117367183001996028304e-0002,
+ -4.159610644705877925119684455252125760478e+0000,
+ -6.767476522651671942610538094335912346253e+0001,
+ -3.312312996491729755731871867397057689078e+0002,
+ -3.464333883656048910814187305901796723256e+0002,
+};
+static double ps5[5] = {
+ 6.075393826923003305967637195319271932944e+0001,
+ 1.051252305957045869801410979087427910437e+0003,
+ 5.978970943338558182743915287887408780344e+0003,
+ 9.625445143577745335793221135208591603029e+0003,
+ 2.406058159229391070820491174867406875471e+0003,
+};
+
+static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ -2.547046017719519317420607587742992297519e-0009,
+ -7.031196163814817199050629727406231152464e-0002,
+ -2.409032215495295917537157371488126555072e+0000,
+ -2.196597747348830936268718293366935843223e+0001,
+ -5.807917047017375458527187341817239891940e+0001,
+ -3.144794705948885090518775074177485744176e+0001,
+};
+static double ps3[5] = {
+ 3.585603380552097167919946472266854507059e+0001,
+ 3.615139830503038919981567245265266294189e+0002,
+ 1.193607837921115243628631691509851364715e+0003,
+ 1.127996798569074250675414186814529958010e+0003,
+ 1.735809308133357510239737333055228118910e+0002,
+};
+
+static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -8.875343330325263874525704514800809730145e-0008,
+ -7.030309954836247756556445443331044338352e-0002,
+ -1.450738467809529910662233622603401167409e+0000,
+ -7.635696138235277739186371273434739292491e+0000,
+ -1.119316688603567398846655082201614524650e+0001,
+ -3.233645793513353260006821113608134669030e+0000,
+};
+static double ps2[5] = {
+ 2.222029975320888079364901247548798910952e+0001,
+ 1.362067942182152109590340823043813120940e+0002,
+ 2.704702786580835044524562897256790293238e+0002,
+ 1.538753942083203315263554770476850028583e+0002,
+ 1.465761769482561965099880599279699314477e+0001,
+};
+
+static double pzero(x)
+ double x;
+{
+ double *p,*q,z,r,s;
+ if (x >= 8.00) {p = pr8; q= ps8;}
+ else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
+ else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
+ else if (x >= 2.00) {p = pr2; q= ps2;}
+ z = one/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+ return one+ r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * qzero(x) = s*(-1.25 + (R/S))
+ * where R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * S = 1 + qs0*s^2 + ... + qs5*s^12
+ * and
+ * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
+ */
+static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0,
+ 7.324218749999350414479738504551775297096e-0002,
+ 1.176820646822526933903301695932765232456e+0001,
+ 5.576733802564018422407734683549251364365e+0002,
+ 8.859197207564685717547076568608235802317e+0003,
+ 3.701462677768878501173055581933725704809e+0004,
+};
+static double qs8[6] = {
+ 1.637760268956898345680262381842235272369e+0002,
+ 8.098344946564498460163123708054674227492e+0003,
+ 1.425382914191204905277585267143216379136e+0005,
+ 8.033092571195144136565231198526081387047e+0005,
+ 8.405015798190605130722042369969184811488e+0005,
+ -3.438992935378666373204500729736454421006e+0005,
+};
+
+static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.840859635945155400568380711372759921179e-0011,
+ 7.324217666126847411304688081129741939255e-0002,
+ 5.835635089620569401157245917610984757296e+0000,
+ 1.351115772864498375785526599119895942361e+0002,
+ 1.027243765961641042977177679021711341529e+0003,
+ 1.989977858646053872589042328678602481924e+0003,
+};
+static double qs5[6] = {
+ 8.277661022365377058749454444343415524509e+0001,
+ 2.077814164213929827140178285401017305309e+0003,
+ 1.884728877857180787101956800212453218179e+0004,
+ 5.675111228949473657576693406600265778689e+0004,
+ 3.597675384251145011342454247417399490174e+0004,
+ -5.354342756019447546671440667961399442388e+0003,
+};
+
+static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ 4.377410140897386263955149197672576223054e-0009,
+ 7.324111800429115152536250525131924283018e-0002,
+ 3.344231375161707158666412987337679317358e+0000,
+ 4.262184407454126175974453269277100206290e+0001,
+ 1.708080913405656078640701512007621675724e+0002,
+ 1.667339486966511691019925923456050558293e+0002,
+};
+static double qs3[6] = {
+ 4.875887297245871932865584382810260676713e+0001,
+ 7.096892210566060535416958362640184894280e+0002,
+ 3.704148226201113687434290319905207398682e+0003,
+ 6.460425167525689088321109036469797462086e+0003,
+ 2.516333689203689683999196167394889715078e+0003,
+ -1.492474518361563818275130131510339371048e+0002,
+};
+
+static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.504444448869832780257436041633206366087e-0007,
+ 7.322342659630792930894554535717104926902e-0002,
+ 1.998191740938159956838594407540292600331e+0000,
+ 1.449560293478857407645853071687125850962e+0001,
+ 3.166623175047815297062638132537957315395e+0001,
+ 1.625270757109292688799540258329430963726e+0001,
+};
+static double qs2[6] = {
+ 3.036558483552191922522729838478169383969e+0001,
+ 2.693481186080498724211751445725708524507e+0002,
+ 8.447837575953201460013136756723746023736e+0002,
+ 8.829358451124885811233995083187666981299e+0002,
+ 2.126663885117988324180482985363624996652e+0002,
+ -5.310954938826669402431816125780738924463e+0000,
+};
+
+static double qzero(x)
+ double x;
+{
+ double *p,*q, s,r,z;
+ if (x >= 8.00) {p = qr8; q= qs8;}
+ else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
+ else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
+ else if (x >= 2.00) {p = qr2; q= qs2;}
+ z = one/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+ return (-.125 + r/s)/x;
+}
diff --git a/lib/libm/noieee_src/n_j1.c b/lib/libm/noieee_src/n_j1.c
new file mode 100644
index 00000000000..2de8182fb6f
--- /dev/null
+++ b/lib/libm/noieee_src/n_j1.c
@@ -0,0 +1,448 @@
+/* $NetBSD: n_j1.c,v 1.1 1995/10/10 23:36:53 ragge Exp $ */
+/*-
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)j1.c 8.2 (Berkeley) 11/30/93";
+#endif /* not lint */
+
+/*
+ * 16 December 1992
+ * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1992 by Sun Microsystems, Inc.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ * ******************* WARNING ********************
+ * This is an alpha version of SunPro's FDLIBM (Freely
+ * Distributable Math Library) for IEEE double precision
+ * arithmetic. FDLIBM is a basic math library written
+ * in C that runs on machines that conform to IEEE
+ * Standard 754/854. This alpha version is distributed
+ * for testing purpose. Those who use this software
+ * should report any bugs to
+ *
+ * fdlibm-comments@sunpro.eng.sun.com
+ *
+ * -- K.C. Ng, Oct 12, 1992
+ * ************************************************
+ */
+
+/* double j1(double x), y1(double x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j1(x):
+ * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
+ * 2. Reduce x to |x| since j1(x)=-j1(-x), and
+ * for x in (0,2)
+ * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
+ * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
+ * for x in (2,inf)
+ * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ * as follows:
+ * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ * = -1/sqrt(2) * (sin(x) + cos(x))
+ * (To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.)
+ *
+ * 3 Special cases
+ * j1(nan)= nan
+ * j1(0) = 0
+ * j1(inf) = 0
+ *
+ * Method -- y1(x):
+ * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
+ * 2. For x<2.
+ * Since
+ * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
+ * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
+ * We use the following function to approximate y1,
+ * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
+ * where for x in [0,2] (abs err less than 2**-65.89)
+ * U(z) = u0 + u1*z + ... + u4*z^4
+ * V(z) = 1 + v1*z + ... + v5*z^5
+ * Note: For tiny x, 1/x dominate y1 and hence
+ * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
+ * 3. For x>=2.
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ * by method mentioned above.
+ */
+
+#include <math.h>
+#include <float.h>
+#include <errno.h>
+
+#if defined(vax) || defined(tahoe)
+#define _IEEE 0
+#else
+#define _IEEE 1
+#define infnan(x) (0.0)
+#endif
+
+static double pone(), qone();
+
+static double
+huge = 1e300,
+zero = 0.0,
+one = 1.0,
+invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
+tpi = 0.636619772367581343075535053490057448,
+
+ /* R0/S0 on [0,2] */
+r00 = -6.250000000000000020842322918309200910191e-0002,
+r01 = 1.407056669551897148204830386691427791200e-0003,
+r02 = -1.599556310840356073980727783817809847071e-0005,
+r03 = 4.967279996095844750387702652791615403527e-0008,
+s01 = 1.915375995383634614394860200531091839635e-0002,
+s02 = 1.859467855886309024045655476348872850396e-0004,
+s03 = 1.177184640426236767593432585906758230822e-0006,
+s04 = 5.046362570762170559046714468225101016915e-0009,
+s05 = 1.235422744261379203512624973117299248281e-0011;
+
+#define two_129 6.80564733841876926e+038 /* 2^129 */
+#define two_m54 5.55111512312578270e-017 /* 2^-54 */
+double j1(x)
+ double x;
+{
+ double z, s,c,ss,cc,r,u,v,y;
+ y = fabs(x);
+ if (!finite(x)) /* Inf or NaN */
+ if (_IEEE && x != x)
+ return(x);
+ else
+ return (copysign(x, zero));
+ y = fabs(x);
+ if (y >= 2) /* |x| >= 2.0 */
+ {
+ s = sin(y);
+ c = cos(y);
+ ss = -s-c;
+ cc = s-c;
+ if (y < .5*DBL_MAX) { /* make sure y+y not overflow */
+ z = cos(y+y);
+ if ((s*c)<zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ /*
+ * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
+ * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
+ */
+#if !defined(vax) && !defined(tahoe)
+ if (y > two_129) /* x > 2^129 */
+ z = (invsqrtpi*cc)/sqrt(y);
+ else
+#endif /* defined(vax) || defined(tahoe) */
+ {
+ u = pone(y); v = qone(y);
+ z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
+ }
+ if (x < 0) return -z;
+ else return z;
+ }
+ if (y < 7.450580596923828125e-009) { /* |x|<2**-27 */
+ if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
+ }
+ z = x*x;
+ r = z*(r00+z*(r01+z*(r02+z*r03)));
+ s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
+ r *= x;
+ return (x*0.5+r/s);
+}
+
+static double u0[5] = {
+ -1.960570906462389484206891092512047539632e-0001,
+ 5.044387166398112572026169863174882070274e-0002,
+ -1.912568958757635383926261729464141209569e-0003,
+ 2.352526005616105109577368905595045204577e-0005,
+ -9.190991580398788465315411784276789663849e-0008,
+};
+static double v0[5] = {
+ 1.991673182366499064031901734535479833387e-0002,
+ 2.025525810251351806268483867032781294682e-0004,
+ 1.356088010975162198085369545564475416398e-0006,
+ 6.227414523646214811803898435084697863445e-0009,
+ 1.665592462079920695971450872592458916421e-0011,
+};
+
+double y1(x)
+ double x;
+{
+ double z, s, c, ss, cc, u, v;
+ /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
+ if (!finite(x))
+ if (!_IEEE) return (infnan(EDOM));
+ else if (x < 0)
+ return(zero/zero);
+ else if (x > 0)
+ return (0);
+ else
+ return(x);
+ if (x <= 0) {
+ if (_IEEE && x == 0) return -one/zero;
+ else if(x == 0) return(infnan(-ERANGE));
+ else if(_IEEE) return (zero/zero);
+ else return(infnan(EDOM));
+ }
+ if (x >= 2) /* |x| >= 2.0 */
+ {
+ s = sin(x);
+ c = cos(x);
+ ss = -s-c;
+ cc = s-c;
+ if (x < .5 * DBL_MAX) /* make sure x+x not overflow */
+ {
+ z = cos(x+x);
+ if ((s*c)>zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
+ * where x0 = x-3pi/4
+ * Better formula:
+ * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ * = -1/sqrt(2) * (cos(x) + sin(x))
+ * To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.
+ */
+ if (_IEEE && x>two_129)
+ z = (invsqrtpi*ss)/sqrt(x);
+ else {
+ u = pone(x); v = qone(x);
+ z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
+ }
+ return z;
+ }
+ if (x <= two_m54) { /* x < 2**-54 */
+ return (-tpi/x);
+ }
+ z = x*x;
+ u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
+ v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
+ return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
+ * We approximate pone by
+ * pone(x) = 1 + (R/S)
+ * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ * | pone(x)-1-R/S | <= 2 ** ( -60.06)
+ */
+
+static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0,
+ 1.171874999999886486643746274751925399540e-0001,
+ 1.323948065930735690925827997575471527252e+0001,
+ 4.120518543073785433325860184116512799375e+0002,
+ 3.874745389139605254931106878336700275601e+0003,
+ 7.914479540318917214253998253147871806507e+0003,
+};
+static double ps8[5] = {
+ 1.142073703756784104235066368252692471887e+0002,
+ 3.650930834208534511135396060708677099382e+0003,
+ 3.695620602690334708579444954937638371808e+0004,
+ 9.760279359349508334916300080109196824151e+0004,
+ 3.080427206278887984185421142572315054499e+0004,
+};
+
+static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.319905195562435287967533851581013807103e-0011,
+ 1.171874931906140985709584817065144884218e-0001,
+ 6.802751278684328781830052995333841452280e+0000,
+ 1.083081829901891089952869437126160568246e+0002,
+ 5.176361395331997166796512844100442096318e+0002,
+ 5.287152013633375676874794230748055786553e+0002,
+};
+static double ps5[5] = {
+ 5.928059872211313557747989128353699746120e+0001,
+ 9.914014187336144114070148769222018425781e+0002,
+ 5.353266952914879348427003712029704477451e+0003,
+ 7.844690317495512717451367787640014588422e+0003,
+ 1.504046888103610723953792002716816255382e+0003,
+};
+
+static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ 3.025039161373736032825049903408701962756e-0009,
+ 1.171868655672535980750284752227495879921e-0001,
+ 3.932977500333156527232725812363183251138e+0000,
+ 3.511940355916369600741054592597098912682e+0001,
+ 9.105501107507812029367749771053045219094e+0001,
+ 4.855906851973649494139275085628195457113e+0001,
+};
+static double ps3[5] = {
+ 3.479130950012515114598605916318694946754e+0001,
+ 3.367624587478257581844639171605788622549e+0002,
+ 1.046871399757751279180649307467612538415e+0003,
+ 8.908113463982564638443204408234739237639e+0002,
+ 1.037879324396392739952487012284401031859e+0002,
+};
+
+static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.077108301068737449490056513753865482831e-0007,
+ 1.171762194626833490512746348050035171545e-0001,
+ 2.368514966676087902251125130227221462134e+0000,
+ 1.224261091482612280835153832574115951447e+0001,
+ 1.769397112716877301904532320376586509782e+0001,
+ 5.073523125888185399030700509321145995160e+0000,
+};
+static double ps2[5] = {
+ 2.143648593638214170243114358933327983793e+0001,
+ 1.252902271684027493309211410842525120355e+0002,
+ 2.322764690571628159027850677565128301361e+0002,
+ 1.176793732871470939654351793502076106651e+0002,
+ 8.364638933716182492500902115164881195742e+0000,
+};
+
+static double pone(x)
+ double x;
+{
+ double *p,*q,z,r,s;
+ if (x >= 8.0) {p = pr8; q= ps8;}
+ else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
+ else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
+ else /* if (x >= 2.0) */ {p = pr2; q= ps2;}
+ z = one/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+ return (one + r/s);
+}
+
+
+/* For x >= 8, the asymptotic expansions of qone is
+ * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ * qone(x) = s*(0.375 + (R/S))
+ * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
+ */
+
+static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0,
+ -1.025390624999927207385863635575804210817e-0001,
+ -1.627175345445899724355852152103771510209e+0001,
+ -7.596017225139501519843072766973047217159e+0002,
+ -1.184980667024295901645301570813228628541e+0004,
+ -4.843851242857503225866761992518949647041e+0004,
+};
+static double qs8[6] = {
+ 1.613953697007229231029079421446916397904e+0002,
+ 7.825385999233484705298782500926834217525e+0003,
+ 1.338753362872495800748094112937868089032e+0005,
+ 7.196577236832409151461363171617204036929e+0005,
+ 6.666012326177764020898162762642290294625e+0005,
+ -2.944902643038346618211973470809456636830e+0005,
+};
+
+static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -2.089799311417640889742251585097264715678e-0011,
+ -1.025390502413754195402736294609692303708e-0001,
+ -8.056448281239359746193011295417408828404e+0000,
+ -1.836696074748883785606784430098756513222e+0002,
+ -1.373193760655081612991329358017247355921e+0003,
+ -2.612444404532156676659706427295870995743e+0003,
+};
+static double qs5[6] = {
+ 8.127655013843357670881559763225310973118e+0001,
+ 1.991798734604859732508048816860471197220e+0003,
+ 1.746848519249089131627491835267411777366e+0004,
+ 4.985142709103522808438758919150738000353e+0004,
+ 2.794807516389181249227113445299675335543e+0004,
+ -4.719183547951285076111596613593553911065e+0003,
+};
+
+static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ -5.078312264617665927595954813341838734288e-0009,
+ -1.025378298208370901410560259001035577681e-0001,
+ -4.610115811394734131557983832055607679242e+0000,
+ -5.784722165627836421815348508816936196402e+0001,
+ -2.282445407376317023842545937526967035712e+0002,
+ -2.192101284789093123936441805496580237676e+0002,
+};
+static double qs3[6] = {
+ 4.766515503237295155392317984171640809318e+0001,
+ 6.738651126766996691330687210949984203167e+0002,
+ 3.380152866795263466426219644231687474174e+0003,
+ 5.547729097207227642358288160210745890345e+0003,
+ 1.903119193388108072238947732674639066045e+0003,
+ -1.352011914443073322978097159157678748982e+0002,
+};
+
+static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -1.783817275109588656126772316921194887979e-0007,
+ -1.025170426079855506812435356168903694433e-0001,
+ -2.752205682781874520495702498875020485552e+0000,
+ -1.966361626437037351076756351268110418862e+0001,
+ -4.232531333728305108194363846333841480336e+0001,
+ -2.137192117037040574661406572497288723430e+0001,
+};
+static double qs2[6] = {
+ 2.953336290605238495019307530224241335502e+0001,
+ 2.529815499821905343698811319455305266409e+0002,
+ 7.575028348686454070022561120722815892346e+0002,
+ 7.393932053204672479746835719678434981599e+0002,
+ 1.559490033366661142496448853793707126179e+0002,
+ -4.959498988226281813825263003231704397158e+0000,
+};
+
+static double qone(x)
+ double x;
+{
+ double *p,*q, s,r,z;
+ if (x >= 8.0) {p = qr8; q= qs8;}
+ else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
+ else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
+ else /* if (x >= 2.0) */ {p = qr2; q= qs2;}
+ z = one/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+ return (.375 + r/s)/x;
+}
diff --git a/lib/libm/noieee_src/n_jn.c b/lib/libm/noieee_src/n_jn.c
new file mode 100644
index 00000000000..31eef767a1b
--- /dev/null
+++ b/lib/libm/noieee_src/n_jn.c
@@ -0,0 +1,312 @@
+/* $NetBSD: n_jn.c,v 1.1 1995/10/10 23:36:54 ragge Exp $ */
+/*-
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)jn.c 8.2 (Berkeley) 11/30/93";
+#endif /* not lint */
+
+/*
+ * 16 December 1992
+ * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1992 by Sun Microsystems, Inc.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ * ******************* WARNING ********************
+ * This is an alpha version of SunPro's FDLIBM (Freely
+ * Distributable Math Library) for IEEE double precision
+ * arithmetic. FDLIBM is a basic math library written
+ * in C that runs on machines that conform to IEEE
+ * Standard 754/854. This alpha version is distributed
+ * for testing purpose. Those who use this software
+ * should report any bugs to
+ *
+ * fdlibm-comments@sunpro.eng.sun.com
+ *
+ * -- K.C. Ng, Oct 12, 1992
+ * ************************************************
+ */
+
+/*
+ * jn(int n, double x), yn(int n, double x)
+ * floating point Bessel's function of the 1st and 2nd kind
+ * of order n
+ *
+ * Special cases:
+ * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+ * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+ * Note 2. About jn(n,x), yn(n,x)
+ * For n=0, j0(x) is called,
+ * for n=1, j1(x) is called,
+ * for n<x, forward recursion us used starting
+ * from values of j0(x) and j1(x).
+ * for n>x, a continued fraction approximation to
+ * j(n,x)/j(n-1,x) is evaluated and then backward
+ * recursion is used starting from a supposed value
+ * for j(n,x). The resulting value of j(0,x) is
+ * compared with the actual value to correct the
+ * supposed value of j(n,x).
+ *
+ * yn(n,x) is similar in all respects, except
+ * that forward recursion is used for all
+ * values of n>1.
+ *
+ */
+
+#include <math.h>
+#include <float.h>
+#include <errno.h>
+
+#if defined(vax) || defined(tahoe)
+#define _IEEE 0
+#else
+#define _IEEE 1
+#define infnan(x) (0.0)
+#endif
+
+static double
+invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
+two = 2.0,
+zero = 0.0,
+one = 1.0;
+
+double jn(n,x)
+ int n; double x;
+{
+ int i, sgn;
+ double a, b, temp;
+ double z, w;
+
+ /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+ * Thus, J(-n,x) = J(n,-x)
+ */
+ /* if J(n,NaN) is NaN */
+ if (_IEEE && isnan(x)) return x+x;
+ if (n<0){
+ n = -n;
+ x = -x;
+ }
+ if (n==0) return(j0(x));
+ if (n==1) return(j1(x));
+ sgn = (n&1)&(x < zero); /* even n -- 0, odd n -- sign(x) */
+ x = fabs(x);
+ if (x == 0 || !finite (x)) /* if x is 0 or inf */
+ b = zero;
+ else if ((double) n <= x) {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ if (_IEEE && x >= 8.148143905337944345e+090) {
+ /* x >= 2**302 */
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ switch(n&3) {
+ case 0: temp = cos(x)+sin(x); break;
+ case 1: temp = -cos(x)+sin(x); break;
+ case 2: temp = -cos(x)-sin(x); break;
+ case 3: temp = cos(x)-sin(x); break;
+ }
+ b = invsqrtpi*temp/sqrt(x);
+ } else {
+ a = j0(x);
+ b = j1(x);
+ for(i=1;i<n;i++){
+ temp = b;
+ b = b*((double)(i+i)/x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ } else {
+ if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if (n > 33) /* underflow */
+ b = zero;
+ else {
+ temp = x*0.5; b = temp;
+ for (a=one,i=2;i<=n;i++) {
+ a *= (double)i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b/a;
+ }
+ } else {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ double t,v;
+ double q0,q1,h,tmp; int k,m;
+ w = (n+n)/(double)x; h = 2.0/(double)x;
+ q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
+ while (q1<1.0e9) {
+ k += 1; z += h;
+ tmp = z*q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ m = n+n;
+ for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
+ a = t;
+ b = one;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result will
+ * likely underflow to zero
+ */
+ tmp = n;
+ v = two/x;
+ tmp = tmp*log(fabs(v*tmp));
+ for (i=n-1;i>0;i--){
+ temp = b;
+ b = ((i+i)/x)*b - a;
+ a = temp;
+ /* scale b to avoid spurious overflow */
+# if defined(vax) || defined(tahoe)
+# define BMAX 1e13
+# else
+# define BMAX 1e100
+# endif /* defined(vax) || defined(tahoe) */
+ if (b > BMAX) {
+ a /= b;
+ t /= b;
+ b = one;
+ }
+ }
+ b = (t*j0(x)/b);
+ }
+ }
+ return ((sgn == 1) ? -b : b);
+}
+double yn(n,x)
+ int n; double x;
+{
+ int i, sign;
+ double a, b, temp;
+
+ /* Y(n,NaN), Y(n, x < 0) is NaN */
+ if (x <= 0 || (_IEEE && x != x))
+ if (_IEEE && x < 0) return zero/zero;
+ else if (x < 0) return (infnan(EDOM));
+ else if (_IEEE) return -one/zero;
+ else return(infnan(-ERANGE));
+ else if (!finite(x)) return(0);
+ sign = 1;
+ if (n<0){
+ n = -n;
+ sign = 1 - ((n&1)<<2);
+ }
+ if (n == 0) return(y0(x));
+ if (n == 1) return(sign*y1(x));
+ if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ switch (n&3) {
+ case 0: temp = sin(x)-cos(x); break;
+ case 1: temp = -sin(x)-cos(x); break;
+ case 2: temp = -sin(x)+cos(x); break;
+ case 3: temp = sin(x)+cos(x); break;
+ }
+ b = invsqrtpi*temp/sqrt(x);
+ } else {
+ a = y0(x);
+ b = y1(x);
+ /* quit if b is -inf */
+ for (i = 1; i < n && !finite(b); i++){
+ temp = b;
+ b = ((double)(i+i)/x)*b - a;
+ a = temp;
+ }
+ }
+ if (!_IEEE && !finite(b))
+ return (infnan(-sign * ERANGE));
+ return ((sign > 0) ? b : -b);
+}
diff --git a/lib/libm/noieee_src/n_lgamma.c b/lib/libm/noieee_src/n_lgamma.c
new file mode 100644
index 00000000000..1833e956fad
--- /dev/null
+++ b/lib/libm/noieee_src/n_lgamma.c
@@ -0,0 +1,308 @@
+/* $NetBSD: n_lgamma.c,v 1.1 1995/10/10 23:36:56 ragge Exp $ */
+/*-
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)lgamma.c 8.2 (Berkeley) 11/30/93";
+#endif /* not lint */
+
+/*
+ * Coded by Peter McIlroy, Nov 1992;
+ *
+ * The financial support of UUNET Communications Services is greatfully
+ * acknowledged.
+ */
+
+#include <math.h>
+#include <errno.h>
+
+#include "mathimpl.h"
+
+/* Log gamma function.
+ * Error: x > 0 error < 1.3ulp.
+ * x > 4, error < 1ulp.
+ * x > 9, error < .6ulp.
+ * x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
+ * Method:
+ * x > 6:
+ * Use the asymptotic expansion (Stirling's Formula)
+ * 0 < x < 6:
+ * Use gamma(x+1) = x*gamma(x) for argument reduction.
+ * Use rational approximation in
+ * the range 1.2, 2.5
+ * Two approximations are used, one centered at the
+ * minimum to ensure monotonicity; one centered at 2
+ * to maintain small relative error.
+ * x < 0:
+ * Use the reflection formula,
+ * G(1-x)G(x) = PI/sin(PI*x)
+ * Special values:
+ * non-positive integer returns +Inf.
+ * NaN returns NaN
+*/
+static int endian;
+#if defined(vax) || defined(tahoe)
+#define _IEEE 0
+/* double and float have same size exponent field */
+#define TRUNC(x) x = (double) (float) (x)
+#else
+#define _IEEE 1
+#define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
+#define infnan(x) 0.0
+#endif
+
+static double small_lgam(double);
+static double large_lgam(double);
+static double neg_lgam(double);
+static double zero = 0.0, one = 1.0;
+int signgam;
+
+#define UNDERFL (1e-1020 * 1e-1020)
+
+#define LEFT (1.0 - (x0 + .25))
+#define RIGHT (x0 - .218)
+/*
+/* Constants for approximation in [1.244,1.712]
+*/
+#define x0 0.461632144968362356785
+#define x0_lo -.000000000000000015522348162858676890521
+#define a0_hi -0.12148629128932952880859
+#define a0_lo .0000000007534799204229502
+#define r0 -2.771227512955130520e-002
+#define r1 -2.980729795228150847e-001
+#define r2 -3.257411333183093394e-001
+#define r3 -1.126814387531706041e-001
+#define r4 -1.129130057170225562e-002
+#define r5 -2.259650588213369095e-005
+#define s0 1.714457160001714442e+000
+#define s1 2.786469504618194648e+000
+#define s2 1.564546365519179805e+000
+#define s3 3.485846389981109850e-001
+#define s4 2.467759345363656348e-002
+/*
+ * Constants for approximation in [1.71, 2.5]
+*/
+#define a1_hi 4.227843350984671344505727574870e-01
+#define a1_lo 4.670126436531227189e-18
+#define p0 3.224670334241133695662995251041e-01
+#define p1 3.569659696950364669021382724168e-01
+#define p2 1.342918716072560025853732668111e-01
+#define p3 1.950702176409779831089963408886e-02
+#define p4 8.546740251667538090796227834289e-04
+#define q0 1.000000000000000444089209850062e+00
+#define q1 1.315850076960161985084596381057e+00
+#define q2 6.274644311862156431658377186977e-01
+#define q3 1.304706631926259297049597307705e-01
+#define q4 1.102815279606722369265536798366e-02
+#define q5 2.512690594856678929537585620579e-04
+#define q6 -1.003597548112371003358107325598e-06
+/*
+ * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
+*/
+#define lns2pi .418938533204672741780329736405
+#define pb0 8.33333333333333148296162562474e-02
+#define pb1 -2.77777777774548123579378966497e-03
+#define pb2 7.93650778754435631476282786423e-04
+#define pb3 -5.95235082566672847950717262222e-04
+#define pb4 8.41428560346653702135821806252e-04
+#define pb5 -1.89773526463879200348872089421e-03
+#define pb6 5.69394463439411649408050664078e-03
+#define pb7 -1.44705562421428915453880392761e-02
+
+__pure double
+lgamma(double x)
+{
+ double r;
+
+ signgam = 1;
+ endian = ((*(int *) &one)) ? 1 : 0;
+
+ if (!finite(x))
+ if (_IEEE)
+ return (x+x);
+ else return (infnan(EDOM));
+
+ if (x > 6 + RIGHT) {
+ r = large_lgam(x);
+ return (r);
+ } else if (x > 1e-16)
+ return (small_lgam(x));
+ else if (x > -1e-16) {
+ if (x < 0)
+ signgam = -1, x = -x;
+ return (-log(x));
+ } else
+ return (neg_lgam(x));
+}
+
+static double
+large_lgam(double x)
+{
+ double z, p, x1;
+ int i;
+ struct Double t, u, v;
+ u = __log__D(x);
+ u.a -= 1.0;
+ if (x > 1e15) {
+ v.a = x - 0.5;
+ TRUNC(v.a);
+ v.b = (x - v.a) - 0.5;
+ t.a = u.a*v.a;
+ t.b = x*u.b + v.b*u.a;
+ if (_IEEE == 0 && !finite(t.a))
+ return(infnan(ERANGE));
+ return(t.a + t.b);
+ }
+ x1 = 1./x;
+ z = x1*x1;
+ p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
+ /* error in approximation = 2.8e-19 */
+
+ p = p*x1; /* error < 2.3e-18 absolute */
+ /* 0 < p < 1/64 (at x = 5.5) */
+ v.a = x = x - 0.5;
+ TRUNC(v.a); /* truncate v.a to 26 bits. */
+ v.b = x - v.a;
+ t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
+ t.b = v.b*u.a + x*u.b;
+ t.b += p; t.b += lns2pi; /* return t + lns2pi + p */
+ return (t.a + t.b);
+}
+
+static double
+small_lgam(double x)
+{
+ int x_int;
+ double y, z, t, r = 0, p, q, hi, lo;
+ struct Double rr;
+ x_int = (x + .5);
+ y = x - x_int;
+ if (x_int <= 2 && y > RIGHT) {
+ t = y - x0;
+ y--; x_int++;
+ goto CONTINUE;
+ } else if (y < -LEFT) {
+ t = y +(1.0-x0);
+CONTINUE:
+ z = t - x0_lo;
+ p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
+ q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
+ r = t*(z*(p/q) - x0_lo);
+ t = .5*t*t;
+ z = 1.0;
+ switch (x_int) {
+ case 6: z = (y + 5);
+ case 5: z *= (y + 4);
+ case 4: z *= (y + 3);
+ case 3: z *= (y + 2);
+ rr = __log__D(z);
+ rr.b += a0_lo; rr.a += a0_hi;
+ return(((r+rr.b)+t+rr.a));
+ case 2: return(((r+a0_lo)+t)+a0_hi);
+ case 0: r -= log1p(x);
+ default: rr = __log__D(x);
+ rr.a -= a0_hi; rr.b -= a0_lo;
+ return(((r - rr.b) + t) - rr.a);
+ }
+ } else {
+ p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
+ q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
+ p = p*(y/q);
+ t = (double)(float) y;
+ z = y-t;
+ hi = (double)(float) (p+a1_hi);
+ lo = a1_hi - hi; lo += p; lo += a1_lo;
+ r = lo*y + z*hi; /* q + r = y*(a0+p/q) */
+ q = hi*t;
+ z = 1.0;
+ switch (x_int) {
+ case 6: z = (y + 5);
+ case 5: z *= (y + 4);
+ case 4: z *= (y + 3);
+ case 3: z *= (y + 2);
+ rr = __log__D(z);
+ r += rr.b; r += q;
+ return(rr.a + r);
+ case 2: return (q+ r);
+ case 0: rr = __log__D(x);
+ r -= rr.b; r -= log1p(x);
+ r += q; r-= rr.a;
+ return(r);
+ default: rr = __log__D(x);
+ r -= rr.b;
+ q -= rr.a;
+ return (r+q);
+ }
+ }
+}
+
+static double
+neg_lgam(double x)
+{
+ int xi;
+ double y, z, one = 1.0, zero = 0.0;
+ extern double gamma();
+
+ /* avoid destructive cancellation as much as possible */
+ if (x > -170) {
+ xi = x;
+ if (xi == x)
+ if (_IEEE)
+ return(one/zero);
+ else
+ return(infnan(ERANGE));
+ y = gamma(x);
+ if (y < 0)
+ y = -y, signgam = -1;
+ return (log(y));
+ }
+ z = floor(x + .5);
+ if (z == x) { /* convention: G(-(integer)) -> +Inf */
+ if (_IEEE)
+ return (one/zero);
+ else
+ return (infnan(ERANGE));
+ }
+ y = .5*ceil(x);
+ if (y == ceil(y))
+ signgam = -1;
+ x = -x;
+ z = fabs(x + z); /* 0 < z <= .5 */
+ if (z < .25)
+ z = sin(M_PI*z);
+ else
+ z = cos(M_PI*(0.5-z));
+ z = log(M_PI/(z*x));
+ y = large_lgam(x);
+ return (z - y);
+}
diff --git a/lib/libm/noieee_src/n_log.c b/lib/libm/noieee_src/n_log.c
new file mode 100644
index 00000000000..80f17aa364b
--- /dev/null
+++ b/lib/libm/noieee_src/n_log.c
@@ -0,0 +1,487 @@
+/* $NetBSD: n_log.c,v 1.1 1995/10/10 23:36:57 ragge Exp $ */
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
+#endif /* not lint */
+
+#include <math.h>
+#include <errno.h>
+
+#include "mathimpl.h"
+
+/* Table-driven natural logarithm.
+ *
+ * This code was derived, with minor modifications, from:
+ * Peter Tang, "Table-Driven Implementation of the
+ * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
+ * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
+ *
+ * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
+ * where F = j/128 for j an integer in [0, 128].
+ *
+ * log(2^m) = log2_hi*m + log2_tail*m
+ * since m is an integer, the dominant term is exact.
+ * m has at most 10 digits (for subnormal numbers),
+ * and log2_hi has 11 trailing zero bits.
+ *
+ * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
+ * logF_hi[] + 512 is exact.
+ *
+ * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
+ * the leading term is calculated to extra precision in two
+ * parts, the larger of which adds exactly to the dominant
+ * m and F terms.
+ * There are two cases:
+ * 1. when m, j are non-zero (m | j), use absolute
+ * precision for the leading term.
+ * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
+ * In this case, use a relative precision of 24 bits.
+ * (This is done differently in the original paper)
+ *
+ * Special cases:
+ * 0 return signalling -Inf
+ * neg return signalling NaN
+ * +Inf return +Inf
+*/
+
+#if defined(vax) || defined(tahoe)
+#define _IEEE 0
+#define TRUNC(x) x = (double) (float) (x)
+#else
+#define _IEEE 1
+#define endian (((*(int *) &one)) ? 1 : 0)
+#define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
+#define infnan(x) 0.0
+#endif
+
+#define N 128
+
+/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
+ * Used for generation of extend precision logarithms.
+ * The constant 35184372088832 is 2^45, so the divide is exact.
+ * It ensures correct reading of logF_head, even for inaccurate
+ * decimal-to-binary conversion routines. (Everybody gets the
+ * right answer for integers less than 2^53.)
+ * Values for log(F) were generated using error < 10^-57 absolute
+ * with the bc -l package.
+*/
+static double A1 = .08333333333333178827;
+static double A2 = .01250000000377174923;
+static double A3 = .002232139987919447809;
+static double A4 = .0004348877777076145742;
+
+static double logF_head[N+1] = {
+ 0.,
+ .007782140442060381246,
+ .015504186535963526694,
+ .023167059281547608406,
+ .030771658666765233647,
+ .038318864302141264488,
+ .045809536031242714670,
+ .053244514518837604555,
+ .060624621816486978786,
+ .067950661908525944454,
+ .075223421237524235039,
+ .082443669210988446138,
+ .089612158689760690322,
+ .096729626458454731618,
+ .103796793681567578460,
+ .110814366340264314203,
+ .117783035656430001836,
+ .124703478501032805070,
+ .131576357788617315236,
+ .138402322859292326029,
+ .145182009844575077295,
+ .151916042025732167530,
+ .158605030176659056451,
+ .165249572895390883786,
+ .171850256926518341060,
+ .178407657472689606947,
+ .184922338493834104156,
+ .191394852999565046047,
+ .197825743329758552135,
+ .204215541428766300668,
+ .210564769107350002741,
+ .216873938300523150246,
+ .223143551314024080056,
+ .229374101064877322642,
+ .235566071312860003672,
+ .241719936886966024758,
+ .247836163904594286577,
+ .253915209980732470285,
+ .259957524436686071567,
+ .265963548496984003577,
+ .271933715484010463114,
+ .277868451003087102435,
+ .283768173130738432519,
+ .289633292582948342896,
+ .295464212893421063199,
+ .301261330578199704177,
+ .307025035294827830512,
+ .312755710004239517729,
+ .318453731118097493890,
+ .324119468654316733591,
+ .329753286372579168528,
+ .335355541920762334484,
+ .340926586970454081892,
+ .346466767346100823488,
+ .351976423156884266063,
+ .357455888922231679316,
+ .362905493689140712376,
+ .368325561158599157352,
+ .373716409793814818840,
+ .379078352934811846353,
+ .384411698910298582632,
+ .389716751140440464951,
+ .394993808240542421117,
+ .400243164127459749579,
+ .405465108107819105498,
+ .410659924985338875558,
+ .415827895143593195825,
+ .420969294644237379543,
+ .426084395310681429691,
+ .431173464818130014464,
+ .436236766774527495726,
+ .441274560805140936281,
+ .446287102628048160113,
+ .451274644139630254358,
+ .456237433481874177232,
+ .461175715122408291790,
+ .466089729924533457960,
+ .470979715219073113985,
+ .475845904869856894947,
+ .480688529345570714212,
+ .485507815781602403149,
+ .490303988045525329653,
+ .495077266798034543171,
+ .499827869556611403822,
+ .504556010751912253908,
+ .509261901790523552335,
+ .513945751101346104405,
+ .518607764208354637958,
+ .523248143765158602036,
+ .527867089620485785417,
+ .532464798869114019908,
+ .537041465897345915436,
+ .541597282432121573947,
+ .546132437597407260909,
+ .550647117952394182793,
+ .555141507540611200965,
+ .559615787935399566777,
+ .564070138285387656651,
+ .568504735352689749561,
+ .572919753562018740922,
+ .577315365035246941260,
+ .581691739635061821900,
+ .586049045003164792433,
+ .590387446602107957005,
+ .594707107746216934174,
+ .599008189645246602594,
+ .603290851438941899687,
+ .607555250224322662688,
+ .611801541106615331955,
+ .616029877215623855590,
+ .620240409751204424537,
+ .624433288012369303032,
+ .628608659422752680256,
+ .632766669570628437213,
+ .636907462236194987781,
+ .641031179420679109171,
+ .645137961373620782978,
+ .649227946625615004450,
+ .653301272011958644725,
+ .657358072709030238911,
+ .661398482245203922502,
+ .665422632544505177065,
+ .669430653942981734871,
+ .673422675212350441142,
+ .677398823590920073911,
+ .681359224807238206267,
+ .685304003098281100392,
+ .689233281238557538017,
+ .693147180560117703862
+};
+
+static double logF_tail[N+1] = {
+ 0.,
+ -.00000000000000543229938420049,
+ .00000000000000172745674997061,
+ -.00000000000001323017818229233,
+ -.00000000000001154527628289872,
+ -.00000000000000466529469958300,
+ .00000000000005148849572685810,
+ -.00000000000002532168943117445,
+ -.00000000000005213620639136504,
+ -.00000000000001819506003016881,
+ .00000000000006329065958724544,
+ .00000000000008614512936087814,
+ -.00000000000007355770219435028,
+ .00000000000009638067658552277,
+ .00000000000007598636597194141,
+ .00000000000002579999128306990,
+ -.00000000000004654729747598444,
+ -.00000000000007556920687451336,
+ .00000000000010195735223708472,
+ -.00000000000017319034406422306,
+ -.00000000000007718001336828098,
+ .00000000000010980754099855238,
+ -.00000000000002047235780046195,
+ -.00000000000008372091099235912,
+ .00000000000014088127937111135,
+ .00000000000012869017157588257,
+ .00000000000017788850778198106,
+ .00000000000006440856150696891,
+ .00000000000016132822667240822,
+ -.00000000000007540916511956188,
+ -.00000000000000036507188831790,
+ .00000000000009120937249914984,
+ .00000000000018567570959796010,
+ -.00000000000003149265065191483,
+ -.00000000000009309459495196889,
+ .00000000000017914338601329117,
+ -.00000000000001302979717330866,
+ .00000000000023097385217586939,
+ .00000000000023999540484211737,
+ .00000000000015393776174455408,
+ -.00000000000036870428315837678,
+ .00000000000036920375082080089,
+ -.00000000000009383417223663699,
+ .00000000000009433398189512690,
+ .00000000000041481318704258568,
+ -.00000000000003792316480209314,
+ .00000000000008403156304792424,
+ -.00000000000034262934348285429,
+ .00000000000043712191957429145,
+ -.00000000000010475750058776541,
+ -.00000000000011118671389559323,
+ .00000000000037549577257259853,
+ .00000000000013912841212197565,
+ .00000000000010775743037572640,
+ .00000000000029391859187648000,
+ -.00000000000042790509060060774,
+ .00000000000022774076114039555,
+ .00000000000010849569622967912,
+ -.00000000000023073801945705758,
+ .00000000000015761203773969435,
+ .00000000000003345710269544082,
+ -.00000000000041525158063436123,
+ .00000000000032655698896907146,
+ -.00000000000044704265010452446,
+ .00000000000034527647952039772,
+ -.00000000000007048962392109746,
+ .00000000000011776978751369214,
+ -.00000000000010774341461609578,
+ .00000000000021863343293215910,
+ .00000000000024132639491333131,
+ .00000000000039057462209830700,
+ -.00000000000026570679203560751,
+ .00000000000037135141919592021,
+ -.00000000000017166921336082431,
+ -.00000000000028658285157914353,
+ -.00000000000023812542263446809,
+ .00000000000006576659768580062,
+ -.00000000000028210143846181267,
+ .00000000000010701931762114254,
+ .00000000000018119346366441110,
+ .00000000000009840465278232627,
+ -.00000000000033149150282752542,
+ -.00000000000018302857356041668,
+ -.00000000000016207400156744949,
+ .00000000000048303314949553201,
+ -.00000000000071560553172382115,
+ .00000000000088821239518571855,
+ -.00000000000030900580513238244,
+ -.00000000000061076551972851496,
+ .00000000000035659969663347830,
+ .00000000000035782396591276383,
+ -.00000000000046226087001544578,
+ .00000000000062279762917225156,
+ .00000000000072838947272065741,
+ .00000000000026809646615211673,
+ -.00000000000010960825046059278,
+ .00000000000002311949383800537,
+ -.00000000000058469058005299247,
+ -.00000000000002103748251144494,
+ -.00000000000023323182945587408,
+ -.00000000000042333694288141916,
+ -.00000000000043933937969737844,
+ .00000000000041341647073835565,
+ .00000000000006841763641591466,
+ .00000000000047585534004430641,
+ .00000000000083679678674757695,
+ -.00000000000085763734646658640,
+ .00000000000021913281229340092,
+ -.00000000000062242842536431148,
+ -.00000000000010983594325438430,
+ .00000000000065310431377633651,
+ -.00000000000047580199021710769,
+ -.00000000000037854251265457040,
+ .00000000000040939233218678664,
+ .00000000000087424383914858291,
+ .00000000000025218188456842882,
+ -.00000000000003608131360422557,
+ -.00000000000050518555924280902,
+ .00000000000078699403323355317,
+ -.00000000000067020876961949060,
+ .00000000000016108575753932458,
+ .00000000000058527188436251509,
+ -.00000000000035246757297904791,
+ -.00000000000018372084495629058,
+ .00000000000088606689813494916,
+ .00000000000066486268071468700,
+ .00000000000063831615170646519,
+ .00000000000025144230728376072,
+ -.00000000000017239444525614834
+};
+
+double
+#ifdef _ANSI_SOURCE
+log(double x)
+#else
+log(x) double x;
+#endif
+{
+ int m, j;
+ double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
+ volatile double u1;
+
+ /* Catch special cases */
+ if (x <= 0)
+ if (_IEEE && x == zero) /* log(0) = -Inf */
+ return (-one/zero);
+ else if (_IEEE) /* log(neg) = NaN */
+ return (zero/zero);
+ else if (x == zero) /* NOT REACHED IF _IEEE */
+ return (infnan(-ERANGE));
+ else
+ return (infnan(EDOM));
+ else if (!finite(x))
+ if (_IEEE) /* x = NaN, Inf */
+ return (x+x);
+ else
+ return (infnan(ERANGE));
+
+ /* Argument reduction: 1 <= g < 2; x/2^m = g; */
+ /* y = F*(1 + f/F) for |f| <= 2^-8 */
+
+ m = logb(x);
+ g = ldexp(x, -m);
+ if (_IEEE && m == -1022) {
+ j = logb(g), m += j;
+ g = ldexp(g, -j);
+ }
+ j = N*(g-1) + .5;
+ F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
+ f = g - F;
+
+ /* Approximate expansion for log(1+f/F) ~= u + q */
+ g = 1/(2*F+f);
+ u = 2*f*g;
+ v = u*u;
+ q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
+
+ /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
+ * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
+ * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
+ */
+ if (m | j)
+ u1 = u + 513, u1 -= 513;
+
+ /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
+ * u1 = u to 24 bits.
+ */
+ else
+ u1 = u, TRUNC(u1);
+ u2 = (2.0*(f - F*u1) - u1*f) * g;
+ /* u1 + u2 = 2f/(2F+f) to extra precision. */
+
+ /* log(x) = log(2^m*F*(1+f/F)) = */
+ /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
+ /* (exact) + (tiny) */
+
+ u1 += m*logF_head[N] + logF_head[j]; /* exact */
+ u2 = (u2 + logF_tail[j]) + q; /* tiny */
+ u2 += logF_tail[N]*m;
+ return (u1 + u2);
+}
+
+/*
+ * Extra precision variant, returning struct {double a, b;};
+ * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
+ */
+struct Double
+#ifdef _ANSI_SOURCE
+__log__D(double x)
+#else
+__log__D(x) double x;
+#endif
+{
+ int m, j;
+ double F, f, g, q, u, v, u2, one = 1.0;
+ volatile double u1;
+ struct Double r;
+
+ /* Argument reduction: 1 <= g < 2; x/2^m = g; */
+ /* y = F*(1 + f/F) for |f| <= 2^-8 */
+
+ m = logb(x);
+ g = ldexp(x, -m);
+ if (_IEEE && m == -1022) {
+ j = logb(g), m += j;
+ g = ldexp(g, -j);
+ }
+ j = N*(g-1) + .5;
+ F = (1.0/N) * j + 1;
+ f = g - F;
+
+ g = 1/(2*F+f);
+ u = 2*f*g;
+ v = u*u;
+ q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
+ if (m | j)
+ u1 = u + 513, u1 -= 513;
+ else
+ u1 = u, TRUNC(u1);
+ u2 = (2.0*(f - F*u1) - u1*f) * g;
+
+ u1 += m*logF_head[N] + logF_head[j];
+
+ u2 += logF_tail[j]; u2 += q;
+ u2 += logF_tail[N]*m;
+ r.a = u1 + u2; /* Only difference is here */
+ TRUNC(r.a);
+ r.b = (u1 - r.a) + u2;
+ return (r);
+}
diff --git a/lib/libm/noieee_src/n_log10.c b/lib/libm/noieee_src/n_log10.c
new file mode 100644
index 00000000000..e2d626d20fe
--- /dev/null
+++ b/lib/libm/noieee_src/n_log10.c
@@ -0,0 +1,96 @@
+/* $NetBSD: n_log10.c,v 1.1 1995/10/10 23:36:58 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)log10.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* LOG10(X)
+ * RETURN THE BASE 10 LOGARITHM OF x
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 1/20/85;
+ * REVISED BY K.C. NG on 1/23/85, 3/7/85, 4/16/85.
+ *
+ * Required kernel function:
+ * log(x)
+ *
+ * Method :
+ * log(x)
+ * log10(x) = --------- or [1/log(10)]*log(x)
+ * log(10)
+ *
+ * Note:
+ * [log(10)] rounded to 56 bits has error .0895 ulps,
+ * [1/log(10)] rounded to 53 bits has error .198 ulps;
+ * therefore, for better accuracy, in VAX D format, we divide
+ * log(x) by log(10), but in IEEE Double format, we multiply
+ * log(x) by [1/log(10)].
+ *
+ * Special cases:
+ * log10(x) is NaN with signal if x < 0;
+ * log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
+ * log10(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * log10(X) returns the exact log10(x) nearly rounded. In a test run
+ * with 1,536,000 random arguments on a VAX, the maximum observed
+ * error was 1.74 ulps (units in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "mathimpl.h"
+
+vc(ln10hi, 2.3025850929940456790E0 ,5d8d,4113,a8ac,ddaa, 2, .935D8DDDAAA8AC)
+
+ic(ivln10, 4.3429448190325181667E-1, -2, 1.BCB7B1526E50E)
+
+#ifdef vccast
+#define ln10hi vccast(ln10hi)
+#endif
+
+
+double log10(x)
+double x;
+{
+#if defined(vax)||defined(tahoe)
+ return(log(x)/ln10hi);
+#else /* defined(vax)||defined(tahoe) */
+ return(ivln10*log(x));
+#endif /* defined(vax)||defined(tahoe) */
+}
diff --git a/lib/libm/noieee_src/n_log1p.c b/lib/libm/noieee_src/n_log1p.c
new file mode 100644
index 00000000000..84269043f0c
--- /dev/null
+++ b/lib/libm/noieee_src/n_log1p.c
@@ -0,0 +1,171 @@
+/* $NetBSD: n_log1p.c,v 1.1 1995/10/10 23:37:00 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* LOG1P(x)
+ * RETURN THE LOGARITHM OF 1+x
+ * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 1/19/85;
+ * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
+ *
+ * Required system supported functions:
+ * scalb(x,n)
+ * copysign(x,y)
+ * logb(x)
+ * finite(x)
+ *
+ * Required kernel function:
+ * log__L(z)
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * 1+x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * log(1+f) is computed by
+ *
+ * log(1+f) = 2s + s*log__L(s*s)
+ * where
+ * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
+ *
+ * See log__L() for the values of the coefficients.
+ *
+ * 3. Finally, log(1+x) = k*ln2 + log(1+f).
+ *
+ * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
+ * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
+ * 20 bits (for VAX D format), or the last 21 bits ( for IEEE
+ * double) is 0. This ensures n*ln2hi is exactly representable.
+ * 2. In step 1, f may not be representable. A correction term c
+ * for f is computed. It follows that the correction term for
+ * f - t (the leading term of log(1+f) in step 2) is c-c*x. We
+ * add this correction term to n*ln2lo to attenuate the error.
+ *
+ *
+ * Special cases:
+ * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
+ * log1p(INF) is +INF; log1p(-1) is -INF with signal;
+ * only log1p(0)=0 is exact for finite argument.
+ *
+ * Accuracy:
+ * log1p(x) returns the exact log(1+x) nearly rounded. In a test run
+ * with 1,536,000 random arguments on a VAX, the maximum observed
+ * error was .846 ulps (units in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include <errno.h>
+#include "mathimpl.h"
+
+vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
+vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
+vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
+
+ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
+ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
+ic(sqrt2, 1.4142135623730951455E0, 0, 1.6A09E667F3BCD)
+
+#ifdef vccast
+#define ln2hi vccast(ln2hi)
+#define ln2lo vccast(ln2lo)
+#define sqrt2 vccast(sqrt2)
+#endif
+
+double log1p(x)
+double x;
+{
+ const static double zero=0.0, negone= -1.0, one=1.0,
+ half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
+ double z,s,t,c;
+ int k;
+
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+
+ if(finite(x)) {
+ if( x > negone ) {
+
+ /* argument reduction */
+ if(copysign(x,one)<small) return(x);
+ k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
+ if(z+t >= sqrt2 )
+ { k += 1 ; z *= half; t *= half; }
+ t += negone; x = z + t;
+ c = (t-x)+z ; /* correction term for x */
+
+ /* compute log(1+x) */
+ s = x/(2+x); t = x*x*half;
+ c += (k*ln2lo-c*x);
+ z = c+s*(t+__log__L(s*s));
+ x += (z - t) ;
+
+ return(k*ln2hi+x);
+ }
+ /* end of if (x > negone) */
+
+ else {
+#if defined(vax)||defined(tahoe)
+ if ( x == negone )
+ return (infnan(-ERANGE)); /* -INF */
+ else
+ return (infnan(EDOM)); /* NaN */
+#else /* defined(vax)||defined(tahoe) */
+ /* x = -1, return -INF with signal */
+ if ( x == negone ) return( negone/zero );
+
+ /* negative argument for log, return NaN with signal */
+ else return ( zero / zero );
+#endif /* defined(vax)||defined(tahoe) */
+ }
+ }
+ /* end of if (finite(x)) */
+
+ /* log(-INF) is NaN */
+ else if(x<0)
+ return(zero/zero);
+
+ /* log(+INF) is INF */
+ else return(x);
+}
diff --git a/lib/libm/noieee_src/n_log__L.c b/lib/libm/noieee_src/n_log__L.c
new file mode 100644
index 00000000000..977c82d1ba2
--- /dev/null
+++ b/lib/libm/noieee_src/n_log__L.c
@@ -0,0 +1,111 @@
+/* $NetBSD: n_log__L.c,v 1.1 1995/10/10 23:37:01 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)log__L.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* log__L(Z)
+ * LOG(1+X) - 2S X
+ * RETURN --------------- WHERE Z = S*S, S = ------- , 0 <= Z <= .0294...
+ * S 2 + X
+ *
+ * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
+ * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS
+ * CODED IN C BY K.C. NG, 1/19/85;
+ * REVISED BY K.C. Ng, 2/3/85, 4/16/85.
+ *
+ * Method :
+ * 1. Polynomial approximation: let s = x/(2+x).
+ * Based on log(1+x) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ *
+ * (log(1+x) - 2s)/s is computed by
+ *
+ * z*(L1 + z*(L2 + z*(... (L7 + z*L8)...)))
+ *
+ * where z=s*s. (See the listing below for Lk's values.) The
+ * coefficients are obtained by a special Remez algorithm.
+ *
+ * Accuracy:
+ * Assuming no rounding error, the maximum magnitude of the approximation
+ * error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63)
+ * for VAX D format.
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "mathimpl.h"
+
+vc(L1, 6.6666666666666703212E-1 ,aaaa,402a,aac5,aaaa, 0, .AAAAAAAAAAAAC5)
+vc(L2, 3.9999999999970461961E-1 ,cccc,3fcc,2684,cccc, -1, .CCCCCCCCCC2684)
+vc(L3, 2.8571428579395698188E-1 ,4924,3f92,5782,92f8, -1, .92492492F85782)
+vc(L4, 2.2222221233634724402E-1 ,8e38,3f63,af2c,39b7, -2, .E38E3839B7AF2C)
+vc(L5, 1.8181879517064680057E-1 ,2eb4,3f3a,655e,cc39, -2, .BA2EB4CC39655E)
+vc(L6, 1.5382888777946145467E-1 ,8551,3f1d,781d,e8c5, -2, .9D8551E8C5781D)
+vc(L7, 1.3338356561139403517E-1 ,95b3,3f08,cd92,907f, -2, .8895B3907FCD92)
+vc(L8, 1.2500000000000000000E-1 ,0000,3f00,0000,0000, -2, .80000000000000)
+
+ic(L1, 6.6666666666667340202E-1, -1, 1.5555555555592)
+ic(L2, 3.9999999999416702146E-1, -2, 1.999999997FF24)
+ic(L3, 2.8571428742008753154E-1, -2, 1.24924941E07B4)
+ic(L4, 2.2222198607186277597E-1, -3, 1.C71C52150BEA6)
+ic(L5, 1.8183562745289935658E-1, -3, 1.74663CC94342F)
+ic(L6, 1.5314087275331442206E-1, -3, 1.39A1EC014045B)
+ic(L7, 1.4795612545334174692E-1, -3, 1.2F039F0085122)
+
+#ifdef vccast
+#define L1 vccast(L1)
+#define L2 vccast(L2)
+#define L3 vccast(L3)
+#define L4 vccast(L4)
+#define L5 vccast(L5)
+#define L6 vccast(L6)
+#define L7 vccast(L7)
+#define L8 vccast(L8)
+#endif
+
+double __log__L(z)
+double z;
+{
+#if defined(vax)||defined(tahoe)
+ return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*(L7+z*L8))))))));
+#else /* defined(vax)||defined(tahoe) */
+ return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7)))))));
+#endif /* defined(vax)||defined(tahoe) */
+}
diff --git a/lib/libm/noieee_src/n_pow.c b/lib/libm/noieee_src/n_pow.c
new file mode 100644
index 00000000000..ed8b5384a58
--- /dev/null
+++ b/lib/libm/noieee_src/n_pow.c
@@ -0,0 +1,216 @@
+/* $NetBSD: n_pow.c,v 1.1 1995/10/10 23:37:02 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)pow.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* POW(X,Y)
+ * RETURN X**Y
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 1/8/85;
+ * REVISED BY K.C. NG on 7/10/85.
+ * KERNEL pow_P() REPLACED BY P. McILROY 7/22/92.
+ * Required system supported functions:
+ * scalb(x,n)
+ * logb(x)
+ * copysign(x,y)
+ * finite(x)
+ * drem(x,y)
+ *
+ * Required kernel functions:
+ * exp__D(a,c) exp(a + c) for |a| << |c|
+ * struct d_double dlog(x) r.a + r.b, |r.b| < |r.a|
+ *
+ * Method
+ * 1. Compute and return log(x) in three pieces:
+ * log(x) = n*ln2 + hi + lo,
+ * where n is an integer.
+ * 2. Perform y*log(x) by simulating muti-precision arithmetic and
+ * return the answer in three pieces:
+ * y*log(x) = m*ln2 + hi + lo,
+ * where m is an integer.
+ * 3. Return x**y = exp(y*log(x))
+ * = 2^m * ( exp(hi+lo) ).
+ *
+ * Special cases:
+ * (anything) ** 0 is 1 ;
+ * (anything) ** 1 is itself;
+ * (anything) ** NaN is NaN;
+ * NaN ** (anything except 0) is NaN;
+ * +(anything > 1) ** +INF is +INF;
+ * -(anything > 1) ** +INF is NaN;
+ * +-(anything > 1) ** -INF is +0;
+ * +-(anything < 1) ** +INF is +0;
+ * +(anything < 1) ** -INF is +INF;
+ * -(anything < 1) ** -INF is NaN;
+ * +-1 ** +-INF is NaN and signal INVALID;
+ * +0 ** +(anything except 0, NaN) is +0;
+ * -0 ** +(anything except 0, NaN, odd integer) is +0;
+ * +0 ** -(anything except 0, NaN) is +INF and signal DIV-BY-ZERO;
+ * -0 ** -(anything except 0, NaN, odd integer) is +INF with signal;
+ * -0 ** (odd integer) = -( +0 ** (odd integer) );
+ * +INF ** +(anything except 0,NaN) is +INF;
+ * +INF ** -(anything except 0,NaN) is +0;
+ * -INF ** (odd integer) = -( +INF ** (odd integer) );
+ * -INF ** (even integer) = ( +INF ** (even integer) );
+ * -INF ** -(anything except integer,NaN) is NaN with signal;
+ * -(x=anything) ** (k=integer) is (-1)**k * (x ** k);
+ * -(anything except 0) ** (non-integer) is NaN with signal;
+ *
+ * Accuracy:
+ * pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX,
+ * and a Zilog Z8000,
+ * pow(integer,integer)
+ * always returns the correct integer provided it is representable.
+ * In a test run with 100,000 random arguments with 0 < x, y < 20.0
+ * on a VAX, the maximum observed error was 1.79 ulps (units in the
+ * last place).
+ *
+ * Constants :
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include <errno.h>
+#include <math.h>
+
+#include "mathimpl.h"
+
+#if (defined(vax) || defined(tahoe))
+#define TRUNC(x) x = (double) (float) x
+#define _IEEE 0
+#else
+#define _IEEE 1
+#define endian (((*(int *) &one)) ? 1 : 0)
+#define TRUNC(x) *(((int *) &x)+endian) &= 0xf8000000
+#define infnan(x) 0.0
+#endif /* vax or tahoe */
+
+const static double zero=0.0, one=1.0, two=2.0, negone= -1.0;
+
+static double pow_P __P((double, double));
+
+double pow(x,y)
+double x,y;
+{
+ double t;
+ if (y==zero)
+ return (one);
+ else if (y==one || (_IEEE && x != x))
+ return (x); /* if x is NaN or y=1 */
+ else if (_IEEE && y!=y) /* if y is NaN */
+ return (y);
+ else if (!finite(y)) /* if y is INF */
+ if ((t=fabs(x))==one) /* +-1 ** +-INF is NaN */
+ return (y - y);
+ else if (t>one)
+ return ((y<0)? zero : ((x<zero)? y-y : y));
+ else
+ return ((y>0)? zero : ((x<0)? y-y : -y));
+ else if (y==two)
+ return (x*x);
+ else if (y==negone)
+ return (one/x);
+ /* x > 0, x == +0 */
+ else if (copysign(one, x) == one)
+ return (pow_P(x, y));
+
+ /* sign(x)= -1 */
+ /* if y is an even integer */
+ else if ( (t=drem(y,two)) == zero)
+ return (pow_P(-x, y));
+
+ /* if y is an odd integer */
+ else if (copysign(t,one) == one)
+ return (-pow_P(-x, y));
+
+ /* Henceforth y is not an integer */
+ else if (x==zero) /* x is -0 */
+ return ((y>zero)? -x : one/(-x));
+ else if (_IEEE)
+ return (zero/zero);
+ else
+ return (infnan(EDOM));
+}
+/* kernel function for x >= 0 */
+static double
+#ifdef _ANSI_SOURCE
+pow_P(double x, double y)
+#else
+pow_P(x, y) double x, y;
+#endif
+{
+ struct Double s, t, __log__D();
+ double __exp__D(), huge = 1e300, tiny = 1e-300;
+
+ if (x == zero)
+ if (y > zero)
+ return (zero);
+ else if (_IEEE)
+ return (huge*huge);
+ else
+ return (infnan(ERANGE));
+ if (x == one)
+ return (one);
+ if (!finite(x))
+ if (y < zero)
+ return (zero);
+ else if (_IEEE)
+ return (huge*huge);
+ else
+ return (infnan(ERANGE));
+ if (y >= 7e18) /* infinity */
+ if (x < 1)
+ return(tiny*tiny);
+ else if (_IEEE)
+ return (huge*huge);
+ else
+ return (infnan(ERANGE));
+
+ /* Return exp(y*log(x)), using simulated extended */
+ /* precision for the log and the multiply. */
+
+ s = __log__D(x);
+ t.a = y;
+ TRUNC(t.a);
+ t.b = y - t.a;
+ t.b = s.b*y + t.b*s.a;
+ t.a *= s.a;
+ s.a = t.a + t.b;
+ s.b = (t.a - s.a) + t.b;
+ return (__exp__D(s.a, s.b));
+}
diff --git a/lib/libm/noieee_src/n_sincos.c b/lib/libm/noieee_src/n_sincos.c
new file mode 100644
index 00000000000..62142c4df57
--- /dev/null
+++ b/lib/libm/noieee_src/n_sincos.c
@@ -0,0 +1,100 @@
+/* $NetBSD: n_sincos.c,v 1.1 1995/10/10 23:37:04 ragge Exp $ */
+/*
+ * Copyright (c) 1987, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)sincos.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+#include "mathimpl.h"
+#include "trig.h"
+double
+sin(x)
+double x;
+{
+ double a,c,z;
+
+ if(!finite(x)) /* sin(NaN) and sin(INF) must be NaN */
+ return x-x;
+ x=drem(x,PI2); /* reduce x into [-PI,PI] */
+ a=copysign(x,one);
+ if (a >= PIo4) {
+ if(a >= PI3o4) /* ... in [3PI/4,PI] */
+ x = copysign((a = PI-a),x);
+ else { /* ... in [PI/4,3PI/4] */
+ a = PIo2-a; /* rtn. sign(x)*C(PI/2-|x|) */
+ z = a*a;
+ c = cos__C(z);
+ z *= half;
+ a = (z >= thresh ? half-((z-half)-c) : one-(z-c));
+ return copysign(a,x);
+ }
+ }
+
+ if (a < small) { /* rtn. S(x) */
+ big+a;
+ return x;
+ }
+ return x+x*sin__S(x*x);
+}
+
+double
+cos(x)
+double x;
+{
+ double a,c,z,s = 1.0;
+
+ if(!finite(x)) /* cos(NaN) and cos(INF) must be NaN */
+ return x-x;
+ x=drem(x,PI2); /* reduce x into [-PI,PI] */
+ a=copysign(x,one);
+ if (a >= PIo4) {
+ if (a >= PI3o4) { /* ... in [3PI/4,PI] */
+ a = PI-a;
+ s = negone;
+ }
+ else { /* ... in [PI/4,3PI/4] */
+ a = PIo2-a;
+ return a+a*sin__S(a*a); /* rtn. S(PI/2-|x|) */
+ }
+ }
+ if (a < small) {
+ big+a;
+ return s; /* rtn. s*C(a) */
+ }
+ z = a*a;
+ c = cos__C(z);
+ z *= half;
+ a = (z >= thresh ? half-((z-half)-c) : one-(z-c));
+ return copysign(a,s);
+}
diff --git a/lib/libm/noieee_src/n_sinh.c b/lib/libm/noieee_src/n_sinh.c
new file mode 100644
index 00000000000..d97f90598cf
--- /dev/null
+++ b/lib/libm/noieee_src/n_sinh.c
@@ -0,0 +1,122 @@
+/* $NetBSD: n_sinh.c,v 1.1 1995/10/10 23:37:05 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)sinh.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* SINH(X)
+ * RETURN THE HYPERBOLIC SINE OF X
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 1/8/85;
+ * REVISED BY K.C. NG on 2/8/85, 3/7/85, 3/24/85, 4/16/85.
+ *
+ * Required system supported functions :
+ * copysign(x,y)
+ * scalb(x,N)
+ *
+ * Required kernel functions:
+ * expm1(x) ...return exp(x)-1
+ *
+ * Method :
+ * 1. reduce x to non-negative by sinh(-x) = - sinh(x).
+ * 2.
+ *
+ * expm1(x) + expm1(x)/(expm1(x)+1)
+ * 0 <= x <= lnovfl : sinh(x) := --------------------------------
+ * 2
+ * lnovfl <= x <= lnovfl+ln2 : sinh(x) := expm1(x)/2 (avoid overflow)
+ * lnovfl+ln2 < x < INF : overflow to INF
+ *
+ *
+ * Special cases:
+ * sinh(x) is x if x is +INF, -INF, or NaN.
+ * only sinh(0)=0 is exact for finite argument.
+ *
+ * Accuracy:
+ * sinh(x) returns the exact hyperbolic sine of x nearly rounded. In
+ * a test run with 1,024,000 random arguments on a VAX, the maximum
+ * observed error was 1.93 ulps (units in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "mathimpl.h"
+
+vc(mln2hi, 8.8029691931113054792E1 ,0f33,43b0,2bdb,c7e2, 7, .B00F33C7E22BDB)
+vc(mln2lo,-4.9650192275318476525E-16 ,1b60,a70f,582a,279e, -50,-.8F1B60279E582A)
+vc(lnovfl, 8.8029691931113053016E1 ,0f33,43b0,2bda,c7e2, 7, .B00F33C7E22BDA)
+
+ic(mln2hi, 7.0978271289338397310E2, 10, 1.62E42FEFA39EF)
+ic(mln2lo, 2.3747039373786107478E-14, -45, 1.ABC9E3B39803F)
+ic(lnovfl, 7.0978271289338397310E2, 9, 1.62E42FEFA39EF)
+
+#ifdef vccast
+#define mln2hi vccast(mln2hi)
+#define mln2lo vccast(mln2lo)
+#define lnovfl vccast(lnovfl)
+#endif
+
+#if defined(vax)||defined(tahoe)
+static max = 126 ;
+#else /* defined(vax)||defined(tahoe) */
+static max = 1023 ;
+#endif /* defined(vax)||defined(tahoe) */
+
+
+double sinh(x)
+double x;
+{
+ static const double one=1.0, half=1.0/2.0 ;
+ double t, sign;
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+ sign=copysign(one,x);
+ x=copysign(x,one);
+ if(x<lnovfl)
+ {t=expm1(x); return(copysign((t+t/(one+t))*half,sign));}
+
+ else if(x <= lnovfl+0.7)
+ /* subtract x by ln(2^(max+1)) and return 2^max*exp(x)
+ to avoid unnecessary overflow */
+ return(copysign(scalb(one+expm1((x-mln2hi)-mln2lo),max),sign));
+
+ else /* sinh(+-INF) = +-INF, sinh(+-big no.) overflow to +-INF */
+ return( expm1(x)*sign );
+}
diff --git a/lib/libm/noieee_src/n_support.c b/lib/libm/noieee_src/n_support.c
new file mode 100644
index 00000000000..15d6fd9cdc4
--- /dev/null
+++ b/lib/libm/noieee_src/n_support.c
@@ -0,0 +1,525 @@
+/* $NetBSD: n_support.c,v 1.1 1995/10/10 23:37:06 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)support.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/*
+ * Some IEEE standard 754 recommended functions and remainder and sqrt for
+ * supporting the C elementary functions.
+ ******************************************************************************
+ * WARNING:
+ * These codes are developed (in double) to support the C elementary
+ * functions temporarily. They are not universal, and some of them are very
+ * slow (in particular, drem and sqrt is extremely inefficient). Each
+ * computer system should have its implementation of these functions using
+ * its own assembler.
+ ******************************************************************************
+ *
+ * IEEE 754 required operations:
+ * drem(x,p)
+ * returns x REM y = x - [x/y]*y , where [x/y] is the integer
+ * nearest x/y; in half way case, choose the even one.
+ * sqrt(x)
+ * returns the square root of x correctly rounded according to
+ * the rounding mod.
+ *
+ * IEEE 754 recommended functions:
+ * (a) copysign(x,y)
+ * returns x with the sign of y.
+ * (b) scalb(x,N)
+ * returns x * (2**N), for integer values N.
+ * (c) logb(x)
+ * returns the unbiased exponent of x, a signed integer in
+ * double precision, except that logb(0) is -INF, logb(INF)
+ * is +INF, and logb(NAN) is that NAN.
+ * (d) finite(x)
+ * returns the value TRUE if -INF < x < +INF and returns
+ * FALSE otherwise.
+ *
+ *
+ * CODED IN C BY K.C. NG, 11/25/84;
+ * REVISED BY K.C. NG on 1/22/85, 2/13/85, 3/24/85.
+ */
+
+#include "mathimpl.h"
+
+#if defined(vax)||defined(tahoe) /* VAX D format */
+#include <errno.h>
+ static const unsigned short msign=0x7fff , mexp =0x7f80 ;
+ static const short prep1=57, gap=7, bias=129 ;
+ static const double novf=1.7E38, nunf=3.0E-39, zero=0.0 ;
+#else /* defined(vax)||defined(tahoe) */
+ static const unsigned short msign=0x7fff, mexp =0x7ff0 ;
+ static const short prep1=54, gap=4, bias=1023 ;
+ static const double novf=1.7E308, nunf=3.0E-308,zero=0.0;
+#endif /* defined(vax)||defined(tahoe) */
+
+double scalb(x,N)
+double x; int N;
+{
+ int k;
+
+#ifdef national
+ unsigned short *px=(unsigned short *) &x + 3;
+#else /* national */
+ unsigned short *px=(unsigned short *) &x;
+#endif /* national */
+
+ if( x == zero ) return(x);
+
+#if defined(vax)||defined(tahoe)
+ if( (k= *px & mexp ) != ~msign ) {
+ if (N < -260)
+ return(nunf*nunf);
+ else if (N > 260) {
+ return(copysign(infnan(ERANGE),x));
+ }
+#else /* defined(vax)||defined(tahoe) */
+ if( (k= *px & mexp ) != mexp ) {
+ if( N<-2100) return(nunf*nunf); else if(N>2100) return(novf+novf);
+ if( k == 0 ) {
+ x *= scalb(1.0,(int)prep1); N -= prep1; return(scalb(x,N));}
+#endif /* defined(vax)||defined(tahoe) */
+
+ if((k = (k>>gap)+ N) > 0 )
+ if( k < (mexp>>gap) ) *px = (*px&~mexp) | (k<<gap);
+ else x=novf+novf; /* overflow */
+ else
+ if( k > -prep1 )
+ /* gradual underflow */
+ {*px=(*px&~mexp)|(short)(1<<gap); x *= scalb(1.0,k-1);}
+ else
+ return(nunf*nunf);
+ }
+ return(x);
+}
+
+
+double copysign(x,y)
+double x,y;
+{
+#ifdef national
+ unsigned short *px=(unsigned short *) &x+3,
+ *py=(unsigned short *) &y+3;
+#else /* national */
+ unsigned short *px=(unsigned short *) &x,
+ *py=(unsigned short *) &y;
+#endif /* national */
+
+#if defined(vax)||defined(tahoe)
+ if ( (*px & mexp) == 0 ) return(x);
+#endif /* defined(vax)||defined(tahoe) */
+
+ *px = ( *px & msign ) | ( *py & ~msign );
+ return(x);
+}
+
+double logb(x)
+double x;
+{
+
+#ifdef national
+ short *px=(short *) &x+3, k;
+#else /* national */
+ short *px=(short *) &x, k;
+#endif /* national */
+
+#if defined(vax)||defined(tahoe)
+ return (int)(((*px&mexp)>>gap)-bias);
+#else /* defined(vax)||defined(tahoe) */
+ if( (k= *px & mexp ) != mexp )
+ if ( k != 0 )
+ return ( (k>>gap) - bias );
+ else if( x != zero)
+ return ( -1022.0 );
+ else
+ return(-(1.0/zero));
+ else if(x != x)
+ return(x);
+ else
+ {*px &= msign; return(x);}
+#endif /* defined(vax)||defined(tahoe) */
+}
+
+finite(x)
+double x;
+{
+#if defined(vax)||defined(tahoe)
+ return(1);
+#else /* defined(vax)||defined(tahoe) */
+#ifdef national
+ return( (*((short *) &x+3 ) & mexp ) != mexp );
+#else /* national */
+ return( (*((short *) &x ) & mexp ) != mexp );
+#endif /* national */
+#endif /* defined(vax)||defined(tahoe) */
+}
+
+double drem(x,p)
+double x,p;
+{
+ short sign;
+ double hp,dp,tmp;
+ unsigned short k;
+#ifdef national
+ unsigned short
+ *px=(unsigned short *) &x +3,
+ *pp=(unsigned short *) &p +3,
+ *pd=(unsigned short *) &dp +3,
+ *pt=(unsigned short *) &tmp+3;
+#else /* national */
+ unsigned short
+ *px=(unsigned short *) &x ,
+ *pp=(unsigned short *) &p ,
+ *pd=(unsigned short *) &dp ,
+ *pt=(unsigned short *) &tmp;
+#endif /* national */
+
+ *pp &= msign ;
+
+#if defined(vax)||defined(tahoe)
+ if( ( *px & mexp ) == ~msign ) /* is x a reserved operand? */
+#else /* defined(vax)||defined(tahoe) */
+ if( ( *px & mexp ) == mexp )
+#endif /* defined(vax)||defined(tahoe) */
+ return (x-p)-(x-p); /* create nan if x is inf */
+ if (p == zero) {
+#if defined(vax)||defined(tahoe)
+ return(infnan(EDOM));
+#else /* defined(vax)||defined(tahoe) */
+ return zero/zero;
+#endif /* defined(vax)||defined(tahoe) */
+ }
+
+#if defined(vax)||defined(tahoe)
+ if( ( *pp & mexp ) == ~msign ) /* is p a reserved operand? */
+#else /* defined(vax)||defined(tahoe) */
+ if( ( *pp & mexp ) == mexp )
+#endif /* defined(vax)||defined(tahoe) */
+ { if (p != p) return p; else return x;}
+
+ else if ( ((*pp & mexp)>>gap) <= 1 )
+ /* subnormal p, or almost subnormal p */
+ { double b; b=scalb(1.0,(int)prep1);
+ p *= b; x = drem(x,p); x *= b; return(drem(x,p)/b);}
+ else if ( p >= novf/2)
+ { p /= 2 ; x /= 2; return(drem(x,p)*2);}
+ else
+ {
+ dp=p+p; hp=p/2;
+ sign= *px & ~msign ;
+ *px &= msign ;
+ while ( x > dp )
+ {
+ k=(*px & mexp) - (*pd & mexp) ;
+ tmp = dp ;
+ *pt += k ;
+
+#if defined(vax)||defined(tahoe)
+ if( x < tmp ) *pt -= 128 ;
+#else /* defined(vax)||defined(tahoe) */
+ if( x < tmp ) *pt -= 16 ;
+#endif /* defined(vax)||defined(tahoe) */
+
+ x -= tmp ;
+ }
+ if ( x > hp )
+ { x -= p ; if ( x >= hp ) x -= p ; }
+
+#if defined(vax)||defined(tahoe)
+ if (x)
+#endif /* defined(vax)||defined(tahoe) */
+ *px ^= sign;
+ return( x);
+
+ }
+}
+
+
+double sqrt(x)
+double x;
+{
+ double q,s,b,r;
+ double t;
+ double const zero=0.0;
+ int m,n,i;
+#if defined(vax)||defined(tahoe)
+ int k=54;
+#else /* defined(vax)||defined(tahoe) */
+ int k=51;
+#endif /* defined(vax)||defined(tahoe) */
+
+ /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
+ if(x!=x||x==zero) return(x);
+
+ /* sqrt(negative) is invalid */
+ if(x<zero) {
+#if defined(vax)||defined(tahoe)
+ return (infnan(EDOM)); /* NaN */
+#else /* defined(vax)||defined(tahoe) */
+ return(zero/zero);
+#endif /* defined(vax)||defined(tahoe) */
+ }
+
+ /* sqrt(INF) is INF */
+ if(!finite(x)) return(x);
+
+ /* scale x to [1,4) */
+ n=logb(x);
+ x=scalb(x,-n);
+ if((m=logb(x))!=0) x=scalb(x,-m); /* subnormal number */
+ m += n;
+ n = m/2;
+ if((n+n)!=m) {x *= 2; m -=1; n=m/2;}
+
+ /* generate sqrt(x) bit by bit (accumulating in q) */
+ q=1.0; s=4.0; x -= 1.0; r=1;
+ for(i=1;i<=k;i++) {
+ t=s+1; x *= 4; r /= 2;
+ if(t<=x) {
+ s=t+t+2, x -= t; q += r;}
+ else
+ s *= 2;
+ }
+
+ /* generate the last bit and determine the final rounding */
+ r/=2; x *= 4;
+ if(x==zero) goto end; 100+r; /* trigger inexact flag */
+ if(s<x) {
+ q+=r; x -=s; s += 2; s *= 2; x *= 4;
+ t = (x-s)-5;
+ b=1.0+3*r/4; if(b==1.0) goto end; /* b==1 : Round-to-zero */
+ b=1.0+r/4; if(b>1.0) t=1; /* b>1 : Round-to-(+INF) */
+ if(t>=0) q+=r; } /* else: Round-to-nearest */
+ else {
+ s *= 2; x *= 4;
+ t = (x-s)-1;
+ b=1.0+3*r/4; if(b==1.0) goto end;
+ b=1.0+r/4; if(b>1.0) t=1;
+ if(t>=0) q+=r; }
+
+end: return(scalb(q,n));
+}
+
+#if 0
+/* DREM(X,Y)
+ * RETURN X REM Y =X-N*Y, N=[X/Y] ROUNDED (ROUNDED TO EVEN IN THE HALF WAY CASE)
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * INTENDED FOR ASSEMBLY LANGUAGE
+ * CODED IN C BY K.C. NG, 3/23/85, 4/8/85.
+ *
+ * Warning: this code should not get compiled in unless ALL of
+ * the following machine-dependent routines are supplied.
+ *
+ * Required machine dependent functions (not on a VAX):
+ * swapINX(i): save inexact flag and reset it to "i"
+ * swapENI(e): save inexact enable and reset it to "e"
+ */
+
+double drem(x,y)
+double x,y;
+{
+
+#ifdef national /* order of words in floating point number */
+ static const n0=3,n1=2,n2=1,n3=0;
+#else /* VAX, SUN, ZILOG, TAHOE */
+ static const n0=0,n1=1,n2=2,n3=3;
+#endif
+
+ static const unsigned short mexp =0x7ff0, m25 =0x0190, m57 =0x0390;
+ static const double zero=0.0;
+ double hy,y1,t,t1;
+ short k;
+ long n;
+ int i,e;
+ unsigned short xexp,yexp, *px =(unsigned short *) &x ,
+ nx,nf, *py =(unsigned short *) &y ,
+ sign, *pt =(unsigned short *) &t ,
+ *pt1 =(unsigned short *) &t1 ;
+
+ xexp = px[n0] & mexp ; /* exponent of x */
+ yexp = py[n0] & mexp ; /* exponent of y */
+ sign = px[n0] &0x8000; /* sign of x */
+
+/* return NaN if x is NaN, or y is NaN, or x is INF, or y is zero */
+ if(x!=x) return(x); if(y!=y) return(y); /* x or y is NaN */
+ if( xexp == mexp ) return(zero/zero); /* x is INF */
+ if(y==zero) return(y/y);
+
+/* save the inexact flag and inexact enable in i and e respectively
+ * and reset them to zero
+ */
+ i=swapINX(0); e=swapENI(0);
+
+/* subnormal number */
+ nx=0;
+ if(yexp==0) {t=1.0,pt[n0]+=m57; y*=t; nx=m57;}
+
+/* if y is tiny (biased exponent <= 57), scale up y to y*2**57 */
+ if( yexp <= m57 ) {py[n0]+=m57; nx+=m57; yexp+=m57;}
+
+ nf=nx;
+ py[n0] &= 0x7fff;
+ px[n0] &= 0x7fff;
+
+/* mask off the least significant 27 bits of y */
+ t=y; pt[n3]=0; pt[n2]&=0xf800; y1=t;
+
+/* LOOP: argument reduction on x whenever x > y */
+loop:
+ while ( x > y )
+ {
+ t=y;
+ t1=y1;
+ xexp=px[n0]&mexp; /* exponent of x */
+ k=xexp-yexp-m25;
+ if(k>0) /* if x/y >= 2**26, scale up y so that x/y < 2**26 */
+ {pt[n0]+=k;pt1[n0]+=k;}
+ n=x/t; x=(x-n*t1)-n*(t-t1);
+ }
+ /* end while (x > y) */
+
+ if(nx!=0) {t=1.0; pt[n0]+=nx; x*=t; nx=0; goto loop;}
+
+/* final adjustment */
+
+ hy=y/2.0;
+ if(x>hy||((x==hy)&&n%2==1)) x-=y;
+ px[n0] ^= sign;
+ if(nf!=0) { t=1.0; pt[n0]-=nf; x*=t;}
+
+/* restore inexact flag and inexact enable */
+ swapINX(i); swapENI(e);
+
+ return(x);
+}
+#endif
+
+#if 0
+/* SQRT
+ * RETURN CORRECTLY ROUNDED (ACCORDING TO THE ROUNDING MODE) SQRT
+ * FOR IEEE DOUBLE PRECISION ONLY, INTENDED FOR ASSEMBLY LANGUAGE
+ * CODED IN C BY K.C. NG, 3/22/85.
+ *
+ * Warning: this code should not get compiled in unless ALL of
+ * the following machine-dependent routines are supplied.
+ *
+ * Required machine dependent functions:
+ * swapINX(i) ...return the status of INEXACT flag and reset it to "i"
+ * swapRM(r) ...return the current Rounding Mode and reset it to "r"
+ * swapENI(e) ...return the status of inexact enable and reset it to "e"
+ * addc(t) ...perform t=t+1 regarding t as a 64 bit unsigned integer
+ * subc(t) ...perform t=t-1 regarding t as a 64 bit unsigned integer
+ */
+
+static const unsigned long table[] = {
+0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, 29598, 36145, 43202, 50740,
+58733, 67158, 75992, 85215, 83599, 71378, 60428, 50647, 41945, 34246, 27478,
+21581, 16499, 12183, 8588, 5674, 3403, 1742, 661, 130, };
+
+double newsqrt(x)
+double x;
+{
+ double y,z,t,addc(),subc()
+ double const b54=134217728.*134217728.; /* b54=2**54 */
+ long mx,scalx;
+ long const mexp=0x7ff00000;
+ int i,j,r,e,swapINX(),swapRM(),swapENI();
+ unsigned long *py=(unsigned long *) &y ,
+ *pt=(unsigned long *) &t ,
+ *px=(unsigned long *) &x ;
+#ifdef national /* ordering of word in a floating point number */
+ const int n0=1, n1=0;
+#else
+ const int n0=0, n1=1;
+#endif
+/* Rounding Mode: RN ...round-to-nearest
+ * RZ ...round-towards 0
+ * RP ...round-towards +INF
+ * RM ...round-towards -INF
+ */
+ const int RN=0,RZ=1,RP=2,RM=3;
+ /* machine dependent: work on a Zilog Z8070
+ * and a National 32081 & 16081
+ */
+
+/* exceptions */
+ if(x!=x||x==0.0) return(x); /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
+ if(x<0) return((x-x)/(x-x)); /* sqrt(negative) is invalid */
+ if((mx=px[n0]&mexp)==mexp) return(x); /* sqrt(+INF) is +INF */
+
+/* save, reset, initialize */
+ e=swapENI(0); /* ...save and reset the inexact enable */
+ i=swapINX(0); /* ...save INEXACT flag */
+ r=swapRM(RN); /* ...save and reset the Rounding Mode to RN */
+ scalx=0;
+
+/* subnormal number, scale up x to x*2**54 */
+ if(mx==0) {x *= b54 ; scalx-=0x01b00000;}
+
+/* scale x to avoid intermediate over/underflow:
+ * if (x > 2**512) x=x/2**512; if (x < 2**-512) x=x*2**512 */
+ if(mx>0x5ff00000) {px[n0] -= 0x20000000; scalx+= 0x10000000;}
+ if(mx<0x1ff00000) {px[n0] += 0x20000000; scalx-= 0x10000000;}
+
+/* magic initial approximation to almost 8 sig. bits */
+ py[n0]=(px[n0]>>1)+0x1ff80000;
+ py[n0]=py[n0]-table[(py[n0]>>15)&31];
+
+/* Heron's rule once with correction to improve y to almost 18 sig. bits */
+ t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0;
+
+/* triple to almost 56 sig. bits; now y approx. sqrt(x) to within 1 ulp */
+ t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y;
+ t=z/(t+x) ; pt[n0]+=0x00100000; y+=t;
+
+/* twiddle last bit to force y correctly rounded */
+ swapRM(RZ); /* ...set Rounding Mode to round-toward-zero */
+ swapINX(0); /* ...clear INEXACT flag */
+ swapENI(e); /* ...restore inexact enable status */
+ t=x/y; /* ...chopped quotient, possibly inexact */
+ j=swapINX(i); /* ...read and restore inexact flag */
+ if(j==0) { if(t==y) goto end; else t=subc(t); } /* ...t=t-ulp */
+ b54+0.1; /* ..trigger inexact flag, sqrt(x) is inexact */
+ if(r==RN) t=addc(t); /* ...t=t+ulp */
+ else if(r==RP) { t=addc(t);y=addc(y);}/* ...t=t+ulp;y=y+ulp; */
+ y=y+t; /* ...chopped sum */
+ py[n0]=py[n0]-0x00100000; /* ...correctly rounded sqrt(x) */
+end: py[n0]=py[n0]+scalx; /* ...scale back y */
+ swapRM(r); /* ...restore Rounding Mode */
+ return(y);
+}
+#endif
diff --git a/lib/libm/noieee_src/n_tan.c b/lib/libm/noieee_src/n_tan.c
new file mode 100644
index 00000000000..798697ab5d4
--- /dev/null
+++ b/lib/libm/noieee_src/n_tan.c
@@ -0,0 +1,76 @@
+/* $NetBSD: n_tan.c,v 1.1 1995/10/10 23:37:07 ragge Exp $ */
+/*
+ * Copyright (c) 1987, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)tan.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+#include "mathimpl.h"
+#include "trig.h"
+double
+tan(x)
+double x;
+{
+ double a,z,ss,cc,c;
+ int k;
+
+ if(!finite(x)) /* tan(NaN) and tan(INF) must be NaN */
+ return x-x;
+ x = drem(x,PI); /* reduce x into [-PI/2, PI/2] */
+ a = copysign(x,one); /* ... = abs(x) */
+ if (a >= PIo4) {
+ k = 1;
+ x = copysign(PIo2-a,x);
+ }
+ else {
+ k = 0;
+ if (a < small) {
+ big+a;
+ return x;
+ }
+ }
+ z = x*x;
+ cc = cos__C(z);
+ ss = sin__S(z);
+ z *= half; /* Next get c = cos(x) accurately */
+ c = (z >= thresh ? half-((z-half)-cc) : one-(z-cc));
+ if (k == 0)
+ return x+(x*(z-(cc-ss)))/c; /* ... sin/cos */
+#ifdef national
+ else if (x == zero)
+ return copysign(fmax,x); /* no inf on 32k */
+#endif /* national */
+ else
+ return c/(x+x*ss); /* ... cos/sin */
+}
diff --git a/lib/libm/noieee_src/n_tanh.c b/lib/libm/noieee_src/n_tanh.c
new file mode 100644
index 00000000000..81145978c96
--- /dev/null
+++ b/lib/libm/noieee_src/n_tanh.c
@@ -0,0 +1,100 @@
+/* $NetBSD: n_tanh.c,v 1.1 1995/10/10 23:37:08 ragge Exp $ */
+/*
+ * Copyright (c) 1985, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)tanh.c 8.1 (Berkeley) 6/4/93";
+#endif /* not lint */
+
+/* TANH(X)
+ * RETURN THE HYPERBOLIC TANGENT OF X
+ * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
+ * CODED IN C BY K.C. NG, 1/8/85;
+ * REVISED BY K.C. NG on 2/8/85, 2/11/85, 3/7/85, 3/24/85.
+ *
+ * Required system supported functions :
+ * copysign(x,y)
+ * finite(x)
+ *
+ * Required kernel function:
+ * expm1(x) ...exp(x)-1
+ *
+ * Method :
+ * 1. reduce x to non-negative by tanh(-x) = - tanh(x).
+ * 2.
+ * 0 < x <= 1.e-10 : tanh(x) := x
+ * -expm1(-2x)
+ * 1.e-10 < x <= 1 : tanh(x) := --------------
+ * expm1(-2x) + 2
+ * 2
+ * 1 <= x <= 22.0 : tanh(x) := 1 - ---------------
+ * expm1(2x) + 2
+ * 22.0 < x <= INF : tanh(x) := 1.
+ *
+ * Note: 22 was chosen so that fl(1.0+2/(expm1(2*22)+2)) == 1.
+ *
+ * Special cases:
+ * tanh(NaN) is NaN;
+ * only tanh(0)=0 is exact for finite argument.
+ *
+ * Accuracy:
+ * tanh(x) returns the exact hyperbolic tangent of x nealy rounded.
+ * In a test run with 1,024,000 random arguments on a VAX, the maximum
+ * observed error was 2.22 ulps (units in the last place).
+ */
+
+double tanh(x)
+double x;
+{
+ static double one=1.0, two=2.0, small = 1.0e-10, big = 1.0e10;
+ double expm1(), t, copysign(), sign;
+ int finite();
+
+#if !defined(vax)&&!defined(tahoe)
+ if(x!=x) return(x); /* x is NaN */
+#endif /* !defined(vax)&&!defined(tahoe) */
+
+ sign=copysign(one,x);
+ x=copysign(x,one);
+ if(x < 22.0)
+ if( x > one )
+ return(copysign(one-two/(expm1(x+x)+two),sign));
+ else if ( x > small )
+ {t= -expm1(-(x+x)); return(copysign(t/(two-t),sign));}
+ else /* raise the INEXACT flag for non-zero x */
+ {big+x; return(copysign(x,sign));}
+ else if(finite(x))
+ return (sign+1.0E-37); /* raise the INEXACT flag */
+ else
+ return(sign); /* x is +- INF */
+}