diff options
Diffstat (limited to 'usr.bin/ssh/fe25519.c')
-rw-r--r-- | usr.bin/ssh/fe25519.c | 335 |
1 files changed, 0 insertions, 335 deletions
diff --git a/usr.bin/ssh/fe25519.c b/usr.bin/ssh/fe25519.c deleted file mode 100644 index 2f368ebe6c8..00000000000 --- a/usr.bin/ssh/fe25519.c +++ /dev/null @@ -1,335 +0,0 @@ -/* $OpenBSD: fe25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */ - -/* - * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange, - * Peter Schwabe, Bo-Yin Yang. - * Copied from supercop-20130419/crypto_sign/ed25519/ref/fe25519.c - */ - -#define WINDOWSIZE 1 /* Should be 1,2, or 4 */ -#define WINDOWMASK ((1<<WINDOWSIZE)-1) - -#include "fe25519.h" - -static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */ -{ - crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */ - x -= 1; /* 4294967295: yes; 0..65534: no */ - x >>= 31; /* 1: yes; 0: no */ - return x; -} - -static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */ -{ - unsigned int x = a; - x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */ - x >>= 31; /* 0: yes; 1: no */ - x ^= 1; /* 1: yes; 0: no */ - return x; -} - -static crypto_uint32 times19(crypto_uint32 a) -{ - return (a << 4) + (a << 1) + a; -} - -static crypto_uint32 times38(crypto_uint32 a) -{ - return (a << 5) + (a << 2) + (a << 1); -} - -static void reduce_add_sub(fe25519 *r) -{ - crypto_uint32 t; - int i,rep; - - for(rep=0;rep<4;rep++) - { - t = r->v[31] >> 7; - r->v[31] &= 127; - t = times19(t); - r->v[0] += t; - for(i=0;i<31;i++) - { - t = r->v[i] >> 8; - r->v[i+1] += t; - r->v[i] &= 255; - } - } -} - -static void reduce_mul(fe25519 *r) -{ - crypto_uint32 t; - int i,rep; - - for(rep=0;rep<2;rep++) - { - t = r->v[31] >> 7; - r->v[31] &= 127; - t = times19(t); - r->v[0] += t; - for(i=0;i<31;i++) - { - t = r->v[i] >> 8; - r->v[i+1] += t; - r->v[i] &= 255; - } - } -} - -/* reduction modulo 2^255-19 */ -void fe25519_freeze(fe25519 *r) -{ - int i; - crypto_uint32 m = equal(r->v[31],127); - for(i=30;i>0;i--) - m &= equal(r->v[i],255); - m &= ge(r->v[0],237); - - m = -m; - - r->v[31] -= m&127; - for(i=30;i>0;i--) - r->v[i] -= m&255; - r->v[0] -= m&237; -} - -void fe25519_unpack(fe25519 *r, const unsigned char x[32]) -{ - int i; - for(i=0;i<32;i++) r->v[i] = x[i]; - r->v[31] &= 127; -} - -/* Assumes input x being reduced below 2^255 */ -void fe25519_pack(unsigned char r[32], const fe25519 *x) -{ - int i; - fe25519 y = *x; - fe25519_freeze(&y); - for(i=0;i<32;i++) - r[i] = y.v[i]; -} - -int fe25519_iszero(const fe25519 *x) -{ - int i; - int r; - fe25519 t = *x; - fe25519_freeze(&t); - r = equal(t.v[0],0); - for(i=1;i<32;i++) - r &= equal(t.v[i],0); - return r; -} - -int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y) -{ - int i; - fe25519 t1 = *x; - fe25519 t2 = *y; - fe25519_freeze(&t1); - fe25519_freeze(&t2); - for(i=0;i<32;i++) - if(t1.v[i] != t2.v[i]) return 0; - return 1; -} - -void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b) -{ - int i; - crypto_uint32 mask = b; - mask = -mask; - for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]); -} - -unsigned char fe25519_getparity(const fe25519 *x) -{ - fe25519 t = *x; - fe25519_freeze(&t); - return t.v[0] & 1; -} - -void fe25519_setone(fe25519 *r) -{ - int i; - r->v[0] = 1; - for(i=1;i<32;i++) r->v[i]=0; -} - -void fe25519_setzero(fe25519 *r) -{ - int i; - for(i=0;i<32;i++) r->v[i]=0; -} - -void fe25519_neg(fe25519 *r, const fe25519 *x) -{ - fe25519 t; - int i; - for(i=0;i<32;i++) t.v[i]=x->v[i]; - fe25519_setzero(r); - fe25519_sub(r, r, &t); -} - -void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y) -{ - int i; - for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i]; - reduce_add_sub(r); -} - -void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y) -{ - int i; - crypto_uint32 t[32]; - t[0] = x->v[0] + 0x1da; - t[31] = x->v[31] + 0xfe; - for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe; - for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i]; - reduce_add_sub(r); -} - -void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y) -{ - int i,j; - crypto_uint32 t[63]; - for(i=0;i<63;i++)t[i] = 0; - - for(i=0;i<32;i++) - for(j=0;j<32;j++) - t[i+j] += x->v[i] * y->v[j]; - - for(i=32;i<63;i++) - r->v[i-32] = t[i-32] + times38(t[i]); - r->v[31] = t[31]; /* result now in r[0]...r[31] */ - - reduce_mul(r); -} - -void fe25519_square(fe25519 *r, const fe25519 *x) -{ - fe25519_mul(r, x, x); -} - -void fe25519_invert(fe25519 *r, const fe25519 *x) -{ - fe25519 z2; - fe25519 z9; - fe25519 z11; - fe25519 z2_5_0; - fe25519 z2_10_0; - fe25519 z2_20_0; - fe25519 z2_50_0; - fe25519 z2_100_0; - fe25519 t0; - fe25519 t1; - int i; - - /* 2 */ fe25519_square(&z2,x); - /* 4 */ fe25519_square(&t1,&z2); - /* 8 */ fe25519_square(&t0,&t1); - /* 9 */ fe25519_mul(&z9,&t0,x); - /* 11 */ fe25519_mul(&z11,&z9,&z2); - /* 22 */ fe25519_square(&t0,&z11); - /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9); - - /* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0); - /* 2^7 - 2^2 */ fe25519_square(&t1,&t0); - /* 2^8 - 2^3 */ fe25519_square(&t0,&t1); - /* 2^9 - 2^4 */ fe25519_square(&t1,&t0); - /* 2^10 - 2^5 */ fe25519_square(&t0,&t1); - /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0); - - /* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0); - /* 2^12 - 2^2 */ fe25519_square(&t1,&t0); - /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } - /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0); - - /* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0); - /* 2^22 - 2^2 */ fe25519_square(&t1,&t0); - /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } - /* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0); - - /* 2^41 - 2^1 */ fe25519_square(&t1,&t0); - /* 2^42 - 2^2 */ fe25519_square(&t0,&t1); - /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); } - /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0); - - /* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0); - /* 2^52 - 2^2 */ fe25519_square(&t1,&t0); - /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } - /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0); - - /* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0); - /* 2^102 - 2^2 */ fe25519_square(&t0,&t1); - /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); } - /* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0); - - /* 2^201 - 2^1 */ fe25519_square(&t0,&t1); - /* 2^202 - 2^2 */ fe25519_square(&t1,&t0); - /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); } - /* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0); - - /* 2^251 - 2^1 */ fe25519_square(&t1,&t0); - /* 2^252 - 2^2 */ fe25519_square(&t0,&t1); - /* 2^253 - 2^3 */ fe25519_square(&t1,&t0); - /* 2^254 - 2^4 */ fe25519_square(&t0,&t1); - /* 2^255 - 2^5 */ fe25519_square(&t1,&t0); - /* 2^255 - 21 */ fe25519_mul(r,&t1,&z11); -} - -void fe25519_pow2523(fe25519 *r, const fe25519 *x) -{ - fe25519 z2; - fe25519 z9; - fe25519 z11; - fe25519 z2_5_0; - fe25519 z2_10_0; - fe25519 z2_20_0; - fe25519 z2_50_0; - fe25519 z2_100_0; - fe25519 t; - int i; - - /* 2 */ fe25519_square(&z2,x); - /* 4 */ fe25519_square(&t,&z2); - /* 8 */ fe25519_square(&t,&t); - /* 9 */ fe25519_mul(&z9,&t,x); - /* 11 */ fe25519_mul(&z11,&z9,&z2); - /* 22 */ fe25519_square(&t,&z11); - /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9); - - /* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0); - /* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); } - /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0); - - /* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0); - /* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); } - /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0); - - /* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0); - /* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); } - /* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0); - - /* 2^41 - 2^1 */ fe25519_square(&t,&t); - /* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); } - /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0); - - /* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0); - /* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); } - /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0); - - /* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0); - /* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); } - /* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0); - - /* 2^201 - 2^1 */ fe25519_square(&t,&t); - /* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); } - /* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0); - - /* 2^251 - 2^1 */ fe25519_square(&t,&t); - /* 2^252 - 2^2 */ fe25519_square(&t,&t); - /* 2^252 - 3 */ fe25519_mul(r,&t,x); -} |