diff options
Diffstat (limited to 'sys/arch/kbus')
-rw-r--r-- | sys/arch/kbus/kbus/locore.s | 257 |
1 files changed, 257 insertions, 0 deletions
diff --git a/sys/arch/kbus/kbus/locore.s b/sys/arch/kbus/kbus/locore.s index 2f897872900..7c63f5c7938 100644 --- a/sys/arch/kbus/kbus/locore.s +++ b/sys/arch/kbus/kbus/locore.s @@ -4290,6 +4290,263 @@ ENTRY(ffs) add %o0, 24, %o0 /* + * Signed multiply, from Appendix E of the Sparc Version 8 + * Architecture Manual. + * + * Returns %o0 * %o1 in %o1%o0 (i.e., %o1 holds the upper 32 bits of + * the 64-bit product). + * + * This code optimizes short (less than 13-bit) multiplies. + */ +.globl .mul, __mul +.mul: +__mul: + mov %o0, %y ! multiplier -> Y + andncc %o0, 0xfff, %g0 ! test bits 12..31 + be Lmul_shortway ! if zero, can do it the short way + andcc %g0, %g0, %o4 ! zero the partial product and clear N and V + + /* + * Long multiply. 32 steps, followed by a final shift step. + */ + mulscc %o4, %o1, %o4 ! 1 + mulscc %o4, %o1, %o4 ! 2 + mulscc %o4, %o1, %o4 ! 3 + mulscc %o4, %o1, %o4 ! 4 + mulscc %o4, %o1, %o4 ! 5 + mulscc %o4, %o1, %o4 ! 6 + mulscc %o4, %o1, %o4 ! 7 + mulscc %o4, %o1, %o4 ! 8 + mulscc %o4, %o1, %o4 ! 9 + mulscc %o4, %o1, %o4 ! 10 + mulscc %o4, %o1, %o4 ! 11 + mulscc %o4, %o1, %o4 ! 12 + mulscc %o4, %o1, %o4 ! 13 + mulscc %o4, %o1, %o4 ! 14 + mulscc %o4, %o1, %o4 ! 15 + mulscc %o4, %o1, %o4 ! 16 + mulscc %o4, %o1, %o4 ! 17 + mulscc %o4, %o1, %o4 ! 18 + mulscc %o4, %o1, %o4 ! 19 + mulscc %o4, %o1, %o4 ! 20 + mulscc %o4, %o1, %o4 ! 21 + mulscc %o4, %o1, %o4 ! 22 + mulscc %o4, %o1, %o4 ! 23 + mulscc %o4, %o1, %o4 ! 24 + mulscc %o4, %o1, %o4 ! 25 + mulscc %o4, %o1, %o4 ! 26 + mulscc %o4, %o1, %o4 ! 27 + mulscc %o4, %o1, %o4 ! 28 + mulscc %o4, %o1, %o4 ! 29 + mulscc %o4, %o1, %o4 ! 30 + mulscc %o4, %o1, %o4 ! 31 + mulscc %o4, %o1, %o4 ! 32 + mulscc %o4, %g0, %o4 ! final shift + + ! If %o0 was negative, the result is + ! (%o0 * %o1) + (%o1 << 32)) + ! We fix that here. + + tst %o0 + bge 1f + rd %y, %o0 + + ! %o0 was indeed negative; fix upper 32 bits of result by subtracting + ! %o1 (i.e., return %o4 - %o1 in %o1). + retl + sub %o4, %o1, %o1 + +1: + retl + mov %o4, %o1 + +Lmul_shortway: + /* + * Short multiply. 12 steps, followed by a final shift step. + * The resulting bits are off by 12 and (32-12) = 20 bit positions, + * but there is no problem with %o0 being negative (unlike above). + */ + mulscc %o4, %o1, %o4 ! 1 + mulscc %o4, %o1, %o4 ! 2 + mulscc %o4, %o1, %o4 ! 3 + mulscc %o4, %o1, %o4 ! 4 + mulscc %o4, %o1, %o4 ! 5 + mulscc %o4, %o1, %o4 ! 6 + mulscc %o4, %o1, %o4 ! 7 + mulscc %o4, %o1, %o4 ! 8 + mulscc %o4, %o1, %o4 ! 9 + mulscc %o4, %o1, %o4 ! 10 + mulscc %o4, %o1, %o4 ! 11 + mulscc %o4, %o1, %o4 ! 12 + mulscc %o4, %g0, %o4 ! final shift + + /* + * %o4 has 20 of the bits that should be in the low part of the + * result; %y has the bottom 12 (as %y's top 12). That is: + * + * %o4 %y + * +----------------+----------------+ + * | -12- | -20- | -12- | -20- | + * +------(---------+------)---------+ + * --hi-- ----low-part---- + * + * The upper 12 bits of %o4 should be sign-extended to form the + * high part of the product (i.e., highpart = %o4 >> 20). + */ + + rd %y, %o5 + sll %o4, 12, %o0 ! shift middle bits left 12 + srl %o5, 20, %o5 ! shift low bits right 20, zero fill at left + or %o5, %o0, %o0 ! construct low part of result + retl + sra %o4, 20, %o1 ! ... and extract high part of result + +/* + * Unsigned multiply. Returns %o0 * %o1 in %o1%o0 (i.e., %o1 holds the + * upper 32 bits of the 64-bit product). + * + * This code optimizes short (less than 13-bit) multiplies. Short + * multiplies require 25 instruction cycles, and long ones require + * 45 instruction cycles. + * + * On return, overflow has occurred (%o1 is not zero) if and only if + * the Z condition code is clear, allowing, e.g., the following: + * + * call .umul + * nop + * bnz overflow (or tnz) + */ +.globl .umul, __umul +.umul: +__umul: + or %o0, %o1, %o4 + mov %o0, %y ! multiplier -> Y + andncc %o4, 0xfff, %g0 ! test bits 12..31 of *both* args + be Lumul_shortway ! if zero, can do it the short way + andcc %g0, %g0, %o4 ! zero the partial product and clear N and V + + /* + * Long multiply. 32 steps, followed by a final shift step. + */ + mulscc %o4, %o1, %o4 ! 1 + mulscc %o4, %o1, %o4 ! 2 + mulscc %o4, %o1, %o4 ! 3 + mulscc %o4, %o1, %o4 ! 4 + mulscc %o4, %o1, %o4 ! 5 + mulscc %o4, %o1, %o4 ! 6 + mulscc %o4, %o1, %o4 ! 7 + mulscc %o4, %o1, %o4 ! 8 + mulscc %o4, %o1, %o4 ! 9 + mulscc %o4, %o1, %o4 ! 10 + mulscc %o4, %o1, %o4 ! 11 + mulscc %o4, %o1, %o4 ! 12 + mulscc %o4, %o1, %o4 ! 13 + mulscc %o4, %o1, %o4 ! 14 + mulscc %o4, %o1, %o4 ! 15 + mulscc %o4, %o1, %o4 ! 16 + mulscc %o4, %o1, %o4 ! 17 + mulscc %o4, %o1, %o4 ! 18 + mulscc %o4, %o1, %o4 ! 19 + mulscc %o4, %o1, %o4 ! 20 + mulscc %o4, %o1, %o4 ! 21 + mulscc %o4, %o1, %o4 ! 22 + mulscc %o4, %o1, %o4 ! 23 + mulscc %o4, %o1, %o4 ! 24 + mulscc %o4, %o1, %o4 ! 25 + mulscc %o4, %o1, %o4 ! 26 + mulscc %o4, %o1, %o4 ! 27 + mulscc %o4, %o1, %o4 ! 28 + mulscc %o4, %o1, %o4 ! 29 + mulscc %o4, %o1, %o4 ! 30 + mulscc %o4, %o1, %o4 ! 31 + mulscc %o4, %o1, %o4 ! 32 + mulscc %o4, %g0, %o4 ! final shift + + + /* + * Normally, with the shift-and-add approach, if both numbers are + * positive you get the correct result. WIth 32-bit two's-complement + * numbers, -x is represented as + * + * x 32 + * ( 2 - ------ ) mod 2 * 2 + * 32 + * 2 + * + * (the `mod 2' subtracts 1 from 1.bbbb). To avoid lots of 2^32s, + * we can treat this as if the radix point were just to the left + * of the sign bit (multiply by 2^32), and get + * + * -x = (2 - x) mod 2 + * + * Then, ignoring the `mod 2's for convenience: + * + * x * y = xy + * -x * y = 2y - xy + * x * -y = 2x - xy + * -x * -y = 4 - 2x - 2y + xy + * + * For signed multiplies, we subtract (x << 32) from the partial + * product to fix this problem for negative multipliers (see mul.s). + * Because of the way the shift into the partial product is calculated + * (N xor V), this term is automatically removed for the multiplicand, + * so we don't have to adjust. + * + * But for unsigned multiplies, the high order bit wasn't a sign bit, + * and the correction is wrong. So for unsigned multiplies where the + * high order bit is one, we end up with xy - (y << 32). To fix it + * we add y << 32. + */ + tst %o1 + bl,a 1f ! if %o1 < 0 (high order bit = 1), + add %o4, %o0, %o4 ! %o4 += %o0 (add y to upper half) +1: rd %y, %o0 ! get lower half of product + retl + addcc %o4, %g0, %o1 ! put upper half in place and set Z for %o1==0 + +Lumul_shortway: + /* + * Short multiply. 12 steps, followed by a final shift step. + * The resulting bits are off by 12 and (32-12) = 20 bit positions, + * but there is no problem with %o0 being negative (unlike above), + * and overflow is impossible (the answer is at most 24 bits long). + */ + mulscc %o4, %o1, %o4 ! 1 + mulscc %o4, %o1, %o4 ! 2 + mulscc %o4, %o1, %o4 ! 3 + mulscc %o4, %o1, %o4 ! 4 + mulscc %o4, %o1, %o4 ! 5 + mulscc %o4, %o1, %o4 ! 6 + mulscc %o4, %o1, %o4 ! 7 + mulscc %o4, %o1, %o4 ! 8 + mulscc %o4, %o1, %o4 ! 9 + mulscc %o4, %o1, %o4 ! 10 + mulscc %o4, %o1, %o4 ! 11 + mulscc %o4, %o1, %o4 ! 12 + mulscc %o4, %g0, %o4 ! final shift + + /* + * %o4 has 20 of the bits that should be in the result; %y has + * the bottom 12 (as %y's top 12). That is: + * + * %o4 %y + * +----------------+----------------+ + * | -12- | -20- | -12- | -20- | + * +------(---------+------)---------+ + * -----result----- + * + * The 12 bits of %o4 left of the `result' area are all zero; + * in fact, all top 20 bits of %o4 are zero. + */ + + rd %y, %o5 + sll %o4, 12, %o0 ! shift middle bits left 12 + srl %o5, 20, %o5 ! shift low bits right 20 + or %o5, %o0, %o0 + retl + addcc %g0, %g0, %o1 ! %o1 = zero, and set Z + +/* * Here is a very good random number generator. This implementation is * based on ``Two Fast Implementations of the "Minimal Standard" Random * Number Generator", David G. Carta, Communications of the ACM, Jan 1990, |