1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
|
/* Emit RTL for the GNU C-Compiler expander.
Copyright (C) 1987, 88, 92-97, 1998, 1999 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Middle-to-low level generation of rtx code and insns.
This file contains the functions `gen_rtx', `gen_reg_rtx'
and `gen_label_rtx' that are the usual ways of creating rtl
expressions for most purposes.
It also has the functions for creating insns and linking
them in the doubly-linked chain.
The patterns of the insns are created by machine-dependent
routines in insn-emit.c, which is generated automatically from
the machine description. These routines use `gen_rtx' to make
the individual rtx's of the pattern; what is machine dependent
is the kind of rtx's they make and what arguments they use. */
#include "config.h"
#include "system.h"
#include "toplev.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "expr.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "real.h"
#include "obstack.h"
#include "bitmap.h"
/* Commonly used modes. */
enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
/* This is reset to LAST_VIRTUAL_REGISTER + 1 at the start of each function.
After rtl generation, it is 1 plus the largest register number used. */
int reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
/* This is *not* reset after each function. It gives each CODE_LABEL
in the entire compilation a unique label number. */
static int label_num = 1;
/* Lowest label number in current function. */
static int first_label_num;
/* Highest label number in current function.
Zero means use the value of label_num instead.
This is nonzero only when belatedly compiling an inline function. */
static int last_label_num;
/* Value label_num had when set_new_first_and_last_label_number was called.
If label_num has not changed since then, last_label_num is valid. */
static int base_label_num;
/* Nonzero means do not generate NOTEs for source line numbers. */
static int no_line_numbers;
/* Commonly used rtx's, so that we only need space for one copy.
These are initialized once for the entire compilation.
All of these except perhaps the floating-point CONST_DOUBLEs
are unique; no other rtx-object will be equal to any of these. */
/* Avoid warnings by initializing the `fld' field. Since its a union,
bypass problems with KNR compilers by only doing so when __GNUC__. */
#ifdef __GNUC__
#define FLDI , {{0}}
#else
#define FLDI
#endif
struct _global_rtl global_rtl =
{
{PC, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* pc_rtx */
{CC0, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* cc0_rtx */
{REG, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* stack_pointer_rtx */
{REG, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* frame_pointer_rtx */
{REG, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* hard_frame_pointer_rtx */
{REG, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* arg_pointer_rtx */
{REG, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* virtual_incoming_args_rtx */
{REG, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* virtual_stack_vars_rtx */
{REG, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* virtual_stack_dynamic_rtx */
{REG, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* virtual_outgoing_args_rtx */
{REG, VOIDmode, 0, 0, 0, 0, 0, 0, 0, 0 FLDI }, /* virtual_cfa_rtx */
};
/* We record floating-point CONST_DOUBLEs in each floating-point mode for
the values of 0, 1, and 2. For the integer entries and VOIDmode, we
record a copy of const[012]_rtx. */
rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
rtx const_true_rtx;
REAL_VALUE_TYPE dconst0;
REAL_VALUE_TYPE dconst1;
REAL_VALUE_TYPE dconst2;
REAL_VALUE_TYPE dconstm1;
/* All references to the following fixed hard registers go through
these unique rtl objects. On machines where the frame-pointer and
arg-pointer are the same register, they use the same unique object.
After register allocation, other rtl objects which used to be pseudo-regs
may be clobbered to refer to the frame-pointer register.
But references that were originally to the frame-pointer can be
distinguished from the others because they contain frame_pointer_rtx.
When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
tricky: until register elimination has taken place hard_frame_pointer_rtx
should be used if it is being set, and frame_pointer_rtx otherwise. After
register elimination hard_frame_pointer_rtx should always be used.
On machines where the two registers are same (most) then these are the
same.
In an inline procedure, the stack and frame pointer rtxs may not be
used for anything else. */
rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
/* This is used to implement __builtin_return_address for some machines.
See for instance the MIPS port. */
rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
/* We make one copy of (const_int C) where C is in
[- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
to save space during the compilation and simplify comparisons of
integers. */
struct rtx_def const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
/* The ends of the doubly-linked chain of rtl for the current function.
Both are reset to null at the start of rtl generation for the function.
start_sequence saves both of these on `sequence_stack' along with
`sequence_rtl_expr' and then starts a new, nested sequence of insns. */
static rtx first_insn = NULL;
static rtx last_insn = NULL;
/* RTL_EXPR within which the current sequence will be placed. Use to
prevent reuse of any temporaries within the sequence until after the
RTL_EXPR is emitted. */
tree sequence_rtl_expr = NULL;
/* INSN_UID for next insn emitted.
Reset to 1 for each function compiled. */
static int cur_insn_uid = 1;
/* Line number and source file of the last line-number NOTE emitted.
This is used to avoid generating duplicates. */
static int last_linenum = 0;
static char *last_filename = 0;
/* A vector indexed by pseudo reg number. The allocated length
of this vector is regno_pointer_flag_length. Since this
vector is needed during the expansion phase when the total
number of registers in the function is not yet known,
it is copied and made bigger when necessary. */
char *regno_pointer_flag;
int regno_pointer_flag_length;
/* Indexed by pseudo register number, if nonzero gives the known alignment
for that pseudo (if regno_pointer_flag is set).
Allocated in parallel with regno_pointer_flag. */
char *regno_pointer_align;
/* Indexed by pseudo register number, gives the rtx for that pseudo.
Allocated in parallel with regno_pointer_flag. */
rtx *regno_reg_rtx;
/* Stack of pending (incomplete) sequences saved by `start_sequence'.
Each element describes one pending sequence.
The main insn-chain is saved in the last element of the chain,
unless the chain is empty. */
struct sequence_stack *sequence_stack;
/* start_sequence and gen_sequence can make a lot of rtx expressions which are
shortly thrown away. We use two mechanisms to prevent this waste:
First, we keep a list of the expressions used to represent the sequence
stack in sequence_element_free_list.
Second, for sizes up to 5 elements, we keep a SEQUENCE and its associated
rtvec for use by gen_sequence. One entry for each size is sufficient
because most cases are calls to gen_sequence followed by immediately
emitting the SEQUENCE. Reuse is safe since emitting a sequence is
destructive on the insn in it anyway and hence can't be redone.
We do not bother to save this cached data over nested function calls.
Instead, we just reinitialize them. */
#define SEQUENCE_RESULT_SIZE 5
static struct sequence_stack *sequence_element_free_list;
static rtx sequence_result[SEQUENCE_RESULT_SIZE];
/* During RTL generation, we also keep a list of free INSN rtl codes. */
static rtx free_insn;
extern int rtx_equal_function_value_matters;
/* Filename and line number of last line-number note,
whether we actually emitted it or not. */
extern char *emit_filename;
extern int emit_lineno;
static rtx make_jump_insn_raw PROTO((rtx));
static rtx make_call_insn_raw PROTO((rtx));
static rtx find_line_note PROTO((rtx));
rtx
gen_rtx_CONST_INT (mode, arg)
enum machine_mode mode;
HOST_WIDE_INT arg;
{
if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
return &const_int_rtx[arg + MAX_SAVED_CONST_INT];
#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
if (const_true_rtx && arg == STORE_FLAG_VALUE)
return const_true_rtx;
#endif
return gen_rtx_raw_CONST_INT (mode, arg);
}
/* CONST_DOUBLEs needs special handling because its length is known
only at run-time. */
rtx
gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
enum machine_mode mode;
rtx arg0;
HOST_WIDE_INT arg1, arg2;
{
rtx r = rtx_alloc (CONST_DOUBLE);
int i;
PUT_MODE (r, mode);
XEXP (r, 0) = arg0;
XEXP (r, 1) = NULL_RTX;
XWINT (r, 2) = arg1;
XWINT (r, 3) = arg2;
for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
XWINT (r, i) = 0;
return r;
}
rtx
gen_rtx_REG (mode, regno)
enum machine_mode mode;
int regno;
{
/* In case the MD file explicitly references the frame pointer, have
all such references point to the same frame pointer. This is
used during frame pointer elimination to distinguish the explicit
references to these registers from pseudos that happened to be
assigned to them.
If we have eliminated the frame pointer or arg pointer, we will
be using it as a normal register, for example as a spill
register. In such cases, we might be accessing it in a mode that
is not Pmode and therefore cannot use the pre-allocated rtx.
Also don't do this when we are making new REGs in reload, since
we don't want to get confused with the real pointers. */
if (mode == Pmode && !reload_in_progress)
{
if (regno == FRAME_POINTER_REGNUM)
return frame_pointer_rtx;
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
if (regno == HARD_FRAME_POINTER_REGNUM)
return hard_frame_pointer_rtx;
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
if (regno == ARG_POINTER_REGNUM)
return arg_pointer_rtx;
#endif
#ifdef RETURN_ADDRESS_POINTER_REGNUM
if (regno == RETURN_ADDRESS_POINTER_REGNUM)
return return_address_pointer_rtx;
#endif
if (regno == STACK_POINTER_REGNUM)
return stack_pointer_rtx;
}
return gen_rtx_raw_REG (mode, regno);
}
rtx
gen_rtx_MEM (mode, addr)
enum machine_mode mode;
rtx addr;
{
rtx rt = gen_rtx_raw_MEM (mode, addr);
/* This field is not cleared by the mere allocation of the rtx, so
we clear it here. */
MEM_ALIAS_SET (rt) = 0;
return rt;
}
/* rtx gen_rtx (code, mode, [element1, ..., elementn])
**
** This routine generates an RTX of the size specified by
** <code>, which is an RTX code. The RTX structure is initialized
** from the arguments <element1> through <elementn>, which are
** interpreted according to the specific RTX type's format. The
** special machine mode associated with the rtx (if any) is specified
** in <mode>.
**
** gen_rtx can be invoked in a way which resembles the lisp-like
** rtx it will generate. For example, the following rtx structure:
**
** (plus:QI (mem:QI (reg:SI 1))
** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
**
** ...would be generated by the following C code:
**
** gen_rtx (PLUS, QImode,
** gen_rtx (MEM, QImode,
** gen_rtx (REG, SImode, 1)),
** gen_rtx (MEM, QImode,
** gen_rtx (PLUS, SImode,
** gen_rtx (REG, SImode, 2),
** gen_rtx (REG, SImode, 3)))),
*/
/*VARARGS2*/
rtx
gen_rtx VPROTO((enum rtx_code code, enum machine_mode mode, ...))
{
#ifndef ANSI_PROTOTYPES
enum rtx_code code;
enum machine_mode mode;
#endif
va_list p;
register int i; /* Array indices... */
register char *fmt; /* Current rtx's format... */
register rtx rt_val; /* RTX to return to caller... */
VA_START (p, mode);
#ifndef ANSI_PROTOTYPES
code = va_arg (p, enum rtx_code);
mode = va_arg (p, enum machine_mode);
#endif
switch (code)
{
case CONST_INT:
rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
break;
case CONST_DOUBLE:
{
rtx arg0 = va_arg (p, rtx);
HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
}
break;
case REG:
rt_val = gen_rtx_REG (mode, va_arg (p, int));
break;
case MEM:
rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
break;
default:
rt_val = rtx_alloc (code); /* Allocate the storage space. */
rt_val->mode = mode; /* Store the machine mode... */
fmt = GET_RTX_FORMAT (code); /* Find the right format... */
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*fmt++)
{
case '0': /* Unused field. */
break;
case 'i': /* An integer? */
XINT (rt_val, i) = va_arg (p, int);
break;
case 'w': /* A wide integer? */
XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
break;
case 's': /* A string? */
XSTR (rt_val, i) = va_arg (p, char *);
break;
case 'e': /* An expression? */
case 'u': /* An insn? Same except when printing. */
XEXP (rt_val, i) = va_arg (p, rtx);
break;
case 'E': /* An RTX vector? */
XVEC (rt_val, i) = va_arg (p, rtvec);
break;
case 'b': /* A bitmap? */
XBITMAP (rt_val, i) = va_arg (p, bitmap);
break;
case 't': /* A tree? */
XTREE (rt_val, i) = va_arg (p, tree);
break;
default:
abort ();
}
}
break;
}
va_end (p);
return rt_val;
}
/* gen_rtvec (n, [rt1, ..., rtn])
**
** This routine creates an rtvec and stores within it the
** pointers to rtx's which are its arguments.
*/
/*VARARGS1*/
rtvec
gen_rtvec VPROTO((int n, ...))
{
#ifndef ANSI_PROTOTYPES
int n;
#endif
int i;
va_list p;
rtx *vector;
VA_START (p, n);
#ifndef ANSI_PROTOTYPES
n = va_arg (p, int);
#endif
if (n == 0)
return NULL_RTVEC; /* Don't allocate an empty rtvec... */
vector = (rtx *) alloca (n * sizeof (rtx));
for (i = 0; i < n; i++)
vector[i] = va_arg (p, rtx);
va_end (p);
return gen_rtvec_v (n, vector);
}
rtvec
gen_rtvec_v (n, argp)
int n;
rtx *argp;
{
register int i;
register rtvec rt_val;
if (n == 0)
return NULL_RTVEC; /* Don't allocate an empty rtvec... */
rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
for (i = 0; i < n; i++)
rt_val->elem[i].rtx = *argp++;
return rt_val;
}
rtvec
gen_rtvec_vv (n, argp)
int n;
rtunion *argp;
{
register int i;
register rtvec rt_val;
if (n == 0)
return NULL_RTVEC; /* Don't allocate an empty rtvec... */
rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
for (i = 0; i < n; i++)
rt_val->elem[i].rtx = (argp++)->rtx;
return rt_val;
}
/* Generate a REG rtx for a new pseudo register of mode MODE.
This pseudo is assigned the next sequential register number. */
rtx
gen_reg_rtx (mode)
enum machine_mode mode;
{
register rtx val;
/* Don't let anything called after initial flow analysis create new
registers. */
if (no_new_pseudos)
abort ();
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
{
/* For complex modes, don't make a single pseudo.
Instead, make a CONCAT of two pseudos.
This allows noncontiguous allocation of the real and imaginary parts,
which makes much better code. Besides, allocating DCmode
pseudos overstrains reload on some machines like the 386. */
rtx realpart, imagpart;
int size = GET_MODE_UNIT_SIZE (mode);
enum machine_mode partmode
= mode_for_size (size * BITS_PER_UNIT,
(GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
? MODE_FLOAT : MODE_INT),
0);
realpart = gen_reg_rtx (partmode);
imagpart = gen_reg_rtx (partmode);
return gen_rtx_CONCAT (mode, realpart, imagpart);
}
/* Make sure regno_pointer_flag and regno_reg_rtx are large
enough to have an element for this pseudo reg number. */
if (reg_rtx_no == regno_pointer_flag_length)
{
rtx *new1;
char *new =
(char *) savealloc (regno_pointer_flag_length * 2);
bcopy (regno_pointer_flag, new, regno_pointer_flag_length);
bzero (&new[regno_pointer_flag_length], regno_pointer_flag_length);
regno_pointer_flag = new;
new = (char *) savealloc (regno_pointer_flag_length * 2);
bcopy (regno_pointer_align, new, regno_pointer_flag_length);
bzero (&new[regno_pointer_flag_length], regno_pointer_flag_length);
regno_pointer_align = new;
new1 = (rtx *) savealloc (regno_pointer_flag_length * 2 * sizeof (rtx));
bcopy ((char *) regno_reg_rtx, (char *) new1,
regno_pointer_flag_length * sizeof (rtx));
bzero ((char *) &new1[regno_pointer_flag_length],
regno_pointer_flag_length * sizeof (rtx));
regno_reg_rtx = new1;
regno_pointer_flag_length *= 2;
}
val = gen_rtx_raw_REG (mode, reg_rtx_no);
regno_reg_rtx[reg_rtx_no++] = val;
return val;
}
/* Identify REG (which may be a CONCAT) as a user register. */
void
mark_user_reg (reg)
rtx reg;
{
if (GET_CODE (reg) == CONCAT)
{
REG_USERVAR_P (XEXP (reg, 0)) = 1;
REG_USERVAR_P (XEXP (reg, 1)) = 1;
}
else if (GET_CODE (reg) == REG)
REG_USERVAR_P (reg) = 1;
else
abort ();
}
/* Identify REG as a probable pointer register and show its alignment
as ALIGN, if nonzero. */
void
mark_reg_pointer (reg, align)
rtx reg;
int align;
{
if (! REGNO_POINTER_FLAG (REGNO (reg)))
{
REGNO_POINTER_FLAG (REGNO (reg)) = 1;
if (align)
REGNO_POINTER_ALIGN (REGNO (reg)) = align;
}
else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
/* We can no-longer be sure just how aligned this pointer is */
REGNO_POINTER_ALIGN (REGNO (reg)) = align;
}
/* Return 1 plus largest pseudo reg number used in the current function. */
int
max_reg_num ()
{
return reg_rtx_no;
}
/* Return 1 + the largest label number used so far in the current function. */
int
max_label_num ()
{
if (last_label_num && label_num == base_label_num)
return last_label_num;
return label_num;
}
/* Return first label number used in this function (if any were used). */
int
get_first_label_num ()
{
return first_label_num;
}
/* Return a value representing some low-order bits of X, where the number
of low-order bits is given by MODE. Note that no conversion is done
between floating-point and fixed-point values, rather, the bit
representation is returned.
This function handles the cases in common between gen_lowpart, below,
and two variants in cse.c and combine.c. These are the cases that can
be safely handled at all points in the compilation.
If this is not a case we can handle, return 0. */
rtx
gen_lowpart_common (mode, x)
enum machine_mode mode;
register rtx x;
{
int word = 0;
if (GET_MODE (x) == mode)
return x;
/* MODE must occupy no more words than the mode of X. */
if (GET_MODE (x) != VOIDmode
&& ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
> ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
/ UNITS_PER_WORD)))
return 0;
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
word = ((GET_MODE_SIZE (GET_MODE (x))
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
/ UNITS_PER_WORD);
if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
&& (GET_MODE_CLASS (mode) == MODE_INT
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
{
/* If we are getting the low-order part of something that has been
sign- or zero-extended, we can either just use the object being
extended or make a narrower extension. If we want an even smaller
piece than the size of the object being extended, call ourselves
recursively.
This case is used mostly by combine and cse. */
if (GET_MODE (XEXP (x, 0)) == mode)
return XEXP (x, 0);
else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
return gen_lowpart_common (mode, XEXP (x, 0));
else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
}
else if (GET_CODE (x) == SUBREG
&& (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
|| GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
? SUBREG_REG (x)
: gen_rtx_SUBREG (mode, SUBREG_REG (x), SUBREG_WORD (x) + word));
else if (GET_CODE (x) == REG)
{
/* Let the backend decide how many registers to skip. This is needed
in particular for Sparc64 where fp regs are smaller than a word. */
/* ??? Note that subregs are now ambiguous, in that those against
pseudos are sized by the Word Size, while those against hard
regs are sized by the underlying register size. Better would be
to always interpret the subreg offset parameter as bytes or bits. */
if (WORDS_BIG_ENDIAN && REGNO (x) < FIRST_PSEUDO_REGISTER)
word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
- HARD_REGNO_NREGS (REGNO (x), mode));
/* If the register is not valid for MODE, return 0. If we don't
do this, there is no way to fix up the resulting REG later.
But we do do this if the current REG is not valid for its
mode. This latter is a kludge, but is required due to the
way that parameters are passed on some machines, most
notably Sparc. */
if (REGNO (x) < FIRST_PSEUDO_REGISTER
&& ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
&& HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
return 0;
else if (REGNO (x) < FIRST_PSEUDO_REGISTER
/* integrate.c can't handle parts of a return value register. */
&& (! REG_FUNCTION_VALUE_P (x)
|| ! rtx_equal_function_value_matters)
#ifdef CLASS_CANNOT_CHANGE_SIZE
&& ! (GET_MODE_SIZE (mode) != GET_MODE_SIZE (GET_MODE (x))
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
&& (TEST_HARD_REG_BIT
(reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
REGNO (x))))
#endif
/* We want to keep the stack, frame, and arg pointers
special. */
&& x != frame_pointer_rtx
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& x != arg_pointer_rtx
#endif
&& x != stack_pointer_rtx)
return gen_rtx_REG (mode, REGNO (x) + word);
else
return gen_rtx_SUBREG (mode, x, word);
}
/* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
from the low-order part of the constant. */
else if ((GET_MODE_CLASS (mode) == MODE_INT
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
&& GET_MODE (x) == VOIDmode
&& (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
{
/* If MODE is twice the host word size, X is already the desired
representation. Otherwise, if MODE is wider than a word, we can't
do this. If MODE is exactly a word, return just one CONST_INT.
If MODE is smaller than a word, clear the bits that don't belong
in our mode, unless they and our sign bit are all one. So we get
either a reasonable negative value or a reasonable unsigned value
for this mode. */
if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
return x;
else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
return 0;
else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
return (GET_CODE (x) == CONST_INT ? x
: GEN_INT (CONST_DOUBLE_LOW (x)));
else
{
/* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
int width = GET_MODE_BITSIZE (mode);
HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
: CONST_DOUBLE_LOW (x));
/* Sign extend to HOST_WIDE_INT. */
val = val << (HOST_BITS_PER_WIDE_INT - width) >> (HOST_BITS_PER_WIDE_INT - width);
return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
: GEN_INT (val));
}
}
/* If X is an integral constant but we want it in floating-point, it
must be the case that we have a union of an integer and a floating-point
value. If the machine-parameters allow it, simulate that union here
and return the result. The two-word and single-word cases are
different. */
else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|| flag_pretend_float)
&& GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
&& GET_CODE (x) == CONST_INT
&& sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
#ifdef REAL_ARITHMETIC
{
REAL_VALUE_TYPE r;
HOST_WIDE_INT i;
i = INTVAL (x);
r = REAL_VALUE_FROM_TARGET_SINGLE (i);
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
}
#else
{
union {HOST_WIDE_INT i; float d; } u;
u.i = INTVAL (x);
return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
}
#endif
else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|| flag_pretend_float)
&& GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
&& (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
&& GET_MODE (x) == VOIDmode
&& (sizeof (double) * HOST_BITS_PER_CHAR
== 2 * HOST_BITS_PER_WIDE_INT))
#ifdef REAL_ARITHMETIC
{
REAL_VALUE_TYPE r;
HOST_WIDE_INT i[2];
HOST_WIDE_INT low, high;
if (GET_CODE (x) == CONST_INT)
low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
else
low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
/* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
target machine. */
if (WORDS_BIG_ENDIAN)
i[0] = high, i[1] = low;
else
i[0] = low, i[1] = high;
r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
}
#else
{
union {HOST_WIDE_INT i[2]; double d; } u;
HOST_WIDE_INT low, high;
if (GET_CODE (x) == CONST_INT)
low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
else
low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
#ifdef HOST_WORDS_BIG_ENDIAN
u.i[0] = high, u.i[1] = low;
#else
u.i[0] = low, u.i[1] = high;
#endif
return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
}
#endif
/* We need an extra case for machines where HOST_BITS_PER_WIDE_INT is the
same as sizeof (double) or when sizeof (float) is larger than the
size of a word on the target machine. */
#ifdef REAL_ARITHMETIC
else if (mode == SFmode && GET_CODE (x) == CONST_INT)
{
REAL_VALUE_TYPE r;
HOST_WIDE_INT i;
i = INTVAL (x);
r = REAL_VALUE_FROM_TARGET_SINGLE (i);
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
}
else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|| flag_pretend_float)
&& GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
&& GET_CODE (x) == CONST_INT
&& (sizeof (double) * HOST_BITS_PER_CHAR
== HOST_BITS_PER_WIDE_INT))
{
REAL_VALUE_TYPE r;
HOST_WIDE_INT i;
i = INTVAL (x);
r = REAL_VALUE_FROM_TARGET_DOUBLE (&i);
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
}
#endif
/* Similarly, if this is converting a floating-point value into a
single-word integer. Only do this is the host and target parameters are
compatible. */
else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|| flag_pretend_float)
&& (GET_MODE_CLASS (mode) == MODE_INT
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
&& GET_CODE (x) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
&& GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
return operand_subword (x, word, 0, GET_MODE (x));
/* Similarly, if this is converting a floating-point value into a
two-word integer, we can do this one word at a time and make an
integer. Only do this is the host and target parameters are
compatible. */
else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|| flag_pretend_float)
&& (GET_MODE_CLASS (mode) == MODE_INT
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
&& GET_CODE (x) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
&& GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
{
rtx lowpart
= operand_subword (x, word + WORDS_BIG_ENDIAN, 0, GET_MODE (x));
rtx highpart
= operand_subword (x, word + ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
if (lowpart && GET_CODE (lowpart) == CONST_INT
&& highpart && GET_CODE (highpart) == CONST_INT)
return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
}
/* Otherwise, we can't do this. */
return 0;
}
/* Return the real part (which has mode MODE) of a complex value X.
This always comes at the low address in memory. */
rtx
gen_realpart (mode, x)
enum machine_mode mode;
register rtx x;
{
if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
return XEXP (x, 0);
else if (WORDS_BIG_ENDIAN
&& GET_MODE_BITSIZE (mode) < BITS_PER_WORD
&& REG_P (x)
&& REGNO (x) < FIRST_PSEUDO_REGISTER)
fatal ("Unable to access real part of complex value in a hard register on this target");
else if (WORDS_BIG_ENDIAN)
return gen_highpart (mode, x);
else
return gen_lowpart (mode, x);
}
/* Return the imaginary part (which has mode MODE) of a complex value X.
This always comes at the high address in memory. */
rtx
gen_imagpart (mode, x)
enum machine_mode mode;
register rtx x;
{
if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
return XEXP (x, 1);
else if (WORDS_BIG_ENDIAN)
return gen_lowpart (mode, x);
else if (!WORDS_BIG_ENDIAN
&& GET_MODE_BITSIZE (mode) < BITS_PER_WORD
&& REG_P (x)
&& REGNO (x) < FIRST_PSEUDO_REGISTER)
fatal ("Unable to access imaginary part of complex value in a hard register on this target");
else
return gen_highpart (mode, x);
}
/* Return 1 iff X, assumed to be a SUBREG,
refers to the real part of the complex value in its containing reg.
Complex values are always stored with the real part in the first word,
regardless of WORDS_BIG_ENDIAN. */
int
subreg_realpart_p (x)
rtx x;
{
if (GET_CODE (x) != SUBREG)
abort ();
return SUBREG_WORD (x) * UNITS_PER_WORD < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x)));
}
/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
least-significant part of X.
MODE specifies how big a part of X to return;
it usually should not be larger than a word.
If X is a MEM whose address is a QUEUED, the value may be so also. */
rtx
gen_lowpart (mode, x)
enum machine_mode mode;
register rtx x;
{
rtx result = gen_lowpart_common (mode, x);
if (result)
return result;
else if (GET_CODE (x) == REG)
{
/* Must be a hard reg that's not valid in MODE. */
result = gen_lowpart_common (mode, copy_to_reg (x));
if (result == 0)
abort ();
return result;
}
else if (GET_CODE (x) == MEM)
{
/* The only additional case we can do is MEM. */
register int offset = 0;
if (WORDS_BIG_ENDIAN)
offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
if (BYTES_BIG_ENDIAN)
/* Adjust the address so that the address-after-the-data
is unchanged. */
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
}
else if (GET_CODE (x) == ADDRESSOF)
return gen_lowpart (mode, force_reg (GET_MODE (x), x));
else
abort ();
}
/* Like `gen_lowpart', but refer to the most significant part.
This is used to access the imaginary part of a complex number. */
rtx
gen_highpart (mode, x)
enum machine_mode mode;
register rtx x;
{
/* This case loses if X is a subreg. To catch bugs early,
complain if an invalid MODE is used even in other cases. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
abort ();
if (GET_CODE (x) == CONST_DOUBLE
#if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
#endif
)
return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
else if (GET_CODE (x) == CONST_INT)
{
if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
return const0_rtx;
return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
}
else if (GET_CODE (x) == MEM)
{
register int offset = 0;
if (! WORDS_BIG_ENDIAN)
offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
if (! BYTES_BIG_ENDIAN
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD)
offset -= (GET_MODE_SIZE (mode)
- MIN (UNITS_PER_WORD,
GET_MODE_SIZE (GET_MODE (x))));
return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
}
else if (GET_CODE (x) == SUBREG)
{
/* The only time this should occur is when we are looking at a
multi-word item with a SUBREG whose mode is the same as that of the
item. It isn't clear what we would do if it wasn't. */
if (SUBREG_WORD (x) != 0)
abort ();
return gen_highpart (mode, SUBREG_REG (x));
}
else if (GET_CODE (x) == REG)
{
int word;
/* Let the backend decide how many registers to skip. This is needed
in particular for sparc64 where fp regs are smaller than a word. */
/* ??? Note that subregs are now ambiguous, in that those against
pseudos are sized by the word size, while those against hard
regs are sized by the underlying register size. Better would be
to always interpret the subreg offset parameter as bytes or bits. */
if (WORDS_BIG_ENDIAN)
word = 0;
else if (REGNO (x) < FIRST_PSEUDO_REGISTER)
word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
- HARD_REGNO_NREGS (REGNO (x), mode));
else
word = ((GET_MODE_SIZE (GET_MODE (x))
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
/ UNITS_PER_WORD);
if (REGNO (x) < FIRST_PSEUDO_REGISTER
/* integrate.c can't handle parts of a return value register. */
&& (! REG_FUNCTION_VALUE_P (x)
|| ! rtx_equal_function_value_matters)
/* We want to keep the stack, frame, and arg pointers special. */
&& x != frame_pointer_rtx
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& x != arg_pointer_rtx
#endif
&& x != stack_pointer_rtx)
return gen_rtx_REG (mode, REGNO (x) + word);
else
return gen_rtx_SUBREG (mode, x, word);
}
else
abort ();
}
/* Return 1 iff X, assumed to be a SUBREG,
refers to the least significant part of its containing reg.
If X is not a SUBREG, always return 1 (it is its own low part!). */
int
subreg_lowpart_p (x)
rtx x;
{
if (GET_CODE (x) != SUBREG)
return 1;
else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
return 0;
if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
return (SUBREG_WORD (x)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
- MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
/ UNITS_PER_WORD));
return SUBREG_WORD (x) == 0;
}
/* Return subword I of operand OP.
The word number, I, is interpreted as the word number starting at the
low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
otherwise it is the high-order word.
If we cannot extract the required word, we return zero. Otherwise, an
rtx corresponding to the requested word will be returned.
VALIDATE_ADDRESS is nonzero if the address should be validated. Before
reload has completed, a valid address will always be returned. After
reload, if a valid address cannot be returned, we return zero.
If VALIDATE_ADDRESS is zero, we simply form the required address; validating
it is the responsibility of the caller.
MODE is the mode of OP in case it is a CONST_INT. */
rtx
operand_subword (op, i, validate_address, mode)
rtx op;
int i;
int validate_address;
enum machine_mode mode;
{
HOST_WIDE_INT val;
int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
int bits_per_word = BITS_PER_WORD;
if (mode == VOIDmode)
mode = GET_MODE (op);
if (mode == VOIDmode)
abort ();
/* If OP is narrower than a word, fail. */
if (mode != BLKmode
&& (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
return 0;
/* If we want a word outside OP, return zero. */
if (mode != BLKmode
&& (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
return const0_rtx;
/* If OP is already an integer word, return it. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD)
return op;
/* If OP is a REG or SUBREG, we can handle it very simply. */
if (GET_CODE (op) == REG)
{
/* ??? There is a potential problem with this code. It does not
properly handle extractions of a subword from a hard register
that is larger than word_mode. Presumably the check for
HARD_REGNO_MODE_OK catches these most of these cases. */
/* If OP is a hard register, but OP + I is not a hard register,
then extracting a subword is impossible.
For example, consider if OP is the last hard register and it is
larger than word_mode. If we wanted word N (for N > 0) because a
part of that hard register was known to contain a useful value,
then OP + I would refer to a pseudo, not the hard register we
actually wanted. */
if (REGNO (op) < FIRST_PSEUDO_REGISTER
&& REGNO (op) + i >= FIRST_PSEUDO_REGISTER)
return 0;
/* If the register is not valid for MODE, return 0. Note we
have to check both OP and OP + I since they may refer to
different parts of the register file.
Consider if OP refers to the last 96bit FP register and we want
subword 3 because that subword is known to contain a value we
needed. */
if (REGNO (op) < FIRST_PSEUDO_REGISTER
&& (! HARD_REGNO_MODE_OK (REGNO (op), word_mode)
|| ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode)))
return 0;
else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
|| (REG_FUNCTION_VALUE_P (op)
&& rtx_equal_function_value_matters)
/* We want to keep the stack, frame, and arg pointers
special. */
|| op == frame_pointer_rtx
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|| op == arg_pointer_rtx
#endif
|| op == stack_pointer_rtx)
return gen_rtx_SUBREG (word_mode, op, i);
else
return gen_rtx_REG (word_mode, REGNO (op) + i);
}
else if (GET_CODE (op) == SUBREG)
return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
else if (GET_CODE (op) == CONCAT)
{
int partwords = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
if (i < partwords)
return operand_subword (XEXP (op, 0), i, validate_address, mode);
return operand_subword (XEXP (op, 1), i - partwords,
validate_address, mode);
}
/* Form a new MEM at the requested address. */
if (GET_CODE (op) == MEM)
{
rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
rtx new;
if (validate_address)
{
if (reload_completed)
{
if (! strict_memory_address_p (word_mode, addr))
return 0;
}
else
addr = memory_address (word_mode, addr);
}
new = gen_rtx_MEM (word_mode, addr);
MEM_COPY_ATTRIBUTES (new, op);
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (op);
return new;
}
/* The only remaining cases are when OP is a constant. If the host and
target floating formats are the same, handling two-word floating
constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
are defined as returning one or two 32 bit values, respectively,
and not values of BITS_PER_WORD bits. */
#ifdef REAL_ARITHMETIC
/* The output is some bits, the width of the target machine's word.
A wider-word host can surely hold them in a CONST_INT. A narrower-word
host can't. */
if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
&& GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_BITSIZE (mode) == 64
&& GET_CODE (op) == CONST_DOUBLE)
{
long k[2];
REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
/* We handle 32-bit and >= 64-bit words here. Note that the order in
which the words are written depends on the word endianness.
??? This is a potential portability problem and should
be fixed at some point.
We must excercise caution with the sign bit. By definition there
are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
So we explicitly mask and sign-extend as necessary. */
if (BITS_PER_WORD == 32)
{
val = k[i];
val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
return GEN_INT (val);
}
#if HOST_BITS_PER_WIDE_INT >= 64
else if (BITS_PER_WORD >= 64 && i == 0)
{
val = k[! WORDS_BIG_ENDIAN];
val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
return GEN_INT (val);
}
#endif
else if (BITS_PER_WORD == 16)
{
val = k[i >> 1];
if ((i & 1) == !WORDS_BIG_ENDIAN)
val >>= 16;
val &= 0xffff;
return GEN_INT (val);
}
else
abort ();
}
else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
&& GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_BITSIZE (mode) > 64
&& GET_CODE (op) == CONST_DOUBLE)
{
long k[4];
REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
if (BITS_PER_WORD == 32)
{
val = k[i];
val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
return GEN_INT (val);
}
else
abort ();
}
#else /* no REAL_ARITHMETIC */
if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|| flag_pretend_float)
&& GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
&& GET_CODE (op) == CONST_DOUBLE)
{
/* The constant is stored in the host's word-ordering,
but we want to access it in the target's word-ordering. Some
compilers don't like a conditional inside macro args, so we have two
copies of the return. */
#ifdef HOST_WORDS_BIG_ENDIAN
return GEN_INT (i == WORDS_BIG_ENDIAN
? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
#else
return GEN_INT (i != WORDS_BIG_ENDIAN
? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
#endif
}
#endif /* no REAL_ARITHMETIC */
/* Single word float is a little harder, since single- and double-word
values often do not have the same high-order bits. We have already
verified that we want the only defined word of the single-word value. */
#ifdef REAL_ARITHMETIC
if (GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_BITSIZE (mode) == 32
&& GET_CODE (op) == CONST_DOUBLE)
{
long l;
REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
REAL_VALUE_TO_TARGET_SINGLE (rv, l);
/* Sign extend from known 32-bit value to HOST_WIDE_INT. */
val = l;
val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
if (BITS_PER_WORD == 16)
{
if ((i & 1) == !WORDS_BIG_ENDIAN)
val >>= 16;
val &= 0xffff;
}
return GEN_INT (val);
}
#else
if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|| flag_pretend_float)
&& sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
&& GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
&& GET_CODE (op) == CONST_DOUBLE)
{
double d;
union {float f; HOST_WIDE_INT i; } u;
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
u.f = d;
return GEN_INT (u.i);
}
if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|| flag_pretend_float)
&& sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
&& GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
&& GET_CODE (op) == CONST_DOUBLE)
{
double d;
union {double d; HOST_WIDE_INT i; } u;
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
u.d = d;
return GEN_INT (u.i);
}
#endif /* no REAL_ARITHMETIC */
/* The only remaining cases that we can handle are integers.
Convert to proper endianness now since these cases need it.
At this point, i == 0 means the low-order word.
We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
in general. However, if OP is (const_int 0), we can just return
it for any word. */
if (op == const0_rtx)
return op;
if (GET_MODE_CLASS (mode) != MODE_INT
|| (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
|| BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
return 0;
if (WORDS_BIG_ENDIAN)
i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
/* Find out which word on the host machine this value is in and get
it from the constant. */
val = (i / size_ratio == 0
? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
: (GET_CODE (op) == CONST_INT
? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
/* Get the value we want into the low bits of val. */
if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
val = ((val >> ((i % size_ratio) * BITS_PER_WORD)));
/* Clear the bits that don't belong in our mode, unless they and our sign
bit are all one. So we get either a reasonable negative value or a
reasonable unsigned value for this mode. */
if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT
&& ((val & ((HOST_WIDE_INT) (-1) << (bits_per_word - 1)))
!= ((HOST_WIDE_INT) (-1) << (bits_per_word - 1))))
val &= ((HOST_WIDE_INT) 1 << bits_per_word) - 1;
/* If this would be an entire word for the target, but is not for
the host, then sign-extend on the host so that the number will look
the same way on the host that it would on the target.
For example, when building a 64 bit alpha hosted 32 bit sparc
targeted compiler, then we want the 32 bit unsigned value -1 to be
represented as a 64 bit value -1, and not as 0x00000000ffffffff.
The later confuses the sparc backend. */
if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT
&& (val & ((HOST_WIDE_INT) 1 << (bits_per_word - 1))))
val |= ((HOST_WIDE_INT) (-1) << bits_per_word);
return GEN_INT (val);
}
/* Similar to `operand_subword', but never return 0. If we can't extract
the required subword, put OP into a register and try again. If that fails,
abort. We always validate the address in this case. It is not valid
to call this function after reload; it is mostly meant for RTL
generation.
MODE is the mode of OP, in case it is CONST_INT. */
rtx
operand_subword_force (op, i, mode)
rtx op;
int i;
enum machine_mode mode;
{
rtx result = operand_subword (op, i, 1, mode);
if (result)
return result;
if (mode != BLKmode && mode != VOIDmode)
{
/* If this is a register which can not be accessed by words, copy it
to a pseudo register. */
if (GET_CODE (op) == REG)
op = copy_to_reg (op);
else
op = force_reg (mode, op);
}
result = operand_subword (op, i, 1, mode);
if (result == 0)
abort ();
return result;
}
/* Given a compare instruction, swap the operands.
A test instruction is changed into a compare of 0 against the operand. */
void
reverse_comparison (insn)
rtx insn;
{
rtx body = PATTERN (insn);
rtx comp;
if (GET_CODE (body) == SET)
comp = SET_SRC (body);
else
comp = SET_SRC (XVECEXP (body, 0, 0));
if (GET_CODE (comp) == COMPARE)
{
rtx op0 = XEXP (comp, 0);
rtx op1 = XEXP (comp, 1);
XEXP (comp, 0) = op1;
XEXP (comp, 1) = op0;
}
else
{
rtx new = gen_rtx_COMPARE (VOIDmode, CONST0_RTX (GET_MODE (comp)), comp);
if (GET_CODE (body) == SET)
SET_SRC (body) = new;
else
SET_SRC (XVECEXP (body, 0, 0)) = new;
}
}
/* Return a memory reference like MEMREF, but with its mode changed
to MODE and its address changed to ADDR.
(VOIDmode means don't change the mode.
NULL for ADDR means don't change the address.) */
rtx
change_address (memref, mode, addr)
rtx memref;
enum machine_mode mode;
rtx addr;
{
rtx new;
if (GET_CODE (memref) != MEM)
abort ();
if (mode == VOIDmode)
mode = GET_MODE (memref);
if (addr == 0)
addr = XEXP (memref, 0);
/* If reload is in progress or has completed, ADDR must be valid.
Otherwise, we can call memory_address to make it valid. */
if (reload_completed || reload_in_progress)
{
if (! memory_address_p (mode, addr))
abort ();
}
else
addr = memory_address (mode, addr);
if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
return memref;
new = gen_rtx_MEM (mode, addr);
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (memref);
MEM_COPY_ATTRIBUTES (new, memref);
return new;
}
/* Return a newly created CODE_LABEL rtx with a unique label number. */
rtx
gen_label_rtx ()
{
register rtx label;
label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
NULL_RTX, label_num++, NULL_PTR);
LABEL_NUSES (label) = 0;
return label;
}
/* For procedure integration. */
/* Return a newly created INLINE_HEADER rtx. Should allocate this
from a permanent obstack when the opportunity arises. */
rtx
gen_inline_header_rtx (first_insn, first_parm_insn, first_labelno,
last_labelno, max_parm_regnum, max_regnum, args_size,
pops_args, stack_slots, forced_labels, function_flags,
outgoing_args_size, original_arg_vector,
original_decl_initial, regno_rtx, regno_flag,
regno_align, parm_reg_stack_loc)
rtx first_insn, first_parm_insn;
int first_labelno, last_labelno, max_parm_regnum, max_regnum, args_size;
int pops_args;
rtx stack_slots;
rtx forced_labels;
int function_flags;
int outgoing_args_size;
rtvec original_arg_vector;
rtx original_decl_initial;
rtvec regno_rtx;
char *regno_flag;
char *regno_align;
rtvec parm_reg_stack_loc;
{
rtx header = gen_rtx_INLINE_HEADER (VOIDmode,
cur_insn_uid++, NULL_RTX,
first_insn, first_parm_insn,
first_labelno, last_labelno,
max_parm_regnum, max_regnum, args_size,
pops_args, stack_slots, forced_labels,
function_flags, outgoing_args_size,
original_arg_vector,
original_decl_initial,
regno_rtx, regno_flag, regno_align,
parm_reg_stack_loc);
return header;
}
/* Install new pointers to the first and last insns in the chain.
Also, set cur_insn_uid to one higher than the last in use.
Used for an inline-procedure after copying the insn chain. */
void
set_new_first_and_last_insn (first, last)
rtx first, last;
{
rtx insn;
first_insn = first;
last_insn = last;
cur_insn_uid = 0;
for (insn = first; insn; insn = NEXT_INSN (insn))
cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
cur_insn_uid++;
}
/* Set the range of label numbers found in the current function.
This is used when belatedly compiling an inline function. */
void
set_new_first_and_last_label_num (first, last)
int first, last;
{
base_label_num = label_num;
first_label_num = first;
last_label_num = last;
}
/* Save all variables describing the current status into the structure *P.
This is used before starting a nested function. */
void
save_emit_status (p)
struct function *p;
{
p->reg_rtx_no = reg_rtx_no;
p->first_label_num = first_label_num;
p->first_insn = first_insn;
p->last_insn = last_insn;
p->sequence_rtl_expr = sequence_rtl_expr;
p->sequence_stack = sequence_stack;
p->cur_insn_uid = cur_insn_uid;
p->last_linenum = last_linenum;
p->last_filename = last_filename;
p->regno_pointer_flag = regno_pointer_flag;
p->regno_pointer_align = regno_pointer_align;
p->regno_pointer_flag_length = regno_pointer_flag_length;
p->regno_reg_rtx = regno_reg_rtx;
}
/* Restore all variables describing the current status from the structure *P.
This is used after a nested function. */
void
restore_emit_status (p)
struct function *p;
{
int i;
reg_rtx_no = p->reg_rtx_no;
first_label_num = p->first_label_num;
last_label_num = 0;
first_insn = p->first_insn;
last_insn = p->last_insn;
sequence_rtl_expr = p->sequence_rtl_expr;
sequence_stack = p->sequence_stack;
cur_insn_uid = p->cur_insn_uid;
last_linenum = p->last_linenum;
last_filename = p->last_filename;
regno_pointer_flag = p->regno_pointer_flag;
regno_pointer_align = p->regno_pointer_align;
regno_pointer_flag_length = p->regno_pointer_flag_length;
regno_reg_rtx = p->regno_reg_rtx;
/* Clear our cache of rtx expressions for start_sequence and
gen_sequence. */
sequence_element_free_list = 0;
for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
sequence_result[i] = 0;
free_insn = 0;
}
/* Go through all the RTL insn bodies and copy any invalid shared structure.
It does not work to do this twice, because the mark bits set here
are not cleared afterwards. */
void
unshare_all_rtl (insn)
register rtx insn;
{
for (; insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|| GET_CODE (insn) == CALL_INSN)
{
PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
}
/* Make sure the addresses of stack slots found outside the insn chain
(such as, in DECL_RTL of a variable) are not shared
with the insn chain.
This special care is necessary when the stack slot MEM does not
actually appear in the insn chain. If it does appear, its address
is unshared from all else at that point. */
copy_rtx_if_shared (stack_slot_list);
}
/* Mark ORIG as in use, and return a copy of it if it was already in use.
Recursively does the same for subexpressions. */
rtx
copy_rtx_if_shared (orig)
rtx orig;
{
register rtx x = orig;
register int i;
register enum rtx_code code;
register char *format_ptr;
int copied = 0;
if (x == 0)
return 0;
code = GET_CODE (x);
/* These types may be freely shared. */
switch (code)
{
case REG:
case QUEUED:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
case SCRATCH:
/* SCRATCH must be shared because they represent distinct values. */
return x;
case CONST:
/* CONST can be shared if it contains a SYMBOL_REF. If it contains
a LABEL_REF, it isn't sharable. */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
return x;
break;
case INSN:
case JUMP_INSN:
case CALL_INSN:
case NOTE:
case BARRIER:
/* The chain of insns is not being copied. */
return x;
case MEM:
/* A MEM is allowed to be shared if its address is constant.
We used to allow sharing of MEMs which referenced
virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
that can lose. instantiate_virtual_regs will not unshare
the MEMs, and combine may change the structure of the address
because it looks safe and profitable in one context, but
in some other context it creates unrecognizable RTL. */
if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
return x;
break;
default:
break;
}
/* This rtx may not be shared. If it has already been seen,
replace it with a copy of itself. */
if (x->used)
{
register rtx copy;
copy = rtx_alloc (code);
bcopy ((char *) x, (char *) copy,
(sizeof (*copy) - sizeof (copy->fld)
+ sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
x = copy;
copied = 1;
}
x->used = 1;
/* Now scan the subexpressions recursively.
We can store any replaced subexpressions directly into X
since we know X is not shared! Any vectors in X
must be copied if X was copied. */
format_ptr = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*format_ptr++)
{
case 'e':
XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
break;
case 'E':
if (XVEC (x, i) != NULL)
{
register int j;
int len = XVECLEN (x, i);
if (copied && len > 0)
XVEC (x, i) = gen_rtvec_vv (len, XVEC (x, i)->elem);
for (j = 0; j < len; j++)
XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
}
break;
}
}
return x;
}
/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
to look for shared sub-parts. */
void
reset_used_flags (x)
rtx x;
{
register int i, j;
register enum rtx_code code;
register char *format_ptr;
if (x == 0)
return;
code = GET_CODE (x);
/* These types may be freely shared so we needn't do any resetting
for them. */
switch (code)
{
case REG:
case QUEUED:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
return;
case INSN:
case JUMP_INSN:
case CALL_INSN:
case NOTE:
case LABEL_REF:
case BARRIER:
/* The chain of insns is not being copied. */
return;
default:
break;
}
x->used = 0;
format_ptr = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*format_ptr++)
{
case 'e':
reset_used_flags (XEXP (x, i));
break;
case 'E':
for (j = 0; j < XVECLEN (x, i); j++)
reset_used_flags (XVECEXP (x, i, j));
break;
}
}
}
/* Copy X if necessary so that it won't be altered by changes in OTHER.
Return X or the rtx for the pseudo reg the value of X was copied into.
OTHER must be valid as a SET_DEST. */
rtx
make_safe_from (x, other)
rtx x, other;
{
while (1)
switch (GET_CODE (other))
{
case SUBREG:
other = SUBREG_REG (other);
break;
case STRICT_LOW_PART:
case SIGN_EXTEND:
case ZERO_EXTEND:
other = XEXP (other, 0);
break;
default:
goto done;
}
done:
if ((GET_CODE (other) == MEM
&& ! CONSTANT_P (x)
&& GET_CODE (x) != REG
&& GET_CODE (x) != SUBREG)
|| (GET_CODE (other) == REG
&& (REGNO (other) < FIRST_PSEUDO_REGISTER
|| reg_mentioned_p (other, x))))
{
rtx temp = gen_reg_rtx (GET_MODE (x));
emit_move_insn (temp, x);
return temp;
}
return x;
}
/* Emission of insns (adding them to the doubly-linked list). */
/* Return the first insn of the current sequence or current function. */
rtx
get_insns ()
{
return first_insn;
}
/* Return the last insn emitted in current sequence or current function. */
rtx
get_last_insn ()
{
return last_insn;
}
/* Specify a new insn as the last in the chain. */
void
set_last_insn (insn)
rtx insn;
{
if (NEXT_INSN (insn) != 0)
abort ();
last_insn = insn;
}
/* Return the last insn emitted, even if it is in a sequence now pushed. */
rtx
get_last_insn_anywhere ()
{
struct sequence_stack *stack;
if (last_insn)
return last_insn;
for (stack = sequence_stack; stack; stack = stack->next)
if (stack->last != 0)
return stack->last;
return 0;
}
/* Return a number larger than any instruction's uid in this function. */
int
get_max_uid ()
{
return cur_insn_uid;
}
/* Return the next insn. If it is a SEQUENCE, return the first insn
of the sequence. */
rtx
next_insn (insn)
rtx insn;
{
if (insn)
{
insn = NEXT_INSN (insn);
if (insn && GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
insn = XVECEXP (PATTERN (insn), 0, 0);
}
return insn;
}
/* Return the previous insn. If it is a SEQUENCE, return the last insn
of the sequence. */
rtx
previous_insn (insn)
rtx insn;
{
if (insn)
{
insn = PREV_INSN (insn);
if (insn && GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
}
return insn;
}
/* Return the next insn after INSN that is not a NOTE. This routine does not
look inside SEQUENCEs. */
rtx
next_nonnote_insn (insn)
rtx insn;
{
while (insn)
{
insn = NEXT_INSN (insn);
if (insn == 0 || GET_CODE (insn) != NOTE)
break;
}
return insn;
}
/* Return the previous insn before INSN that is not a NOTE. This routine does
not look inside SEQUENCEs. */
rtx
prev_nonnote_insn (insn)
rtx insn;
{
while (insn)
{
insn = PREV_INSN (insn);
if (insn == 0 || GET_CODE (insn) != NOTE)
break;
}
return insn;
}
/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
or 0, if there is none. This routine does not look inside
SEQUENCEs. */
rtx
next_real_insn (insn)
rtx insn;
{
while (insn)
{
insn = NEXT_INSN (insn);
if (insn == 0 || GET_CODE (insn) == INSN
|| GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
break;
}
return insn;
}
/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
or 0, if there is none. This routine does not look inside
SEQUENCEs. */
rtx
prev_real_insn (insn)
rtx insn;
{
while (insn)
{
insn = PREV_INSN (insn);
if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
|| GET_CODE (insn) == JUMP_INSN)
break;
}
return insn;
}
/* Find the next insn after INSN that really does something. This routine
does not look inside SEQUENCEs. Until reload has completed, this is the
same as next_real_insn. */
rtx
next_active_insn (insn)
rtx insn;
{
while (insn)
{
insn = NEXT_INSN (insn);
if (insn == 0
|| GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
|| (GET_CODE (insn) == INSN
&& (! reload_completed
|| (GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER))))
break;
}
return insn;
}
/* Find the last insn before INSN that really does something. This routine
does not look inside SEQUENCEs. Until reload has completed, this is the
same as prev_real_insn. */
rtx
prev_active_insn (insn)
rtx insn;
{
while (insn)
{
insn = PREV_INSN (insn);
if (insn == 0
|| GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
|| (GET_CODE (insn) == INSN
&& (! reload_completed
|| (GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER))))
break;
}
return insn;
}
/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
rtx
next_label (insn)
rtx insn;
{
while (insn)
{
insn = NEXT_INSN (insn);
if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
break;
}
return insn;
}
/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
rtx
prev_label (insn)
rtx insn;
{
while (insn)
{
insn = PREV_INSN (insn);
if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
break;
}
return insn;
}
#ifdef HAVE_cc0
/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
and REG_CC_USER notes so we can find it. */
void
link_cc0_insns (insn)
rtx insn;
{
rtx user = next_nonnote_insn (insn);
if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
user = XVECEXP (PATTERN (user), 0, 0);
REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn, REG_NOTES (user));
REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
}
/* Return the next insn that uses CC0 after INSN, which is assumed to
set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
applied to the result of this function should yield INSN).
Normally, this is simply the next insn. However, if a REG_CC_USER note
is present, it contains the insn that uses CC0.
Return 0 if we can't find the insn. */
rtx
next_cc0_user (insn)
rtx insn;
{
rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
if (note)
return XEXP (note, 0);
insn = next_nonnote_insn (insn);
if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
insn = XVECEXP (PATTERN (insn), 0, 0);
if (insn && GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_mentioned_p (cc0_rtx, PATTERN (insn)))
return insn;
return 0;
}
/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
note, it is the previous insn. */
rtx
prev_cc0_setter (insn)
rtx insn;
{
rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
if (note)
return XEXP (note, 0);
insn = prev_nonnote_insn (insn);
if (! sets_cc0_p (PATTERN (insn)))
abort ();
return insn;
}
#endif
/* Try splitting insns that can be split for better scheduling.
PAT is the pattern which might split.
TRIAL is the insn providing PAT.
LAST is non-zero if we should return the last insn of the sequence produced.
If this routine succeeds in splitting, it returns the first or last
replacement insn depending on the value of LAST. Otherwise, it
returns TRIAL. If the insn to be returned can be split, it will be. */
rtx
try_split (pat, trial, last)
rtx pat, trial;
int last;
{
rtx before = PREV_INSN (trial);
rtx after = NEXT_INSN (trial);
rtx seq = split_insns (pat, trial);
int has_barrier = 0;
rtx tem;
/* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
We may need to handle this specially. */
if (after && GET_CODE (after) == BARRIER)
{
has_barrier = 1;
after = NEXT_INSN (after);
}
if (seq)
{
/* SEQ can either be a SEQUENCE or the pattern of a single insn.
The latter case will normally arise only when being done so that
it, in turn, will be split (SFmode on the 29k is an example). */
if (GET_CODE (seq) == SEQUENCE)
{
int i;
/* Avoid infinite loop if any insn of the result matches
the original pattern. */
for (i = 0; i < XVECLEN (seq, 0); i++)
if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
&& rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
return trial;
/* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
increment the usage count so we don't delete the label. */
if (GET_CODE (trial) == JUMP_INSN)
for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
{
JUMP_LABEL (XVECEXP (seq, 0, i)) = JUMP_LABEL (trial);
if (JUMP_LABEL (trial))
LABEL_NUSES (JUMP_LABEL (trial))++;
}
tem = emit_insn_after (seq, before);
delete_insn (trial);
if (has_barrier)
emit_barrier_after (tem);
/* Recursively call try_split for each new insn created; by the
time control returns here that insn will be fully split, so
set LAST and continue from the insn after the one returned.
We can't use next_active_insn here since AFTER may be a note.
Ignore deleted insns, which can be occur if not optimizing. */
for (tem = NEXT_INSN (before); tem != after;
tem = NEXT_INSN (tem))
if (! INSN_DELETED_P (tem)
&& GET_RTX_CLASS (GET_CODE (tem)) == 'i')
tem = try_split (PATTERN (tem), tem, 1);
}
/* Avoid infinite loop if the result matches the original pattern. */
else if (rtx_equal_p (seq, pat))
return trial;
else
{
PATTERN (trial) = seq;
INSN_CODE (trial) = -1;
try_split (seq, trial, last);
}
/* Return either the first or the last insn, depending on which was
requested. */
return last ? prev_active_insn (after) : next_active_insn (before);
}
return trial;
}
/* Make and return an INSN rtx, initializing all its slots.
Store PATTERN in the pattern slots. */
rtx
make_insn_raw (pattern)
rtx pattern;
{
register rtx insn;
/* If in RTL generation phase, see if FREE_INSN can be used. */
if (free_insn != 0 && rtx_equal_function_value_matters)
{
insn = free_insn;
free_insn = NEXT_INSN (free_insn);
PUT_CODE (insn, INSN);
}
else
insn = rtx_alloc (INSN);
INSN_UID (insn) = cur_insn_uid++;
PATTERN (insn) = pattern;
INSN_CODE (insn) = -1;
LOG_LINKS (insn) = NULL;
REG_NOTES (insn) = NULL;
return insn;
}
/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
static rtx
make_jump_insn_raw (pattern)
rtx pattern;
{
register rtx insn;
insn = rtx_alloc (JUMP_INSN);
INSN_UID (insn) = cur_insn_uid++;
PATTERN (insn) = pattern;
INSN_CODE (insn) = -1;
LOG_LINKS (insn) = NULL;
REG_NOTES (insn) = NULL;
JUMP_LABEL (insn) = NULL;
return insn;
}
/* Like `make_insn' but make a CALL_INSN instead of an insn. */
static rtx
make_call_insn_raw (pattern)
rtx pattern;
{
register rtx insn;
insn = rtx_alloc (CALL_INSN);
INSN_UID (insn) = cur_insn_uid++;
PATTERN (insn) = pattern;
INSN_CODE (insn) = -1;
LOG_LINKS (insn) = NULL;
REG_NOTES (insn) = NULL;
CALL_INSN_FUNCTION_USAGE (insn) = NULL;
return insn;
}
/* Add INSN to the end of the doubly-linked list.
INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
void
add_insn (insn)
register rtx insn;
{
PREV_INSN (insn) = last_insn;
NEXT_INSN (insn) = 0;
if (NULL != last_insn)
NEXT_INSN (last_insn) = insn;
if (NULL == first_insn)
first_insn = insn;
last_insn = insn;
}
/* Add INSN into the doubly-linked list after insn AFTER. This and
the next should be the only functions called to insert an insn once
delay slots have been filled since only they know how to update a
SEQUENCE. */
void
add_insn_after (insn, after)
rtx insn, after;
{
rtx next = NEXT_INSN (after);
if (optimize && INSN_DELETED_P (after))
abort ();
NEXT_INSN (insn) = next;
PREV_INSN (insn) = after;
if (next)
{
PREV_INSN (next) = insn;
if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
}
else if (last_insn == after)
last_insn = insn;
else
{
struct sequence_stack *stack = sequence_stack;
/* Scan all pending sequences too. */
for (; stack; stack = stack->next)
if (after == stack->last)
{
stack->last = insn;
break;
}
if (stack == 0)
abort ();
}
NEXT_INSN (after) = insn;
if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
{
rtx sequence = PATTERN (after);
NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
}
}
/* Add INSN into the doubly-linked list before insn BEFORE. This and
the previous should be the only functions called to insert an insn once
delay slots have been filled since only they know how to update a
SEQUENCE. */
void
add_insn_before (insn, before)
rtx insn, before;
{
rtx prev = PREV_INSN (before);
if (optimize && INSN_DELETED_P (before))
abort ();
PREV_INSN (insn) = prev;
NEXT_INSN (insn) = before;
if (prev)
{
NEXT_INSN (prev) = insn;
if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
{
rtx sequence = PATTERN (prev);
NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
}
}
else if (first_insn == before)
first_insn = insn;
else
{
struct sequence_stack *stack = sequence_stack;
/* Scan all pending sequences too. */
for (; stack; stack = stack->next)
if (before == stack->first)
{
stack->first = insn;
break;
}
if (stack == 0)
abort ();
}
PREV_INSN (before) = insn;
if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
}
/* Remove an insn from its doubly-linked list. This function knows how
to handle sequences. */
void
remove_insn (insn)
rtx insn;
{
rtx next = NEXT_INSN (insn);
rtx prev = PREV_INSN (insn);
if (prev)
{
NEXT_INSN (prev) = next;
if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
{
rtx sequence = PATTERN (prev);
NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
}
}
else if (first_insn == insn)
first_insn = next;
else
{
struct sequence_stack *stack = sequence_stack;
/* Scan all pending sequences too. */
for (; stack; stack = stack->next)
if (insn == stack->first)
{
stack->first = next;
break;
}
if (stack == 0)
abort ();
}
if (next)
{
PREV_INSN (next) = prev;
if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
}
else if (last_insn == insn)
last_insn = prev;
else
{
struct sequence_stack *stack = sequence_stack;
/* Scan all pending sequences too. */
for (; stack; stack = stack->next)
if (insn == stack->last)
{
stack->last = prev;
break;
}
if (stack == 0)
abort ();
}
}
/* Delete all insns made since FROM.
FROM becomes the new last instruction. */
void
delete_insns_since (from)
rtx from;
{
if (from == 0)
first_insn = 0;
else
NEXT_INSN (from) = 0;
last_insn = from;
}
/* This function is deprecated, please use sequences instead.
Move a consecutive bunch of insns to a different place in the chain.
The insns to be moved are those between FROM and TO.
They are moved to a new position after the insn AFTER.
AFTER must not be FROM or TO or any insn in between.
This function does not know about SEQUENCEs and hence should not be
called after delay-slot filling has been done. */
void
reorder_insns (from, to, after)
rtx from, to, after;
{
/* Splice this bunch out of where it is now. */
if (PREV_INSN (from))
NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
if (NEXT_INSN (to))
PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
if (last_insn == to)
last_insn = PREV_INSN (from);
if (first_insn == from)
first_insn = NEXT_INSN (to);
/* Make the new neighbors point to it and it to them. */
if (NEXT_INSN (after))
PREV_INSN (NEXT_INSN (after)) = to;
NEXT_INSN (to) = NEXT_INSN (after);
PREV_INSN (from) = after;
NEXT_INSN (after) = from;
if (after == last_insn)
last_insn = to;
}
/* Return the line note insn preceding INSN. */
static rtx
find_line_note (insn)
rtx insn;
{
if (no_line_numbers)
return 0;
for (; insn; insn = PREV_INSN (insn))
if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) >= 0)
break;
return insn;
}
/* Like reorder_insns, but inserts line notes to preserve the line numbers
of the moved insns when debugging. This may insert a note between AFTER
and FROM, and another one after TO. */
void
reorder_insns_with_line_notes (from, to, after)
rtx from, to, after;
{
rtx from_line = find_line_note (from);
rtx after_line = find_line_note (after);
reorder_insns (from, to, after);
if (from_line == after_line)
return;
if (from_line)
emit_line_note_after (NOTE_SOURCE_FILE (from_line),
NOTE_LINE_NUMBER (from_line),
after);
if (after_line)
emit_line_note_after (NOTE_SOURCE_FILE (after_line),
NOTE_LINE_NUMBER (after_line),
to);
}
/* Emit an insn of given code and pattern
at a specified place within the doubly-linked list. */
/* Make an instruction with body PATTERN
and output it before the instruction BEFORE. */
rtx
emit_insn_before (pattern, before)
register rtx pattern, before;
{
register rtx insn = before;
if (GET_CODE (pattern) == SEQUENCE)
{
register int i;
for (i = 0; i < XVECLEN (pattern, 0); i++)
{
insn = XVECEXP (pattern, 0, i);
add_insn_before (insn, before);
}
if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
sequence_result[XVECLEN (pattern, 0)] = pattern;
}
else
{
insn = make_insn_raw (pattern);
add_insn_before (insn, before);
}
return insn;
}
/* Make an instruction with body PATTERN and code JUMP_INSN
and output it before the instruction BEFORE. */
rtx
emit_jump_insn_before (pattern, before)
register rtx pattern, before;
{
register rtx insn;
if (GET_CODE (pattern) == SEQUENCE)
insn = emit_insn_before (pattern, before);
else
{
insn = make_jump_insn_raw (pattern);
add_insn_before (insn, before);
}
return insn;
}
/* Make an instruction with body PATTERN and code CALL_INSN
and output it before the instruction BEFORE. */
rtx
emit_call_insn_before (pattern, before)
register rtx pattern, before;
{
register rtx insn;
if (GET_CODE (pattern) == SEQUENCE)
insn = emit_insn_before (pattern, before);
else
{
insn = make_call_insn_raw (pattern);
add_insn_before (insn, before);
PUT_CODE (insn, CALL_INSN);
}
return insn;
}
/* Make an insn of code BARRIER
and output it before the insn BEFORE. */
rtx
emit_barrier_before (before)
register rtx before;
{
register rtx insn = rtx_alloc (BARRIER);
INSN_UID (insn) = cur_insn_uid++;
add_insn_before (insn, before);
return insn;
}
/* Emit the label LABEL before the insn BEFORE. */
rtx
emit_label_before (label, before)
rtx label, before;
{
/* This can be called twice for the same label as a result of the
confusion that follows a syntax error! So make it harmless. */
if (INSN_UID (label) == 0)
{
INSN_UID (label) = cur_insn_uid++;
add_insn_before (label, before);
}
return label;
}
/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
rtx
emit_note_before (subtype, before)
int subtype;
rtx before;
{
register rtx note = rtx_alloc (NOTE);
INSN_UID (note) = cur_insn_uid++;
NOTE_SOURCE_FILE (note) = 0;
NOTE_LINE_NUMBER (note) = subtype;
add_insn_before (note, before);
return note;
}
/* Make an insn of code INSN with body PATTERN
and output it after the insn AFTER. */
rtx
emit_insn_after (pattern, after)
register rtx pattern, after;
{
register rtx insn = after;
if (GET_CODE (pattern) == SEQUENCE)
{
register int i;
for (i = 0; i < XVECLEN (pattern, 0); i++)
{
insn = XVECEXP (pattern, 0, i);
add_insn_after (insn, after);
after = insn;
}
if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
sequence_result[XVECLEN (pattern, 0)] = pattern;
}
else
{
insn = make_insn_raw (pattern);
add_insn_after (insn, after);
}
return insn;
}
/* Similar to emit_insn_after, except that line notes are to be inserted so
as to act as if this insn were at FROM. */
void
emit_insn_after_with_line_notes (pattern, after, from)
rtx pattern, after, from;
{
rtx from_line = find_line_note (from);
rtx after_line = find_line_note (after);
rtx insn = emit_insn_after (pattern, after);
if (from_line)
emit_line_note_after (NOTE_SOURCE_FILE (from_line),
NOTE_LINE_NUMBER (from_line),
after);
if (after_line)
emit_line_note_after (NOTE_SOURCE_FILE (after_line),
NOTE_LINE_NUMBER (after_line),
insn);
}
/* Make an insn of code JUMP_INSN with body PATTERN
and output it after the insn AFTER. */
rtx
emit_jump_insn_after (pattern, after)
register rtx pattern, after;
{
register rtx insn;
if (GET_CODE (pattern) == SEQUENCE)
insn = emit_insn_after (pattern, after);
else
{
insn = make_jump_insn_raw (pattern);
add_insn_after (insn, after);
}
return insn;
}
/* Make an insn of code BARRIER
and output it after the insn AFTER. */
rtx
emit_barrier_after (after)
register rtx after;
{
register rtx insn = rtx_alloc (BARRIER);
INSN_UID (insn) = cur_insn_uid++;
add_insn_after (insn, after);
return insn;
}
/* Emit the label LABEL after the insn AFTER. */
rtx
emit_label_after (label, after)
rtx label, after;
{
/* This can be called twice for the same label
as a result of the confusion that follows a syntax error!
So make it harmless. */
if (INSN_UID (label) == 0)
{
INSN_UID (label) = cur_insn_uid++;
add_insn_after (label, after);
}
return label;
}
/* Emit a note of subtype SUBTYPE after the insn AFTER. */
rtx
emit_note_after (subtype, after)
int subtype;
rtx after;
{
register rtx note = rtx_alloc (NOTE);
INSN_UID (note) = cur_insn_uid++;
NOTE_SOURCE_FILE (note) = 0;
NOTE_LINE_NUMBER (note) = subtype;
add_insn_after (note, after);
return note;
}
/* Emit a line note for FILE and LINE after the insn AFTER. */
rtx
emit_line_note_after (file, line, after)
char *file;
int line;
rtx after;
{
register rtx note;
if (no_line_numbers && line > 0)
{
cur_insn_uid++;
return 0;
}
note = rtx_alloc (NOTE);
INSN_UID (note) = cur_insn_uid++;
NOTE_SOURCE_FILE (note) = file;
NOTE_LINE_NUMBER (note) = line;
add_insn_after (note, after);
return note;
}
/* Make an insn of code INSN with pattern PATTERN
and add it to the end of the doubly-linked list.
If PATTERN is a SEQUENCE, take the elements of it
and emit an insn for each element.
Returns the last insn emitted. */
rtx
emit_insn (pattern)
rtx pattern;
{
rtx insn = last_insn;
if (GET_CODE (pattern) == SEQUENCE)
{
register int i;
for (i = 0; i < XVECLEN (pattern, 0); i++)
{
insn = XVECEXP (pattern, 0, i);
add_insn (insn);
}
if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
sequence_result[XVECLEN (pattern, 0)] = pattern;
}
else
{
insn = make_insn_raw (pattern);
add_insn (insn);
}
return insn;
}
/* Emit the insns in a chain starting with INSN.
Return the last insn emitted. */
rtx
emit_insns (insn)
rtx insn;
{
rtx last = 0;
while (insn)
{
rtx next = NEXT_INSN (insn);
add_insn (insn);
last = insn;
insn = next;
}
return last;
}
/* Emit the insns in a chain starting with INSN and place them in front of
the insn BEFORE. Return the last insn emitted. */
rtx
emit_insns_before (insn, before)
rtx insn;
rtx before;
{
rtx last = 0;
while (insn)
{
rtx next = NEXT_INSN (insn);
add_insn_before (insn, before);
last = insn;
insn = next;
}
return last;
}
/* Emit the insns in a chain starting with FIRST and place them in back of
the insn AFTER. Return the last insn emitted. */
rtx
emit_insns_after (first, after)
register rtx first;
register rtx after;
{
register rtx last;
register rtx after_after;
if (!after)
abort ();
if (!first)
return first;
for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
continue;
after_after = NEXT_INSN (after);
NEXT_INSN (after) = first;
PREV_INSN (first) = after;
NEXT_INSN (last) = after_after;
if (after_after)
PREV_INSN (after_after) = last;
if (after == last_insn)
last_insn = last;
return last;
}
/* Make an insn of code JUMP_INSN with pattern PATTERN
and add it to the end of the doubly-linked list. */
rtx
emit_jump_insn (pattern)
rtx pattern;
{
if (GET_CODE (pattern) == SEQUENCE)
return emit_insn (pattern);
else
{
register rtx insn = make_jump_insn_raw (pattern);
add_insn (insn);
return insn;
}
}
/* Make an insn of code CALL_INSN with pattern PATTERN
and add it to the end of the doubly-linked list. */
rtx
emit_call_insn (pattern)
rtx pattern;
{
if (GET_CODE (pattern) == SEQUENCE)
return emit_insn (pattern);
else
{
register rtx insn = make_call_insn_raw (pattern);
add_insn (insn);
PUT_CODE (insn, CALL_INSN);
return insn;
}
}
/* Add the label LABEL to the end of the doubly-linked list. */
rtx
emit_label (label)
rtx label;
{
/* This can be called twice for the same label
as a result of the confusion that follows a syntax error!
So make it harmless. */
if (INSN_UID (label) == 0)
{
INSN_UID (label) = cur_insn_uid++;
add_insn (label);
}
return label;
}
/* Make an insn of code BARRIER
and add it to the end of the doubly-linked list. */
rtx
emit_barrier ()
{
register rtx barrier = rtx_alloc (BARRIER);
INSN_UID (barrier) = cur_insn_uid++;
add_insn (barrier);
return barrier;
}
/* Make an insn of code NOTE
with data-fields specified by FILE and LINE
and add it to the end of the doubly-linked list,
but only if line-numbers are desired for debugging info. */
rtx
emit_line_note (file, line)
char *file;
int line;
{
emit_filename = file;
emit_lineno = line;
#if 0
if (no_line_numbers)
return 0;
#endif
return emit_note (file, line);
}
/* Make an insn of code NOTE
with data-fields specified by FILE and LINE
and add it to the end of the doubly-linked list.
If it is a line-number NOTE, omit it if it matches the previous one. */
rtx
emit_note (file, line)
char *file;
int line;
{
register rtx note;
if (line > 0)
{
if (file && last_filename && !strcmp (file, last_filename)
&& line == last_linenum)
return 0;
last_filename = file;
last_linenum = line;
}
if (no_line_numbers && line > 0)
{
cur_insn_uid++;
return 0;
}
note = rtx_alloc (NOTE);
INSN_UID (note) = cur_insn_uid++;
NOTE_SOURCE_FILE (note) = file;
NOTE_LINE_NUMBER (note) = line;
add_insn (note);
return note;
}
/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
rtx
emit_line_note_force (file, line)
char *file;
int line;
{
last_linenum = -1;
return emit_line_note (file, line);
}
/* Cause next statement to emit a line note even if the line number
has not changed. This is used at the beginning of a function. */
void
force_next_line_note ()
{
last_linenum = -1;
}
/* Place a note of KIND on insn INSN with DATUM as the datum. If a
note of this type already exists, remove it first. */
void
set_unique_reg_note (insn, kind, datum)
rtx insn;
enum reg_note kind;
rtx datum;
{
rtx note = find_reg_note (insn, kind, NULL_RTX);
/* First remove the note if there already is one. */
if (note)
remove_note (insn, note);
REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
}
/* Return an indication of which type of insn should have X as a body.
The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
enum rtx_code
classify_insn (x)
rtx x;
{
if (GET_CODE (x) == CODE_LABEL)
return CODE_LABEL;
if (GET_CODE (x) == CALL)
return CALL_INSN;
if (GET_CODE (x) == RETURN)
return JUMP_INSN;
if (GET_CODE (x) == SET)
{
if (SET_DEST (x) == pc_rtx)
return JUMP_INSN;
else if (GET_CODE (SET_SRC (x)) == CALL)
return CALL_INSN;
else
return INSN;
}
if (GET_CODE (x) == PARALLEL)
{
register int j;
for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
return CALL_INSN;
else if (GET_CODE (XVECEXP (x, 0, j)) == SET
&& SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
return JUMP_INSN;
else if (GET_CODE (XVECEXP (x, 0, j)) == SET
&& GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
return CALL_INSN;
}
return INSN;
}
/* Emit the rtl pattern X as an appropriate kind of insn.
If X is a label, it is simply added into the insn chain. */
rtx
emit (x)
rtx x;
{
enum rtx_code code = classify_insn (x);
if (code == CODE_LABEL)
return emit_label (x);
else if (code == INSN)
return emit_insn (x);
else if (code == JUMP_INSN)
{
register rtx insn = emit_jump_insn (x);
if (simplejump_p (insn) || GET_CODE (x) == RETURN)
return emit_barrier ();
return insn;
}
else if (code == CALL_INSN)
return emit_call_insn (x);
else
abort ();
}
/* Begin emitting insns to a sequence which can be packaged in an
RTL_EXPR. If this sequence will contain something that might cause
the compiler to pop arguments to function calls (because those
pops have previously been deferred; see INHIBIT_DEFER_POP for more
details), use do_pending_stack_adjust before calling this function.
That will ensure that the deferred pops are not accidentally
emitted in the middel of this sequence. */
void
start_sequence ()
{
struct sequence_stack *tem;
if (sequence_element_free_list)
{
/* Reuse a previously-saved struct sequence_stack. */
tem = sequence_element_free_list;
sequence_element_free_list = tem->next;
}
else
tem = (struct sequence_stack *) permalloc (sizeof (struct sequence_stack));
tem->next = sequence_stack;
tem->first = first_insn;
tem->last = last_insn;
tem->sequence_rtl_expr = sequence_rtl_expr;
sequence_stack = tem;
first_insn = 0;
last_insn = 0;
}
/* Similarly, but indicate that this sequence will be placed in T, an
RTL_EXPR. See the documentation for start_sequence for more
information about how to use this function. */
void
start_sequence_for_rtl_expr (t)
tree t;
{
start_sequence ();
sequence_rtl_expr = t;
}
/* Set up the insn chain starting with FIRST as the current sequence,
saving the previously current one. See the documentation for
start_sequence for more information about how to use this function. */
void
push_to_sequence (first)
rtx first;
{
rtx last;
start_sequence ();
for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
first_insn = first;
last_insn = last;
}
/* Set up the outer-level insn chain
as the current sequence, saving the previously current one. */
void
push_topmost_sequence ()
{
struct sequence_stack *stack, *top = NULL;
start_sequence ();
for (stack = sequence_stack; stack; stack = stack->next)
top = stack;
first_insn = top->first;
last_insn = top->last;
sequence_rtl_expr = top->sequence_rtl_expr;
}
/* After emitting to the outer-level insn chain, update the outer-level
insn chain, and restore the previous saved state. */
void
pop_topmost_sequence ()
{
struct sequence_stack *stack, *top = NULL;
for (stack = sequence_stack; stack; stack = stack->next)
top = stack;
top->first = first_insn;
top->last = last_insn;
/* ??? Why don't we save sequence_rtl_expr here? */
end_sequence ();
}
/* After emitting to a sequence, restore previous saved state.
To get the contents of the sequence just made, you must call
`gen_sequence' *before* calling here.
If the compiler might have deferred popping arguments while
generating this sequence, and this sequence will not be immediately
inserted into the instruction stream, use do_pending_stack_adjust
before calling gen_sequence. That will ensure that the deferred
pops are inserted into this sequence, and not into some random
location in the instruction stream. See INHIBIT_DEFER_POP for more
information about deferred popping of arguments. */
void
end_sequence ()
{
struct sequence_stack *tem = sequence_stack;
first_insn = tem->first;
last_insn = tem->last;
sequence_rtl_expr = tem->sequence_rtl_expr;
sequence_stack = tem->next;
tem->next = sequence_element_free_list;
sequence_element_free_list = tem;
}
/* Return 1 if currently emitting into a sequence. */
int
in_sequence_p ()
{
return sequence_stack != 0;
}
/* Generate a SEQUENCE rtx containing the insns already emitted
to the current sequence.
This is how the gen_... function from a DEFINE_EXPAND
constructs the SEQUENCE that it returns. */
rtx
gen_sequence ()
{
rtx result;
rtx tem;
int i;
int len;
/* Count the insns in the chain. */
len = 0;
for (tem = first_insn; tem; tem = NEXT_INSN (tem))
len++;
/* If only one insn, return its pattern rather than a SEQUENCE.
(Now that we cache SEQUENCE expressions, it isn't worth special-casing
the case of an empty list.) */
if (len == 1
&& ! RTX_FRAME_RELATED_P (first_insn)
&& (GET_CODE (first_insn) == INSN
|| GET_CODE (first_insn) == JUMP_INSN
/* Don't discard the call usage field. */
|| (GET_CODE (first_insn) == CALL_INSN
&& CALL_INSN_FUNCTION_USAGE (first_insn) == NULL_RTX)))
{
NEXT_INSN (first_insn) = free_insn;
free_insn = first_insn;
return PATTERN (first_insn);
}
/* Put them in a vector. See if we already have a SEQUENCE of the
appropriate length around. */
if (len < SEQUENCE_RESULT_SIZE && (result = sequence_result[len]) != 0)
sequence_result[len] = 0;
else
{
/* Ensure that this rtl goes in saveable_obstack, since we may
cache it. */
push_obstacks_nochange ();
rtl_in_saveable_obstack ();
result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
pop_obstacks ();
}
for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
XVECEXP (result, 0, i) = tem;
return result;
}
/* Put the various virtual registers into REGNO_REG_RTX. */
void
init_virtual_regs ()
{
regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
}
/* Initialize data structures and variables in this file
before generating rtl for each function. */
void
init_emit ()
{
int i;
first_insn = NULL;
last_insn = NULL;
sequence_rtl_expr = NULL;
cur_insn_uid = 1;
reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
last_linenum = 0;
last_filename = 0;
first_label_num = label_num;
last_label_num = 0;
sequence_stack = NULL;
/* Clear the start_sequence/gen_sequence cache. */
sequence_element_free_list = 0;
for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
sequence_result[i] = 0;
free_insn = 0;
/* Init the tables that describe all the pseudo regs. */
regno_pointer_flag_length = LAST_VIRTUAL_REGISTER + 101;
regno_pointer_flag
= (char *) savealloc (regno_pointer_flag_length);
bzero (regno_pointer_flag, regno_pointer_flag_length);
regno_pointer_align
= (char *) savealloc (regno_pointer_flag_length);
bzero (regno_pointer_align, regno_pointer_flag_length);
regno_reg_rtx
= (rtx *) savealloc (regno_pointer_flag_length * sizeof (rtx));
bzero ((char *) regno_reg_rtx, regno_pointer_flag_length * sizeof (rtx));
/* Put copies of all the virtual register rtx into regno_reg_rtx. */
init_virtual_regs ();
/* Indicate that the virtual registers and stack locations are
all pointers. */
REGNO_POINTER_FLAG (STACK_POINTER_REGNUM) = 1;
REGNO_POINTER_FLAG (FRAME_POINTER_REGNUM) = 1;
REGNO_POINTER_FLAG (HARD_FRAME_POINTER_REGNUM) = 1;
REGNO_POINTER_FLAG (ARG_POINTER_REGNUM) = 1;
REGNO_POINTER_FLAG (VIRTUAL_INCOMING_ARGS_REGNUM) = 1;
REGNO_POINTER_FLAG (VIRTUAL_STACK_VARS_REGNUM) = 1;
REGNO_POINTER_FLAG (VIRTUAL_STACK_DYNAMIC_REGNUM) = 1;
REGNO_POINTER_FLAG (VIRTUAL_OUTGOING_ARGS_REGNUM) = 1;
REGNO_POINTER_FLAG (VIRTUAL_CFA_REGNUM) = 1;
#ifdef STACK_BOUNDARY
REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY / BITS_PER_UNIT;
REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY / BITS_PER_UNIT;
REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM)
= STACK_BOUNDARY / BITS_PER_UNIT;
REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY / BITS_PER_UNIT;
REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM)
= STACK_BOUNDARY / BITS_PER_UNIT;
REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM)
= STACK_BOUNDARY / BITS_PER_UNIT;
REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM)
= STACK_BOUNDARY / BITS_PER_UNIT;
REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM)
= STACK_BOUNDARY / BITS_PER_UNIT;
REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = UNITS_PER_WORD;
#endif
#ifdef INIT_EXPANDERS
INIT_EXPANDERS;
#endif
}
/* Create some permanent unique rtl objects shared between all functions.
LINE_NUMBERS is nonzero if line numbers are to be generated. */
void
init_emit_once (line_numbers)
int line_numbers;
{
int i;
enum machine_mode mode;
enum machine_mode double_mode;
no_line_numbers = ! line_numbers;
sequence_stack = NULL;
/* Compute the word and byte modes. */
byte_mode = VOIDmode;
word_mode = VOIDmode;
double_mode = VOIDmode;
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
&& byte_mode == VOIDmode)
byte_mode = mode;
if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
&& word_mode == VOIDmode)
word_mode = mode;
}
#ifndef DOUBLE_TYPE_SIZE
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
&& double_mode == VOIDmode)
double_mode = mode;
}
ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
/* Create the unique rtx's for certain rtx codes and operand values. */
for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
{
PUT_CODE (&const_int_rtx[i + MAX_SAVED_CONST_INT], CONST_INT);
PUT_MODE (&const_int_rtx[i + MAX_SAVED_CONST_INT], VOIDmode);
INTVAL (&const_int_rtx[i + MAX_SAVED_CONST_INT]) = i;
}
if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
&& STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
const_true_rtx = &const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
else
const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
dconst0 = REAL_VALUE_ATOF ("0", double_mode);
dconst1 = REAL_VALUE_ATOF ("1", double_mode);
dconst2 = REAL_VALUE_ATOF ("2", double_mode);
dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
for (i = 0; i <= 2; i++)
{
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
rtx tem = rtx_alloc (CONST_DOUBLE);
union real_extract u;
bzero ((char *) &u, sizeof u); /* Zero any holes in a structure. */
u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
bcopy ((char *) &u, (char *) &CONST_DOUBLE_LOW (tem), sizeof u);
CONST_DOUBLE_MEM (tem) = cc0_rtx;
PUT_MODE (tem, mode);
const_tiny_rtx[i][(int) mode] = tem;
}
const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
const_tiny_rtx[i][(int) mode] = GEN_INT (i);
for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
const_tiny_rtx[i][(int) mode] = GEN_INT (i);
}
for (mode = GET_CLASS_NARROWEST_MODE (MODE_CC); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
const_tiny_rtx[0][(int) mode] = const0_rtx;
/* Assign register numbers to the globally defined register rtx.
This must be done at runtime because the register number field
is in a union and some compilers can't initialize unions. */
REGNO (stack_pointer_rtx) = STACK_POINTER_REGNUM;
PUT_MODE (stack_pointer_rtx, Pmode);
REGNO (frame_pointer_rtx) = FRAME_POINTER_REGNUM;
PUT_MODE (frame_pointer_rtx, Pmode);
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
REGNO (hard_frame_pointer_rtx) = HARD_FRAME_POINTER_REGNUM;
PUT_MODE (hard_frame_pointer_rtx, Pmode);
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
REGNO (arg_pointer_rtx) = ARG_POINTER_REGNUM;
PUT_MODE (arg_pointer_rtx, Pmode);
#endif
REGNO (virtual_incoming_args_rtx) = VIRTUAL_INCOMING_ARGS_REGNUM;
PUT_MODE (virtual_incoming_args_rtx, Pmode);
REGNO (virtual_stack_vars_rtx) = VIRTUAL_STACK_VARS_REGNUM;
PUT_MODE (virtual_stack_vars_rtx, Pmode);
REGNO (virtual_stack_dynamic_rtx) = VIRTUAL_STACK_DYNAMIC_REGNUM;
PUT_MODE (virtual_stack_dynamic_rtx, Pmode);
REGNO (virtual_outgoing_args_rtx) = VIRTUAL_OUTGOING_ARGS_REGNUM;
PUT_MODE (virtual_outgoing_args_rtx, Pmode);
REGNO (virtual_cfa_rtx) = VIRTUAL_CFA_REGNUM;
PUT_MODE (virtual_cfa_rtx, Pmode);
#ifdef RETURN_ADDRESS_POINTER_REGNUM
return_address_pointer_rtx
= gen_rtx_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
#endif
#ifdef STRUCT_VALUE
struct_value_rtx = STRUCT_VALUE;
#else
struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
#endif
#ifdef STRUCT_VALUE_INCOMING
struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
#else
#ifdef STRUCT_VALUE_INCOMING_REGNUM
struct_value_incoming_rtx
= gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
#else
struct_value_incoming_rtx = struct_value_rtx;
#endif
#endif
#ifdef STATIC_CHAIN_REGNUM
static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
#ifdef STATIC_CHAIN_INCOMING_REGNUM
if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
static_chain_incoming_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
else
#endif
static_chain_incoming_rtx = static_chain_rtx;
#endif
#ifdef STATIC_CHAIN
static_chain_rtx = STATIC_CHAIN;
#ifdef STATIC_CHAIN_INCOMING
static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
#else
static_chain_incoming_rtx = static_chain_rtx;
#endif
#endif
#ifdef PIC_OFFSET_TABLE_REGNUM
pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
#endif
#ifdef INIT_EXPANDERS
/* This is to initialize save_machine_status and restore_machine_status before
the first call to push_function_context_to. This is needed by the Chill
front end which calls push_function_context_to before the first cal to
init_function_start. */
INIT_EXPANDERS;
#endif
}
/* Query and clear/ restore no_line_numbers. This is used by the
switch / case handling in stmt.c to give proper line numbers in
warnings about unreachable code. */
int
force_line_numbers ()
{
int old = no_line_numbers;
no_line_numbers = 0;
if (old)
force_next_line_note ();
return old;
}
void
restore_line_number_status (old_value)
int old_value;
{
no_line_numbers = old_value;
}
|