summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/profile.c
blob: 17923c543941c58c3c8d1cf2986103b16c6de832 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
/* Calculate branch probabilities, and basic block execution counts. 
   Copyright (C) 1990, 91-94, 96-98, 1999 Free Software Foundation, Inc.
   Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
   based on some ideas from Dain Samples of UC Berkeley.
   Further mangling by Bob Manson, Cygnus Support.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* ??? Really should not put insns inside of LIBCALL sequences, when putting
   insns after a call, should look for the insn setting the retval, and
   insert the insns after that one.  */

/* ??? Register allocation should use basic block execution counts to
   give preference to the most commonly executed blocks.  */

/* ??? The .da files are not safe.  Changing the program after creating .da
   files or using different options when compiling with -fbranch-probabilities
   can result the arc data not matching the program.  Maybe add instrumented
   arc count to .bbg file?  Maybe check whether PFG matches the .bbg file?  */

/* ??? Should calculate branch probabilities before instrumenting code, since
   then we can use arc counts to help decide which arcs to instrument.  */

/* ??? Rearrange code so that the most frequently executed arcs become from
   one block to the next block (i.e. a fall through), move seldom executed
   code outside of loops even at the expense of adding a few branches to
   achieve this, see Dain Sample's UC Berkeley thesis.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "flags.h"
#include "insn-flags.h"
#include "insn-config.h"
#include "output.h"
#include "regs.h"
#include "tree.h"
#include "output.h"
#include "gcov-io.h"
#include "toplev.h"

/* One of these is dynamically created whenever we identify an arc in the
   function.  */

struct adj_list
{
  int source;
  int target;
  int arc_count;
  unsigned int count_valid : 1;
  unsigned int on_tree : 1;
  unsigned int fake : 1;
  unsigned int fall_through : 1;
  rtx branch_insn;
  struct adj_list *pred_next;
  struct adj_list *succ_next;
};

#define ARC_TARGET(ARCPTR) (ARCPTR->target)
#define ARC_SOURCE(ARCPTR) (ARCPTR->source)
#define ARC_COUNT(ARCPTR)  (ARCPTR->arc_count)

/* Count the number of basic blocks, and create an array of these structures,
   one for each bb in the function.  */

struct bb_info
{
  struct adj_list *succ;
  struct adj_list *pred;
  int succ_count;
  int pred_count;
  int exec_count;
  unsigned int count_valid : 1;
  unsigned int on_tree : 1;
  rtx first_insn;
};

/* Indexed by label number, gives the basic block number containing that
   label.  */

static int *label_to_bb;

/* Number of valid entries in the label_to_bb array.  */

static int label_to_bb_size;

/* Indexed by block index, holds the basic block graph.  */

static struct bb_info *bb_graph;

/* Name and file pointer of the output file for the basic block graph.  */

static char *bbg_file_name;
static FILE *bbg_file;

/* Name and file pointer of the input file for the arc count data.  */

static char *da_file_name;
static FILE *da_file;

/* Pointer of the output file for the basic block/line number map. */
static FILE *bb_file;

/* Last source file name written to bb_file. */

static char *last_bb_file_name;

/* Indicates whether the next line number note should be output to
   bb_file or not.  Used to eliminate a redundant note after an
   expanded inline function call.  */

static int ignore_next_note;

/* Used by final, for allocating the proper amount of storage for the
   instrumented arc execution counts.  */

int count_instrumented_arcs;

/* Number of executions for the return label.  */

int return_label_execution_count;

/* Collect statistics on the performance of this pass for the entire source
   file.  */

static int total_num_blocks;
static int total_num_arcs;
static int total_num_arcs_instrumented;
static int total_num_blocks_created;
static int total_num_passes;
static int total_num_times_called;
static int total_hist_br_prob[20];
static int total_num_never_executed;
static int total_num_branches;

/* Forward declarations.  */
static void init_arc PROTO((struct adj_list *, int, int, rtx));
static void find_spanning_tree PROTO((int));
static void expand_spanning_tree PROTO((int));
static void fill_spanning_tree PROTO((int));
static void init_arc_profiler PROTO((void));
static void output_arc_profiler PROTO((int, rtx));

#ifndef LONG_TYPE_SIZE
#define LONG_TYPE_SIZE BITS_PER_WORD
#endif

/* If non-zero, we need to output a constructor to set up the
   per-object-file data. */
static int need_func_profiler = 0;


/* Add arc instrumentation code to the entire insn chain.

   F is the first insn of the chain.
   NUM_BLOCKS is the number of basic blocks found in F.
   DUMP_FILE, if nonzero, is an rtl dump file we can write to.  */

static void
instrument_arcs (f, num_blocks, dump_file)
     rtx f;
     int num_blocks;
     FILE *dump_file;
{
  register int i;
  register struct adj_list *arcptr, *backptr;
  int num_arcs = 0;
  int num_instr_arcs = 0;
  rtx insn;

  /* Instrument the program start.  */
  /* Handle block 0 specially, since it will always be instrumented,
     but it doesn't have a valid first_insn or branch_insn.  We must
     put the instructions before the NOTE_INSN_FUNCTION_BEG note, so
     that they don't clobber any of the parameters of the current
     function.  */
  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == NOTE
	&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
      break;
  insn = PREV_INSN (insn);
  need_func_profiler = 1;
  output_arc_profiler (total_num_arcs_instrumented + num_instr_arcs++, insn);

  for (i = 1; i < num_blocks; i++)
    for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
      if (! arcptr->on_tree)
	{
	  if (dump_file)
	    fprintf (dump_file, "Arc %d to %d instrumented\n", i,
		     ARC_TARGET (arcptr));

	  /* Check to see if this arc is the only exit from its source block,
	     or the only entrance to its target block.  In either case,
	     we don't need to create a new block to instrument the arc.  */
	  
	  if (bb_graph[i].succ == arcptr && arcptr->succ_next == 0)
	    {
	      /* Instrument the source block.  */
	      output_arc_profiler (total_num_arcs_instrumented
				   + num_instr_arcs++,
				   PREV_INSN (bb_graph[i].first_insn));
	    }
	  else if (arcptr == bb_graph[ARC_TARGET (arcptr)].pred
		   && arcptr->pred_next == 0)
	    {
	      /* Instrument the target block.  */
	      output_arc_profiler (total_num_arcs_instrumented
				   + num_instr_arcs++, 
				   PREV_INSN (bb_graph[ARC_TARGET (arcptr)].first_insn));
	    }
	  else if (arcptr->fall_through)
	    {
	      /* This is a fall-through; put the instrumentation code after
		 the branch that ends this block.  */
	      
	      for (backptr = bb_graph[i].succ; backptr;
		   backptr = backptr->succ_next)
		if (backptr != arcptr)
		  break;
	      
	      output_arc_profiler (total_num_arcs_instrumented
				   + num_instr_arcs++,
				   backptr->branch_insn);
	    }
	  else
	    {
	      /* Must emit a new basic block to hold the arc counting code.  */
	      enum rtx_code code = GET_CODE (PATTERN (arcptr->branch_insn));

	      if (code == SET)
		{
		  /* Create the new basic block right after the branch.
		     Invert the branch so that it jumps past the end of the new
		     block.  The new block will consist of the instrumentation
		     code, and a jump to the target of this arc.  */
		  int this_is_simplejump = simplejump_p (arcptr->branch_insn);
		  rtx new_label = gen_label_rtx ();
		  rtx old_label, set_src;
		  rtx after = arcptr->branch_insn;
		  
		  /* Simplejumps can't reach here.  */
		  if (this_is_simplejump)
		    abort ();

		  /* We can't use JUMP_LABEL, because it won't be set if we
		     are compiling without optimization.  */

		  set_src = SET_SRC (single_set (arcptr->branch_insn));
		  if (GET_CODE (set_src) == LABEL_REF)
		    old_label = set_src;
		  else if (GET_CODE (set_src) != IF_THEN_ELSE)
		    abort ();
		  else if (XEXP (set_src, 1) == pc_rtx)
		    old_label = XEXP (XEXP (set_src, 2), 0);
		  else
		    old_label = XEXP (XEXP (set_src, 1), 0);

		  /* Set the JUMP_LABEL so that redirect_jump will work.  */
		  JUMP_LABEL (arcptr->branch_insn) = old_label;

		  /* Add a use for OLD_LABEL that will be needed when we emit
		     the JUMP_INSN below.  If we don't do this here,
		     `invert_jump' might delete it for us.  We must add two
		     when not optimizing, because the NUSES is zero now,
		     but must be at least two to prevent the label from being
		     deleted.  */
		  LABEL_NUSES (old_label) += 2;
		  
		  /* Emit the insns for the new block in reverse order,
		     since that is most convenient.  */

		  if (this_is_simplejump)
		    {
		      after = NEXT_INSN (arcptr->branch_insn);
		      if (! redirect_jump (arcptr->branch_insn, new_label))
			/* Don't know what to do if this branch won't
			   redirect.  */
			abort ();
		    }
		  else
		    {
		      if (! invert_jump (arcptr->branch_insn, new_label))
			/* Don't know what to do if this branch won't invert.  */
			abort ();

		      emit_label_after (new_label, after);
		      LABEL_NUSES (new_label)++;
		    }
		  emit_barrier_after (after);
		  emit_jump_insn_after (gen_jump (old_label), after);
		  JUMP_LABEL (NEXT_INSN (after)) = old_label;
		  
		  /* Instrument the source arc.  */
		  output_arc_profiler (total_num_arcs_instrumented
				       + num_instr_arcs++,
				       after);
		  if (this_is_simplejump)
		    {
		      emit_label_after (new_label, after);
		      LABEL_NUSES (new_label)++;
		    }
		}
	      else if (code == ADDR_VEC || code == ADDR_DIFF_VEC)
		{
		  /* A table jump.  Create a new basic block immediately
		     after the table, by emitting a barrier, a label, a
		     counting note, and a jump to the old label.  Put the
		     new label in the table.  */
		  
		  rtx new_label = gen_label_rtx ();
		  rtx old_lref, new_lref;
		  int index;
		  
		  /* Must determine the old_label reference, do this
		     by counting the arcs after this one, which will
		     give the index of our label in the table.  */
		  
		  index = 0;
		  for (backptr = arcptr->succ_next; backptr;
		       backptr = backptr->succ_next)
		    index++;
		  
		  old_lref = XVECEXP (PATTERN (arcptr->branch_insn),
				      (code == ADDR_DIFF_VEC), index);
		  
		  /* Emit the insns for the new block in reverse order,
		     since that is most convenient.  */
		  emit_jump_insn_after (gen_jump (XEXP (old_lref, 0)),
					arcptr->branch_insn);
		  JUMP_LABEL (NEXT_INSN (arcptr->branch_insn))
		    = XEXP (old_lref, 0);

		  /* Instrument the source arc.  */
		  output_arc_profiler (total_num_arcs_instrumented
				       + num_instr_arcs++,
				       arcptr->branch_insn);

		  emit_label_after (new_label, arcptr->branch_insn);
		  LABEL_NUSES (NEXT_INSN (arcptr->branch_insn))++;
		  emit_barrier_after (arcptr->branch_insn);
		  
		  /* Fix up the table jump.  */
		  new_lref = gen_rtx_LABEL_REF (Pmode, new_label);
		  XVECEXP (PATTERN (arcptr->branch_insn),
			   (code == ADDR_DIFF_VEC), index) = new_lref;
		}
	      else
		abort ();

	      num_arcs += 1;
	      if (dump_file)
		fprintf (dump_file,
			 "Arc %d to %d needed new basic block\n", i,
			 ARC_TARGET (arcptr));
	    }
	}
  
  total_num_arcs_instrumented += num_instr_arcs;
  count_instrumented_arcs = total_num_arcs_instrumented;

  total_num_blocks_created += num_arcs;
  if (dump_file)
    {
      fprintf (dump_file, "%d arcs instrumented\n", num_instr_arcs);
      fprintf (dump_file, "%d extra basic blocks created\n", num_arcs);
    }
}

/* Output STRING to bb_file, surrounded by DELIMITER.  */

static void
output_gcov_string (string, delimiter)
     char *string;
     long delimiter;
{
  long temp;
			
  /* Write a delimiter to indicate that a file name follows.  */
  __write_long (delimiter, bb_file, 4);

  /* Write the string.  */
  temp = strlen (string) + 1;
  fwrite (string, temp, 1, bb_file);

  /* Append a few zeros, to align the output to a 4 byte boundary.  */
  temp = temp & 0x3;
  if (temp)
    {
      char c[4];

      c[0] = c[1] = c[2] = c[3] = 0;
      fwrite (c, sizeof (char), 4 - temp, bb_file);
    }

  /* Store another delimiter in the .bb file, just to make it easy to find the
     end of the file name.  */
  __write_long (delimiter, bb_file, 4);
}

/* Return TRUE if this insn must be a tablejump entry insn.  This works for
   the MIPS port, but may give false negatives for some targets.  */

int
tablejump_entry_p (insn, label)
     rtx insn, label;
{
  rtx next = next_active_insn (insn);
  enum rtx_code code = GET_CODE (PATTERN (next));

  if (code != ADDR_DIFF_VEC && code != ADDR_VEC)
    return 0;

  if (PREV_INSN (next) == XEXP (label, 0))
    return 1;

  return 0;
}

/* Instrument and/or analyze program behavior based on program flow graph.
   In either case, this function builds a flow graph for the function being
   compiled.  The flow graph is stored in BB_GRAPH.

   When FLAG_PROFILE_ARCS is nonzero, this function instruments the arcs in
   the flow graph that are needed to reconstruct the dynamic behavior of the
   flow graph.

   When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
   information from a data file containing arc count information from previous
   executions of the function being compiled.  In this case, the flow graph is
   annotated with actual execution counts, which are later propagated into the
   rtl for optimization purposes.

   Main entry point of this file.  */

void
branch_prob (f, dump_file)
     rtx f;
     FILE *dump_file;
{
  int i, num_blocks;
  struct adj_list *arcptr;
  int num_arcs, changes, passes;
  int total, prob;
  int hist_br_prob[20], num_never_executed, num_branches;
  /* Set to non-zero if we got bad count information.  */
  int bad_counts = 0;

  /* start of a function.  */
  if (flag_test_coverage)
    output_gcov_string (current_function_name, (long) -2);

  /* Execute this only if doing arc profiling or branch probabilities.  */
  if (! profile_arc_flag && ! flag_branch_probabilities
      && ! flag_test_coverage)
    abort ();

  total_num_times_called++;

  /* Create an array label_to_bb of ints of size max_label_num.  */
  label_to_bb_size = max_label_num ();
  label_to_bb = (int *) oballoc (label_to_bb_size * sizeof (int));
  bzero ((char *) label_to_bb, label_to_bb_size * sizeof (int));

  /* Scan the insns in the function, count the number of basic blocks
     present.  When a code label is passed, set label_to_bb[label] = bb
     number.  */

  /* The first block found will be block 1, so that function entry can be
     block 0.  */

  {
    register RTX_CODE prev_code = JUMP_INSN;
    register RTX_CODE code;
    register rtx insn;
    register int i;
    int block_separator_emitted = 0;

    ignore_next_note = 0;

    for (insn = NEXT_INSN (f), i = 0; insn; insn = NEXT_INSN (insn))
      {
	code = GET_CODE (insn);

	if (code == BARRIER)
	  ;
	else if (code == CODE_LABEL)
	  /* This label is part of the next block, but we can't increment
	     block number yet since there might be multiple labels.  */
	  label_to_bb[CODE_LABEL_NUMBER (insn)] = i + 1;
	/* We make NOTE_INSN_SETJMP notes into a block of their own, so that
	   they can be the target of the fake arc for the setjmp call.
	   This avoids creating cycles of fake arcs, which would happen if
	   the block after the setjmp call contained a call insn.  */
	else if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
		  || prev_code == CODE_LABEL || prev_code == BARRIER)
		 && (GET_RTX_CLASS (code) == 'i'
		     || (code == NOTE
			 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)))
	  {
	    i += 1;

	    /* Emit the block separator if it hasn't already been emitted.  */
	    if (flag_test_coverage && ! block_separator_emitted)
	      {
		/* Output a zero to the .bb file to indicate that a new
		   block list is starting.  */
		__write_long (0, bb_file, 4);
	      }
	    block_separator_emitted = 0;
	  }
	/* If flag_test_coverage is true, then we must add an entry to the
	   .bb file for every note.  */
	else if (code == NOTE && flag_test_coverage)
	  {
	    /* Must ignore the line number notes that immediately follow the
	       end of an inline function to avoid counting it twice.  There
	       is a note before the call, and one after the call.  */
	    if (NOTE_LINE_NUMBER (insn) == NOTE_REPEATED_LINE_NUMBER)
	      ignore_next_note = 1;
	    else if (NOTE_LINE_NUMBER (insn) > 0)
	      {
		if (ignore_next_note)
		  ignore_next_note = 0;
		else
		  {
		    /* Emit a block separator here to ensure that a NOTE
		       immediately following a JUMP_INSN or CALL_INSN will end
		       up in the right basic block list.  */
		    if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
			 || prev_code == CODE_LABEL || prev_code == BARRIER)
			&& ! block_separator_emitted)
		      {
			/* Output a zero to the .bb file to indicate that
			   a new block list is starting.  */
			__write_long (0, bb_file, 4);

			block_separator_emitted = 1;
		      }
		    
		    /* If this is a new source file, then output the file's
		       name to the .bb file.  */
		    if (! last_bb_file_name
			|| strcmp (NOTE_SOURCE_FILE (insn),
				   last_bb_file_name))
		      {
			if (last_bb_file_name)
			  free (last_bb_file_name);
			last_bb_file_name
			  = xmalloc (strlen (NOTE_SOURCE_FILE (insn)) + 1);
			strcpy (last_bb_file_name, NOTE_SOURCE_FILE (insn));
			output_gcov_string (NOTE_SOURCE_FILE (insn), (long)-1);
		      }

		    /* Output the line number to the .bb file.  Must be done
		       after the output_bb_profile_data() call, and after the
		       file name is written, to ensure that it is correctly
		       handled by gcov.  */
		    __write_long (NOTE_LINE_NUMBER (insn), bb_file, 4);
		  }
	      }
	  }

	if (code != NOTE)
	  prev_code = code;
	else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
	  prev_code = CALL_INSN;
      }

    /* Allocate last `normal' entry for bb_graph.  */

    /* The last insn was a jump, call, or label.  In that case we have
       a block at the end of the function with no insns.  */
    if (prev_code == JUMP_INSN || prev_code == CALL_INSN
	|| prev_code == CODE_LABEL || prev_code == BARRIER)
      {
	i++;

	/* Emit the block separator if it hasn't already been emitted.  */
	if (flag_test_coverage && ! block_separator_emitted)
	  {
	    /* Output a zero to the .bb file to indicate that a new
	       block list is starting.  */
	    __write_long (0, bb_file, 4);
	  }
      }

    /* Create another block to stand for EXIT, and make all return insns, and
       the last basic block point here.  Add one more to account for block
       zero.  */
    num_blocks = i + 2;
  }

  total_num_blocks += num_blocks;
  if (dump_file)
    fprintf (dump_file, "%d basic blocks\n", num_blocks);

  /* If we are only doing test coverage here, then return now.  */
  if (! profile_arc_flag && ! flag_branch_probabilities)
    return;

  /* Create and initialize the arrays that will hold bb_graph
     and execution count info.  */

  bb_graph = (struct bb_info *) alloca (num_blocks * sizeof (struct bb_info));
  bzero ((char *) bb_graph, (sizeof (struct bb_info) * num_blocks));

  {
    /* Scan the insns again:
       - at the entry to each basic block, increment the predecessor count
       (and successor of previous block) if it is a fall through entry,
       create adj_list entries for this and the previous block
       - at each jump insn, increment predecessor/successor counts for
       target/source basic blocks, add this insn to pred/succ lists.

       This also cannot be broken out as a separate subroutine
       because it uses `alloca'.  */

    register RTX_CODE prev_code = JUMP_INSN;
    register RTX_CODE code;
    register rtx insn;
    register int i;
    int fall_through = 0;
    struct adj_list *arcptr;
    int dest = 0;

    /* Block 0 always falls through to block 1.  */
    num_arcs = 0;
    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
    init_arc (arcptr, 0, 1, 0);
    arcptr->fall_through = 1;
    num_arcs++;

    /* Add a fake fall through arc from the last block to block 0, to make the
       graph complete.  */
    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
    init_arc (arcptr, num_blocks - 1, 0, 0);
    arcptr->fake = 1;
    num_arcs++;

    /* Exit must be one node of the graph, and all exits from the function
       must point there.  When see a return branch, must point the arc to the
       exit node.  */

    /* Must start scan with second insn in function as above.  */
    for (insn = NEXT_INSN (f), i = 0; insn; insn = NEXT_INSN (insn))
      {
	code = GET_CODE (insn);

	if (code == BARRIER)
	  fall_through = 0;
	else if (code == CODE_LABEL)
	  ;
	/* We make NOTE_INSN_SETJMP notes into a block of their own, so that
	   they can be the target of the fake arc for the setjmp call.
	   This avoids creating cycles of fake arcs, which would happen if
	   the block after the setjmp call ended with a call.  */
	else if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
		  || prev_code == CODE_LABEL || prev_code == BARRIER)
		 && (GET_RTX_CLASS (code) == 'i'
		     || (code == NOTE
			 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)))
	  {
	    /* This is the first insn of the block.  */
	    i += 1;
	    if (fall_through)
	      {
		arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
		init_arc (arcptr, i - 1, i, 0);
		arcptr->fall_through = 1;

		num_arcs++;
	      }
	    fall_through = 1;
	    bb_graph[i].first_insn = insn;
	  }
	else if (code == NOTE)
	  {;}

	if (code == CALL_INSN)
	  {
	    /* In the normal case, the call returns, and this is just like
	       a branch fall through.  */
	    fall_through = 1;

	    /* Setjmp may return more times than called, so to make the graph
	       solvable, add a fake arc from the function entrance to the
	       next block.

	       All other functions may return fewer times than called (if
	       a descendent call longjmp or exit), so to make the graph
	       solvable, add a fake arc to the function exit from the
	       current block.

	       Distinguish the cases by checking for a SETJUMP note.
	       A call_insn can be the last ins of a function, so must check
	       to see if next insn actually exists.  */
	    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
	    if (NEXT_INSN (insn)
		&& GET_CODE (NEXT_INSN (insn)) == NOTE
		&& NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
	      init_arc (arcptr, 0, i+1, insn);
	    else
	      init_arc (arcptr, i, num_blocks-1, insn);
	    arcptr->fake = 1;
	    num_arcs++;
	  }
	else if (code == JUMP_INSN)
	  {
	    rtx tem, pattern = PATTERN (insn);
	    rtx tablejump = 0;

	    /* If running without optimization, then jump label won't be valid,
	       so we must search for the destination label in that case.
	       We have to handle tablejumps and returns specially anyways, so
	       we don't check the JUMP_LABEL at all here.  */

	    /* ??? This code should be rewritten.  We need a more elegant way
	       to find the LABEL_REF.  We need a more elegant way to
	       differentiate tablejump entries from computed gotos.
	       We should perhaps reuse code from flow to compute the CFG
	       instead of trying to compute it here.

	       We can't use current_function_has_computed_jump, because that
	       is calculated later by flow.  We can't use computed_jump_p,
	       because that returns true for tablejump entry insns for some
	       targets, e.g. HPPA and MIPS.  */

	    if (GET_CODE (pattern) == PARALLEL)
	      {
		/* This assumes that PARALLEL jumps with a USE are
		   tablejump entry jumps.  The same assumption can be found
		   in computed_jump_p.  */
		/* Make an arc from this jump to the label of the
		   jump table.  This will instrument the number of
		   times the switch statement is executed.  */
		if (GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
		  {
		    tem = XEXP (XVECEXP (pattern, 0, 1), 0);
		    if (GET_CODE (tem) != LABEL_REF)
		      abort ();
		    dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (tem, 0))];
		  }
		else if (GET_CODE (XVECEXP (pattern, 0, 0)) == SET
			 && SET_DEST (XVECEXP (pattern, 0, 0)) == pc_rtx)
		  {
		    tem = SET_SRC (XVECEXP (pattern, 0, 0));
		    if (GET_CODE (tem) == PLUS
			&& GET_CODE (XEXP (tem, 1)) == LABEL_REF)
		      {
			tem = XEXP (tem, 1);
			dest = label_to_bb [CODE_LABEL_NUMBER (XEXP (tem, 0))];
		      }
		  }
		else
		  abort ();
	      }
	    else if (GET_CODE (pattern) == ADDR_VEC
		     || GET_CODE (pattern) == ADDR_DIFF_VEC)
	      tablejump = pattern;
	    else if (GET_CODE (pattern) == RETURN)
	      dest = num_blocks - 1;
	    else if (GET_CODE (pattern) != SET)
	      abort ();
	    else if ((tem = SET_SRC (pattern))
		     && GET_CODE (tem) == LABEL_REF)
	      dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (tem, 0))];
	    /* Recognize HPPA table jump entry.  This code is similar to
	       the code above in the PARALLEL case.  */
	    else if (GET_CODE (tem) == PLUS
		     && GET_CODE (XEXP (tem, 0)) == MEM
		     && GET_CODE (XEXP (XEXP (tem, 0), 0)) == PLUS
		     && GET_CODE (XEXP (XEXP (XEXP (tem, 0), 0), 0)) == PC
		     && GET_CODE (XEXP (tem, 1)) == LABEL_REF
		     && tablejump_entry_p (insn, XEXP (tem, 1)))
	      dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (XEXP (tem, 1), 0))];
	    /* Recognize the MIPS table jump entry.  */
	    else if (GET_CODE (tem) == PLUS
		     && GET_CODE (XEXP (tem, 0)) == REG
		     && GET_CODE (XEXP (tem, 1)) == LABEL_REF
		     && tablejump_entry_p (insn, XEXP (tem, 1)))
	      dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (XEXP (tem, 1), 0))];
	    else
	      {
		rtx label_ref;

		/* Must be an IF_THEN_ELSE branch.  If it isn't, assume it
		   is a computed goto, which aren't supported yet.  */
		if (GET_CODE (tem) != IF_THEN_ELSE)
		  fatal ("-fprofile-arcs does not support computed gotos");
		if (XEXP (tem, 1) != pc_rtx)
		  label_ref = XEXP (tem, 1);
		else
		  label_ref = XEXP (tem, 2);
		dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (label_ref, 0))];
	      }

	    if (tablejump)
	      {
		int diff_vec_p = GET_CODE (tablejump) == ADDR_DIFF_VEC;
		int len = XVECLEN (tablejump, diff_vec_p);
		int k;

		for (k = 0; k < len; k++)
		  {
		    rtx tem = XEXP (XVECEXP (tablejump, diff_vec_p, k), 0);
		    dest = label_to_bb[CODE_LABEL_NUMBER (tem)];

		    arcptr = (struct adj_list *) alloca (sizeof(struct adj_list));
		    init_arc (arcptr, i, dest, insn);

		    num_arcs++;
		  }
	      }
	    else
	      {
		arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
		init_arc (arcptr, i, dest, insn);

		num_arcs++;
	      }

	    /* Determine whether or not this jump will fall through.
	       Unconditional jumps and returns are not always followed by
	       barriers.  */
	    pattern = PATTERN (insn);
	    if (GET_CODE (pattern) == PARALLEL
		|| GET_CODE (pattern) == RETURN)
	      fall_through = 0;
	    else if (GET_CODE (pattern) == ADDR_VEC
		     || GET_CODE (pattern) == ADDR_DIFF_VEC)
	      /* These aren't actually jump insns, but they never fall
		 through, so...  */
	      fall_through = 0;
	    else
	      {
		if (GET_CODE (pattern) != SET || SET_DEST (pattern) != pc_rtx)
		  abort ();
		if (GET_CODE (SET_SRC (pattern)) != IF_THEN_ELSE)
		  fall_through = 0;
	      }
	  }

	if (code != NOTE)
	  prev_code = code;
	else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
	  {
	    /* Make a fake insn to tag our notes on.  */
	    bb_graph[i].first_insn = insn
	      = emit_insn_after (gen_rtx_USE (VOIDmode, stack_pointer_rtx),
				 insn);
	    prev_code = CALL_INSN;
	  }
      }

    /* If the code at the end of the function would give a new block, then
       do the following.  */

    if (prev_code == JUMP_INSN || prev_code == CALL_INSN
	|| prev_code == CODE_LABEL || prev_code == BARRIER)
      {
	if (fall_through)
	  {
	    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
	    init_arc (arcptr, i, i + 1, 0);
	    arcptr->fall_through = 1;

	    num_arcs++;
	  }
	  
	/* This may not be a real insn, but that should not cause a problem.  */
	bb_graph[i+1].first_insn = get_last_insn ();
      }

    /* There is always a fake arc from the last block of the function
       to the function exit block.  */
    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
    init_arc (arcptr, num_blocks-2, num_blocks-1, 0);
    arcptr->fake = 1;
    num_arcs++;
  }

  total_num_arcs += num_arcs;
  if (dump_file)
    fprintf (dump_file, "%d arcs\n", num_arcs);

  /* Create spanning tree from basic block graph, mark each arc that is
     on the spanning tree.  */

  /* To reduce the instrumentation cost, make two passes over the tree.
     First, put as many must-split (crowded and fake) arcs on the tree as
     possible, then on the second pass fill in the rest of the tree.
     Note that the spanning tree is considered undirected, so that as many
     must-split arcs as possible can be put on it.

     Fallthrough arcs which are crowded should not be chosen on the first
     pass, since they do not require creating a new basic block.  These
     arcs will have fall_through set.  */

  find_spanning_tree (num_blocks);

  /* Create a .bbg file from which gcov can reconstruct the basic block
     graph.  First output the number of basic blocks, and then for every
     arc output the source and target basic block numbers.
     NOTE: The format of this file must be compatible with gcov.  */

  if (flag_test_coverage)
    {
      int flag_bits;

      __write_long (num_blocks, bbg_file, 4);
      __write_long (num_arcs, bbg_file, 4);

      for (i = 0; i < num_blocks; i++)
	{
	  long count = 0;
	  for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
	    count++;
	  __write_long (count, bbg_file, 4);

	  for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
	    {
	      flag_bits = 0;
	      if (arcptr->on_tree)
		flag_bits |= 0x1;
	      if (arcptr->fake)
		flag_bits |= 0x2;
	      if (arcptr->fall_through)
		flag_bits |= 0x4;

	      __write_long (ARC_TARGET (arcptr), bbg_file, 4);
	      __write_long (flag_bits, bbg_file, 4);
	    }
	}

      /* Emit a -1 to separate the list of all arcs from the list of
	 loop back edges that follows.  */
      __write_long (-1, bbg_file, 4);
    }

  /* For each arc not on the spanning tree, add counting code as rtl.  */

  if (profile_arc_flag)
    {
      instrument_arcs (f, num_blocks, dump_file);
      allocate_reg_info (max_reg_num (), FALSE, FALSE);
    }

  /* Execute the rest only if doing branch probabilities.  */
  if (! flag_branch_probabilities)
    return;

  /* For each arc not on the spanning tree, set its execution count from
     the .da file.  */

  /* The first count in the .da file is the number of times that the function
     was entered.  This is the exec_count for block zero.  */

  num_arcs = 0;
  for (i = 0; i < num_blocks; i++)
    for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
      if (! arcptr->on_tree)
	{
	  num_arcs++;
	  if (da_file)
	    {
	      long value;
	      __read_long (&value, da_file, 8);
	      ARC_COUNT (arcptr) = value;
	    }
	  else
	    ARC_COUNT (arcptr) = 0;
	  arcptr->count_valid = 1;
	  bb_graph[i].succ_count--;
	  bb_graph[ARC_TARGET (arcptr)].pred_count--;
	}

  if (dump_file)
    fprintf (dump_file, "%d arc counts read\n", num_arcs);

  /* For every block in the file,
     - if every exit/entrance arc has a known count, then set the block count
     - if the block count is known, and every exit/entrance arc but one has
       a known execution count, then set the count of the remaining arc

     As arc counts are set, decrement the succ/pred count, but don't delete
     the arc, that way we can easily tell when all arcs are known, or only
     one arc is unknown.  */

  /* The order that the basic blocks are iterated through is important.
     Since the code that finds spanning trees starts with block 0, low numbered
     arcs are put on the spanning tree in preference to high numbered arcs.
     Hence, most instrumented arcs are at the end.  Graph solving works much
     faster if we propagate numbers from the end to the start.
     
     This takes an average of slightly more than 3 passes.  */

  changes = 1;
  passes = 0;
  while (changes)
    {
      passes++;
      changes = 0;

      for (i = num_blocks - 1; i >= 0; i--)
	{
	  struct bb_info *binfo = &bb_graph[i];
	  if (! binfo->count_valid)
	    {
	      if (binfo->succ_count == 0)
		{
		  total = 0;
		  for (arcptr = binfo->succ; arcptr;
		       arcptr = arcptr->succ_next)
		    total += ARC_COUNT (arcptr);
		  binfo->exec_count = total;
		  binfo->count_valid = 1;
		  changes = 1;
		}
	      else if (binfo->pred_count == 0)
		{
		  total = 0;
		  for (arcptr = binfo->pred; arcptr;
		       arcptr = arcptr->pred_next)
		    total += ARC_COUNT (arcptr);
		  binfo->exec_count = total;
		  binfo->count_valid = 1;
		  changes = 1;
		}
	    }
	  if (binfo->count_valid)
	    {
	      if (binfo->succ_count == 1)
		{
		  total = 0;
		  /* One of the counts will be invalid, but it is zero,
		     so adding it in also doesn't hurt.  */
		  for (arcptr = binfo->succ; arcptr;
		       arcptr = arcptr->succ_next)
		    total += ARC_COUNT (arcptr);
		  /* Calculate count for remaining arc by conservation.  */
		  total = binfo->exec_count - total;
		  /* Search for the invalid arc, and set its count.  */
		  for (arcptr = binfo->succ; arcptr;
		       arcptr = arcptr->succ_next)
		    if (! arcptr->count_valid)
		      break;
		  if (! arcptr)
		    abort ();
		  arcptr->count_valid = 1;
		  ARC_COUNT (arcptr) = total;
		  binfo->succ_count--;
		  
		  bb_graph[ARC_TARGET (arcptr)].pred_count--;
		  changes = 1;
		}
	      if (binfo->pred_count == 1)
		{
		  total = 0;
		  /* One of the counts will be invalid, but it is zero,
		     so adding it in also doesn't hurt.  */
		  for (arcptr = binfo->pred; arcptr;
		       arcptr = arcptr->pred_next)
		    total += ARC_COUNT (arcptr);
		  /* Calculate count for remaining arc by conservation.  */
		  total = binfo->exec_count - total;
		  /* Search for the invalid arc, and set its count.  */
		  for (arcptr = binfo->pred; arcptr;
		       arcptr = arcptr->pred_next)
		    if (! arcptr->count_valid)
		      break;
		  if (! arcptr)
		    abort ();
		  arcptr->count_valid = 1;
		  ARC_COUNT (arcptr) = total;
		  binfo->pred_count--;
		  
		  bb_graph[ARC_SOURCE (arcptr)].succ_count--;
		  changes = 1;
		}
	    }
	}
    }

  total_num_passes += passes;
  if (dump_file)
    fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);

  /* If the graph has been correctly solved, every block will have a
     succ and pred count of zero.  */
  for (i = 0; i < num_blocks; i++)
    {
      struct bb_info *binfo = &bb_graph[i];
      if (binfo->succ_count || binfo->pred_count)
	abort ();
    }

  /* For every arc, calculate its branch probability and add a reg_note
     to the branch insn to indicate this.  */

  for (i = 0; i < 20; i++)
    hist_br_prob[i] = 0;
  num_never_executed = 0;
  num_branches = 0;

  for (i = 0; i < num_blocks; i++)
    {
      struct bb_info *binfo = &bb_graph[i];

      total = binfo->exec_count;
      for (arcptr = binfo->succ; arcptr; arcptr = arcptr->succ_next)
	{
	  if (arcptr->branch_insn)
	    {
	      /* This calculates the branch probability as an integer between
		 0 and REG_BR_PROB_BASE, properly rounded to the nearest
		 integer.  Perform the arithmetic in double to avoid
		 overflowing the range of ints.  */

	      if (total == 0)
		prob = -1;
	      else
		{
		  rtx pat = PATTERN (arcptr->branch_insn);
		  
		  prob = (((double)ARC_COUNT (arcptr) * REG_BR_PROB_BASE)
			  + (total >> 1)) / total;
		  if (prob < 0 || prob > REG_BR_PROB_BASE)
		    {
		      if (dump_file)
			fprintf (dump_file, "bad count: prob for %d-%d thought to be %d (forcibly normalized)\n",
				 ARC_SOURCE (arcptr), ARC_TARGET (arcptr),
				 prob);

		      bad_counts = 1;
		      prob = REG_BR_PROB_BASE / 2;
		    }
		  
		  /* Match up probability with JUMP pattern.  */

		  if (GET_CODE (pat) == SET
		      && GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE)
		    {
		      if (ARC_TARGET (arcptr) == ARC_SOURCE (arcptr) + 1)
			{
			  /* A fall through arc should never have a
			     branch insn.  */
			  abort ();
			}
		      else
			{
			  /* This is the arc for the taken branch.  */
			  if (GET_CODE (XEXP (SET_SRC (pat), 2)) != PC)
			    prob = REG_BR_PROB_BASE - prob;
			}
		    }
		}
	      
	      if (prob == -1)
		num_never_executed++;
	      else
		{
		  int index = prob * 20 / REG_BR_PROB_BASE;
		  if (index == 20)
		    index = 19;
		  hist_br_prob[index]++;
		}
	      num_branches++;
	      
	      REG_NOTES (arcptr->branch_insn)
		= gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (prob),
				     REG_NOTES (arcptr->branch_insn));
	    }
	}

      /* Add a REG_EXEC_COUNT note to the first instruction of this block.  */
      if (! binfo->first_insn 
	  || GET_RTX_CLASS (GET_CODE (binfo->first_insn)) != 'i')
	{
	  /* Block 0 is a fake block representing function entry, and does
	     not have a real first insn.  The second last block might not
	     begin with a real insn.  */
	  if (i == num_blocks - 1)
	    return_label_execution_count = total;
	  else if (i != 0 && i != num_blocks - 2)
	    abort ();
	}
      else
	{
	  REG_NOTES (binfo->first_insn)
	    = gen_rtx_EXPR_LIST (REG_EXEC_COUNT, GEN_INT (total),
				 REG_NOTES (binfo->first_insn));
	  if (i == num_blocks - 1)
	    return_label_execution_count = total;
	}
    }
  
  /* This should never happen.  */
  if (bad_counts)
    warning ("Arc profiling: some arc counts were bad.");

  if (dump_file)
    {
      fprintf (dump_file, "%d branches\n", num_branches);
      fprintf (dump_file, "%d branches never executed\n",
	       num_never_executed);
      if (num_branches)
	for (i = 0; i < 10; i++)
	  fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
		   (hist_br_prob[i]+hist_br_prob[19-i])*100/num_branches,
		   5*i, 5*i+5);

      total_num_branches += num_branches;
      total_num_never_executed += num_never_executed;
      for (i = 0; i < 20; i++)
	total_hist_br_prob[i] += hist_br_prob[i];
    }

}

/* Initialize a new arc.
   ARCPTR is the empty adj_list this function fills in.
   SOURCE is the block number of the source block.
   TARGET is the block number of the target block.
   INSN is the insn which transfers control from SOURCE to TARGET,
   or zero if the transfer is implicit.  */

static void
init_arc (arcptr, source, target, insn)
     struct adj_list *arcptr;
     int source, target;
     rtx insn;
{
  ARC_TARGET (arcptr) = target;
  ARC_SOURCE (arcptr) = source;

  ARC_COUNT (arcptr) = 0;
  arcptr->count_valid = 0;
  arcptr->on_tree = 0;
  arcptr->fake = 0;
  arcptr->fall_through = 0;
  arcptr->branch_insn = insn;

  arcptr->succ_next = bb_graph[source].succ;
  bb_graph[source].succ = arcptr;
  bb_graph[source].succ_count++;

  arcptr->pred_next = bb_graph[target].pred;
  bb_graph[target].pred = arcptr;
  bb_graph[target].pred_count++;
}

/* This function searches all of the arcs in the program flow graph, and puts
   as many bad arcs as possible onto the spanning tree.  Bad arcs include
   fake arcs (needed for setjmp(), longjmp(), exit()) which MUST be on the
   spanning tree as they can't be instrumented.  Also, arcs which must be
   split when instrumented should be part of the spanning tree if possible.  */

static void
find_spanning_tree (num_blocks)
     int num_blocks;
{
  int i;
  struct adj_list *arcptr;
  struct bb_info *binfo = &bb_graph[0];

  /* Fake arcs must be part of the spanning tree, and are always safe to put
     on the spanning tree.  Fake arcs will either be a successor of node 0,
     a predecessor of the last node, or from the last node to node 0.  */

  for (arcptr = bb_graph[0].succ; arcptr; arcptr = arcptr->succ_next)
    if (arcptr->fake)
      {
	/* Adding this arc should never cause a cycle.  This is a fatal 
	   error if it would.  */
	if (bb_graph[ARC_TARGET (arcptr)].on_tree && binfo->on_tree)
	  abort();
	else
	  {
	    arcptr->on_tree = 1;
	    bb_graph[ARC_TARGET (arcptr)].on_tree = 1;
	    binfo->on_tree = 1;
	  }
      }

  binfo = &bb_graph[num_blocks-1];
  for (arcptr = binfo->pred; arcptr; arcptr = arcptr->pred_next)
    if (arcptr->fake)
      {
	/* Adding this arc should never cause a cycle.  This is a fatal 
	   error if it would.  */
	if (bb_graph[ARC_SOURCE (arcptr)].on_tree && binfo->on_tree)
	  abort();
	else
	  {
	    arcptr->on_tree = 1;
	    bb_graph[ARC_SOURCE (arcptr)].on_tree = 1;
	    binfo->on_tree = 1;
	  }
      }
  /* The only entrace to node zero is a fake arc.  */
  bb_graph[0].pred->on_tree = 1;
  
  /* Arcs which are crowded at both the source and target should be put on
     the spanning tree if possible, except for fall_throuch arcs which never
     require adding a new block even if crowded, add arcs with the same source
     and dest which must always be instrumented.  */
  for (i = 0; i < num_blocks; i++)
    {
      binfo = &bb_graph[i];

      for (arcptr = binfo->succ; arcptr; arcptr = arcptr->succ_next)
	if (! ((binfo->succ == arcptr && arcptr->succ_next == 0)
	       || (bb_graph[ARC_TARGET (arcptr)].pred
		   && arcptr->pred_next == 0))
	    && ! arcptr->fall_through
	    && ARC_TARGET (arcptr) != i)
	  {
	    /* This is a crowded arc at both source and target.  Try to put
	       in on the spanning tree.  Can do this if either the source or
	       target block is not yet on the tree.  */
	    if (! bb_graph[ARC_TARGET (arcptr)].on_tree	|| ! binfo->on_tree)
	      {
		arcptr->on_tree = 1;
		bb_graph[ARC_TARGET (arcptr)].on_tree = 1;
		binfo->on_tree = 1;
	      }
	  }
    }

  /* Clear all of the basic block on_tree bits, so that we can use them to
     create the spanning tree.  */
  for (i = 0; i < num_blocks; i++)
    bb_graph[i].on_tree = 0;

  /* Now fill in the spanning tree until every basic block is on it.
     Don't put the 0 to 1 fall through arc on the tree, since it is 
     always cheap to instrument, so start filling the tree from node 1.  */

  for (i = 1; i < num_blocks; i++)
    for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
      if (! arcptr->on_tree
	  && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
	{
	  fill_spanning_tree (i);
	  break;
	}
}

/* Add arcs reached from BLOCK to the spanning tree if they are needed and
   not already there.  */

static void
fill_spanning_tree (block)
     int block;
{
  struct adj_list *arcptr;
  
  expand_spanning_tree (block);

  for (arcptr = bb_graph[block].succ; arcptr; arcptr = arcptr->succ_next)
    if (! arcptr->on_tree
	&& ! bb_graph[ARC_TARGET (arcptr)].on_tree)
      {
	arcptr->on_tree = 1;
	fill_spanning_tree (ARC_TARGET (arcptr));
      }
}

/* When first visit a block, must add all blocks that are already connected
   to this block via tree arcs to the spanning tree.  */

static void
expand_spanning_tree (block)
     int block;
{
  struct adj_list *arcptr;

  bb_graph[block].on_tree = 1;

  for (arcptr = bb_graph[block].succ; arcptr; arcptr = arcptr->succ_next)
    if (arcptr->on_tree && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
      expand_spanning_tree (ARC_TARGET (arcptr));
    
  for (arcptr = bb_graph[block].pred;
       arcptr; arcptr = arcptr->pred_next)
    if (arcptr->on_tree && ! bb_graph[ARC_SOURCE (arcptr)].on_tree)
      expand_spanning_tree (ARC_SOURCE (arcptr));
}

/* Perform file-level initialization for branch-prob processing.  */

void
init_branch_prob (filename)
  const char *filename;
{
  long len;
  int i;

  if (flag_test_coverage)
    {
      /* Open an output file for the basic block/line number map.  */
      int len = strlen (filename);
      char *data_file = (char *) alloca (len + 4);
      strcpy (data_file, filename);
      strip_off_ending (data_file, len);
      strcat (data_file, ".bb");
      if ((bb_file = fopen (data_file, "w")) == 0)
	pfatal_with_name (data_file);

      /* Open an output file for the program flow graph.  */
      len = strlen (filename);
      bbg_file_name = (char *) alloca (len + 5);
      strcpy (bbg_file_name, filename);
      strip_off_ending (bbg_file_name, len);
      strcat (bbg_file_name, ".bbg");
      if ((bbg_file = fopen (bbg_file_name, "w")) == 0)
	pfatal_with_name (bbg_file_name);

      /* Initialize to zero, to ensure that the first file name will be
	 written to the .bb file.  */
      last_bb_file_name = 0;
    }

  if (flag_branch_probabilities)
    {
      len = strlen (filename);
      da_file_name = (char *) alloca (len + 4);
      strcpy (da_file_name, filename);
      strip_off_ending (da_file_name, len);
      strcat (da_file_name, ".da");
      if ((da_file = fopen (da_file_name, "r")) == 0)
	warning ("file %s not found, execution counts assumed to be zero.",
		 da_file_name);

      /* The first word in the .da file gives the number of instrumented arcs,
	 which is not needed for our purposes.  */

      if (da_file)
	__read_long (&len, da_file, 8);
    }

  if (profile_arc_flag)
    init_arc_profiler ();

  total_num_blocks = 0;
  total_num_arcs = 0;
  total_num_arcs_instrumented = 0;
  total_num_blocks_created = 0;
  total_num_passes = 0;
  total_num_times_called = 0;
  total_num_branches = 0;
  total_num_never_executed = 0;
  for (i = 0; i < 20; i++)
    total_hist_br_prob[i] = 0;
}

/* Performs file-level cleanup after branch-prob processing
   is completed.  */

void
end_branch_prob (dump_file)
     FILE *dump_file;
{
  if (flag_test_coverage)
    {
      fclose (bb_file);
      fclose (bbg_file);
    }

  if (flag_branch_probabilities)
    {
      if (da_file)
	{
	  long temp;
	  /* This seems slightly dangerous, as it presumes the EOF
	     flag will not be set until an attempt is made to read
	     past the end of the file. */
	  if (feof (da_file))
	    warning (".da file contents exhausted too early\n");
	  /* Should be at end of file now.  */
	  if (__read_long (&temp, da_file, 8) == 0)
	    warning (".da file contents not exhausted\n");
	  fclose (da_file);
	}
    }

  if (dump_file)
    {
      fprintf (dump_file, "\n");
      fprintf (dump_file, "Total number of blocks: %d\n", total_num_blocks);
      fprintf (dump_file, "Total number of arcs: %d\n", total_num_arcs);
      fprintf (dump_file, "Total number of instrumented arcs: %d\n",
	       total_num_arcs_instrumented);
      fprintf (dump_file, "Total number of blocks created: %d\n",
	       total_num_blocks_created);
      fprintf (dump_file, "Total number of graph solution passes: %d\n",
	       total_num_passes);
      if (total_num_times_called != 0)
	fprintf (dump_file, "Average number of graph solution passes: %d\n",
		 (total_num_passes + (total_num_times_called  >> 1))
		 / total_num_times_called);
      fprintf (dump_file, "Total number of branches: %d\n", total_num_branches);
      fprintf (dump_file, "Total number of branches never executed: %d\n",
	       total_num_never_executed);
      if (total_num_branches)
	{
	  int i;

	  for (i = 0; i < 10; i++)
	    fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
		     (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
		     / total_num_branches, 5*i, 5*i+5);
	}
    }
}

/* The label used by the arc profiling code.  */

static rtx profiler_label;

/* Initialize the profiler_label.  */

static void
init_arc_profiler ()
{
  /* Generate and save a copy of this so it can be shared.  */
  char *name = xmalloc (20);
  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
  profiler_label = gen_rtx_SYMBOL_REF (Pmode, name);
}

/* Output instructions as RTL to increment the arc execution count.  */

static void
output_arc_profiler (arcno, insert_after)
     int arcno;
     rtx insert_after;
{
  rtx profiler_target_addr
    = (arcno
       ? gen_rtx_CONST (Pmode,
			gen_rtx_PLUS (Pmode, profiler_label,
				      GEN_INT (LONG_TYPE_SIZE / BITS_PER_UNIT * arcno)))
       : profiler_label);
  enum machine_mode mode = mode_for_size (LONG_TYPE_SIZE, MODE_INT, 0);
  rtx profiler_reg = gen_reg_rtx (mode);
  rtx address_reg = gen_reg_rtx (Pmode);
  rtx mem_ref, add_ref;
  rtx sequence;

  /* In this case, reload can use explicitly mentioned hard registers for
     reloads.  It is not safe to output profiling code between a call
     and the instruction that copies the result to a pseudo-reg.  This
     is because reload may allocate one of the profiling code pseudo-regs
     to the return value reg, thus clobbering the return value.  So we
     must check for calls here, and emit the profiling code after the
     instruction that uses the return value, if any.

     ??? The code here performs the same tests that reload does so hopefully
     all the bases are covered.  */

  if (SMALL_REGISTER_CLASSES
      && GET_CODE (insert_after) == CALL_INSN
      && (GET_CODE (PATTERN (insert_after)) == SET
	  || (GET_CODE (PATTERN (insert_after)) == PARALLEL
	      && GET_CODE (XVECEXP (PATTERN (insert_after), 0, 0)) == SET)))
    {
      rtx return_reg;
      rtx next_insert_after = next_nonnote_insn (insert_after);

      /* The first insn after the call may be a stack pop, skip it.  */
      if (next_insert_after
	  && GET_CODE (next_insert_after) == INSN
	  && GET_CODE (PATTERN (next_insert_after)) == SET
	  && SET_DEST (PATTERN (next_insert_after)) == stack_pointer_rtx)
	next_insert_after = next_nonnote_insn (next_insert_after);

      if (next_insert_after
	  && GET_CODE (next_insert_after) == INSN)
	{
	  if (GET_CODE (PATTERN (insert_after)) == SET)
	    return_reg = SET_DEST (PATTERN (insert_after));
	  else
	    return_reg = SET_DEST (XVECEXP (PATTERN (insert_after), 0, 0));

	  /* Now, NEXT_INSERT_AFTER may be an instruction that uses the
	     return value.  However, it could also be something else,
	     like a CODE_LABEL, so check that the code is INSN.  */
	  if (next_insert_after != 0
	      && GET_RTX_CLASS (GET_CODE (next_insert_after)) == 'i'
	      && reg_referenced_p (return_reg, PATTERN (next_insert_after)))
	    insert_after = next_insert_after;
	}
    }

  start_sequence ();

  emit_move_insn (address_reg, profiler_target_addr);
  mem_ref = gen_rtx_MEM (mode, address_reg);
  emit_move_insn (profiler_reg, mem_ref);

  add_ref = gen_rtx_PLUS (mode, profiler_reg, GEN_INT (1));
  emit_move_insn (profiler_reg, add_ref);

  /* This is the same rtx as above, but it is not legal to share this rtx.  */
  mem_ref = gen_rtx_MEM (mode, address_reg);
  emit_move_insn (mem_ref, profiler_reg);

  sequence = gen_sequence ();
  end_sequence ();
  emit_insn_after (sequence, insert_after);
}

/* Output code for a constructor that will invoke __bb_init_func, if
   this has not already been done. */

void
output_func_start_profiler ()
{
  tree fnname, fndecl;
  char *name, *cfnname;
  rtx table_address;
  enum machine_mode mode = mode_for_size (LONG_TYPE_SIZE, MODE_INT, 0);
  int save_flag_inline_functions = flag_inline_functions;

  /* It's either already been output, or we don't need it because we're
     not doing profile-arcs. */
  if (! need_func_profiler)
    return;

  need_func_profiler = 0;

  /* Synthesize a constructor function to invoke __bb_init_func with a
     pointer to this object file's profile block. */
  start_sequence ();

  /* Try and make a unique name given the "file function name".

     And no, I don't like this either. */

  fnname = get_file_function_name ('I');
  cfnname = IDENTIFIER_POINTER (fnname);
  name = xmalloc (strlen (cfnname) + 5);
  sprintf (name, "%sGCOV",cfnname);
  fnname = get_identifier (name);
  free (name);

  fndecl = build_decl (FUNCTION_DECL, fnname,
		       build_function_type (void_type_node, NULL_TREE));
  DECL_EXTERNAL (fndecl) = 0;
  TREE_PUBLIC (fndecl) = 1;
  DECL_ASSEMBLER_NAME (fndecl) = fnname;
  DECL_RESULT (fndecl) = build_decl (RESULT_DECL, NULL_TREE, void_type_node);

  fndecl = pushdecl (fndecl);
  rest_of_decl_compilation (fndecl, 0, 1, 0);
  announce_function (fndecl);
  current_function_decl = fndecl;
  DECL_INITIAL (fndecl) = error_mark_node;
  temporary_allocation ();
  pushlevel (0);
  make_function_rtl (fndecl);
  init_function_start (fndecl, input_filename, lineno);
  expand_function_start (fndecl, 0);

  /* Actually generate the code to call __bb_init_func. */
  name = xmalloc (20);
  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
  table_address = force_reg (Pmode, gen_rtx_SYMBOL_REF (Pmode, name));
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__bb_init_func"), 0,
		     mode, 1, table_address, Pmode);

  expand_function_end (input_filename, lineno, 0);
  poplevel (1, 0, 1);

  /* Since fndecl isn't in the list of globals, it would never be emitted
     when it's considered to be 'safe' for inlining, so turn off
     flag_inline_functions.  */
  flag_inline_functions = 0;

  rest_of_compilation (fndecl);

  /* Reset flag_inline_functions to its original value.  */
  flag_inline_functions = save_flag_inline_functions;

  if (! quiet_flag)
    fflush (asm_out_file);
  current_function_decl = NULL_TREE;

  assemble_constructor (IDENTIFIER_POINTER (DECL_NAME (fndecl)));
}