summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/rtlanal.c
blob: d1b94323b36803293a664552fa1369c600ef4540 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
/* Analyze RTL for C-Compiler
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


#include "config.h"
#include "system.h"
#include "rtl.h"

static int rtx_addr_can_trap_p	PROTO((rtx));
static void reg_set_p_1		PROTO((rtx, rtx));
static void reg_set_last_1	PROTO((rtx, rtx));


/* Forward declarations */
static int jmp_uses_reg_or_mem		PROTO((rtx));

/* Bit flags that specify the machine subtype we are compiling for.
   Bits are tested using macros TARGET_... defined in the tm.h file
   and set by `-m...' switches.  Must be defined in rtlanal.c.  */

int target_flags;

/* Return 1 if the value of X is unstable
   (would be different at a different point in the program).
   The frame pointer, arg pointer, etc. are considered stable
   (within one function) and so is anything marked `unchanging'.  */

int
rtx_unstable_p (x)
     rtx x;
{
  register RTX_CODE code = GET_CODE (x);
  register int i;
  register char *fmt;

  if (code == MEM)
    return ! RTX_UNCHANGING_P (x);

  if (code == QUEUED)
    return 1;

  if (code == CONST || code == CONST_INT)
    return 0;

  if (code == REG)
    return ! (REGNO (x) == FRAME_POINTER_REGNUM
	      || REGNO (x) == HARD_FRAME_POINTER_REGNUM
	      || REGNO (x) == ARG_POINTER_REGNUM
	      || RTX_UNCHANGING_P (x));

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      if (rtx_unstable_p (XEXP (x, i)))
	return 1;
  return 0;
}

/* Return 1 if X has a value that can vary even between two
   executions of the program.  0 means X can be compared reliably
   against certain constants or near-constants.
   The frame pointer and the arg pointer are considered constant.  */

int
rtx_varies_p (x)
     rtx x;
{
  register RTX_CODE code = GET_CODE (x);
  register int i;
  register char *fmt;

  switch (code)
    {
    case MEM:
    case QUEUED:
      return 1;

    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case REG:
      /* Note that we have to test for the actual rtx used for the frame
	 and arg pointers and not just the register number in case we have
	 eliminated the frame and/or arg pointer and are using it
	 for pseudos.  */
      return ! (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
		|| x == arg_pointer_rtx || x == pic_offset_table_rtx);

    case LO_SUM:
      /* The operand 0 of a LO_SUM is considered constant
	 (in fact is it related specifically to operand 1).  */
      return rtx_varies_p (XEXP (x, 1));
      
    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      if (rtx_varies_p (XEXP (x, i)))
	return 1;
  return 0;
}

/* Return 0 if the use of X as an address in a MEM can cause a trap.  */

static int
rtx_addr_can_trap_p (x)
     register rtx x;
{
  register enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case SYMBOL_REF:
    case LABEL_REF:
      /* SYMBOL_REF is problematic due to the possible presence of
	 a #pragma weak, but to say that loads from symbols can trap is
	 *very* costly.  It's not at all clear what's best here.  For
	 now, we ignore the impact of #pragma weak.  */
      return 0;

    case REG:
      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
      return ! (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
		|| x == stack_pointer_rtx || x == arg_pointer_rtx);

    case CONST:
      return rtx_addr_can_trap_p (XEXP (x, 0));

    case PLUS:
      /* An address is assumed not to trap if it is an address that can't
	 trap plus a constant integer.  */
      return (rtx_addr_can_trap_p (XEXP (x, 0))
	      || GET_CODE (XEXP (x, 1)) != CONST_INT);

    case LO_SUM:
      return rtx_addr_can_trap_p (XEXP (x, 1));
      
    default:
      break;
    }

  /* If it isn't one of the case above, it can cause a trap.  */
  return 1;
}

/* Return 1 if X refers to a memory location whose address 
   cannot be compared reliably with constant addresses,
   or if X refers to a BLKmode memory object.  */

int
rtx_addr_varies_p (x)
     rtx x;
{
  register enum rtx_code code;
  register int i;
  register char *fmt;

  if (x == 0)
    return 0;

  code = GET_CODE (x);
  if (code == MEM)
    return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0));

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	if (rtx_addr_varies_p (XEXP (x, i)))
	  return 1;
      }
    else if (fmt[i] == 'E')
      {
	int j;
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (rtx_addr_varies_p (XVECEXP (x, i, j)))
	    return 1;
      }
  return 0;
}

/* Return the value of the integer term in X, if one is apparent;
   otherwise return 0.
   Only obvious integer terms are detected.
   This is used in cse.c with the `related_value' field.*/

HOST_WIDE_INT
get_integer_term (x)
     rtx x;
{
  if (GET_CODE (x) == CONST)
    x = XEXP (x, 0);

  if (GET_CODE (x) == MINUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return - INTVAL (XEXP (x, 1));
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return INTVAL (XEXP (x, 1));
  return 0;
}

/* If X is a constant, return the value sans apparent integer term;
   otherwise return 0.
   Only obvious integer terms are detected.  */

rtx
get_related_value (x)
     rtx x;
{
  if (GET_CODE (x) != CONST)
    return 0;
  x = XEXP (x, 0);
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return XEXP (x, 0);
  else if (GET_CODE (x) == MINUS
	   && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return XEXP (x, 0);
  return 0;
}

/* Nonzero if register REG appears somewhere within IN.
   Also works if REG is not a register; in this case it checks
   for a subexpression of IN that is Lisp "equal" to REG.  */

int
reg_mentioned_p (reg, in)
     register rtx reg, in;
{
  register char *fmt;
  register int i;
  register enum rtx_code code;

  if (in == 0)
    return 0;

  if (reg == in)
    return 1;

  if (GET_CODE (in) == LABEL_REF)
    return reg == XEXP (in, 0);

  code = GET_CODE (in);

  switch (code)
    {
      /* Compare registers by number.  */
    case REG:
      return GET_CODE (reg) == REG && REGNO (in) == REGNO (reg);

      /* These codes have no constituent expressions
	 and are unique.  */
    case SCRATCH:
    case CC0:
    case PC:
      return 0;

    case CONST_INT:
      return GET_CODE (reg) == CONST_INT && INTVAL (in) == INTVAL (reg);
      
    case CONST_DOUBLE:
      /* These are kept unique for a given value.  */
      return 0;
      
    default:
      break;
    }

  if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
    return 1;

  fmt = GET_RTX_FORMAT (code);

  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = XVECLEN (in, i) - 1; j >= 0; j--)
	    if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
	      return 1;
	}
      else if (fmt[i] == 'e'
	       && reg_mentioned_p (reg, XEXP (in, i)))
	return 1;
    }
  return 0;
}

/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
   no CODE_LABEL insn.  */

int
no_labels_between_p (beg, end)
     rtx beg, end;
{
  register rtx p;
  for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
    if (GET_CODE (p) == CODE_LABEL)
      return 0;
  return 1;
}

/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
   no JUMP_INSN insn.  */

int
no_jumps_between_p (beg, end)
     rtx beg, end;
{
  register rtx p;
  for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
    if (GET_CODE (p) == JUMP_INSN)
      return 0;
  return 1;
}

/* Nonzero if register REG is used in an insn between
   FROM_INSN and TO_INSN (exclusive of those two).  */

int
reg_used_between_p (reg, from_insn, to_insn)
     rtx reg, from_insn, to_insn;
{
  register rtx insn;

  if (from_insn == to_insn)
    return 0;

  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
	   || (GET_CODE (insn) == CALL_INSN
	      && (find_reg_fusage (insn, USE, reg)
		  || find_reg_fusage (insn, CLOBBER, reg)))))
      return 1;
  return 0;
}

/* Nonzero if the old value of X, a register, is referenced in BODY.  If X
   is entirely replaced by a new value and the only use is as a SET_DEST,
   we do not consider it a reference.  */

int
reg_referenced_p (x, body)
     rtx x;
     rtx body;
{
  int i;

  switch (GET_CODE (body))
    {
    case SET:
      if (reg_overlap_mentioned_p (x, SET_SRC (body)))
	return 1;

      /* If the destination is anything other than CC0, PC, a REG or a SUBREG
	 of a REG that occupies all of the REG, the insn references X if
	 it is mentioned in the destination.  */
      if (GET_CODE (SET_DEST (body)) != CC0
	  && GET_CODE (SET_DEST (body)) != PC
	  && GET_CODE (SET_DEST (body)) != REG
	  && ! (GET_CODE (SET_DEST (body)) == SUBREG
		&& GET_CODE (SUBREG_REG (SET_DEST (body))) == REG
		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
	  && reg_overlap_mentioned_p (x, SET_DEST (body)))
	return 1;
      return 0;

    case ASM_OPERANDS:
      for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
	if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
	  return 1;
      return 0;

    case CALL:
    case USE:
      return reg_overlap_mentioned_p (x, body);

    case TRAP_IF:
      return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));

    case UNSPEC:
    case UNSPEC_VOLATILE:
    case PARALLEL:
      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
	if (reg_referenced_p (x, XVECEXP (body, 0, i)))
	  return 1;
      return 0;
      
    default:
      return 0;
    }
}

/* Nonzero if register REG is referenced in an insn between
   FROM_INSN and TO_INSN (exclusive of those two).  Sets of REG do
   not count.  */

int
reg_referenced_between_p (reg, from_insn, to_insn)
     rtx reg, from_insn, to_insn;
{
  register rtx insn;

  if (from_insn == to_insn)
    return 0;

  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	&& (reg_referenced_p (reg, PATTERN (insn))
	   || (GET_CODE (insn) == CALL_INSN
	      && find_reg_fusage (insn, USE, reg))))
      return 1;
  return 0;
}

/* Nonzero if register REG is set or clobbered in an insn between
   FROM_INSN and TO_INSN (exclusive of those two).  */

int
reg_set_between_p (reg, from_insn, to_insn)
     rtx reg, from_insn, to_insn;
{
  register rtx insn;

  if (from_insn == to_insn)
    return 0;

  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	&& reg_set_p (reg, insn))
      return 1;
  return 0;
}

/* Internals of reg_set_between_p.  */

static rtx reg_set_reg;
static int reg_set_flag;

static void
reg_set_p_1 (x, pat)
     rtx x;
     rtx pat ATTRIBUTE_UNUSED;
{
  /* We don't want to return 1 if X is a MEM that contains a register
     within REG_SET_REG.  */

  if ((GET_CODE (x) != MEM)
      && reg_overlap_mentioned_p (reg_set_reg, x))
    reg_set_flag = 1;
}

int
reg_set_p (reg, insn)
     rtx reg, insn;
{
  rtx body = insn;

  /* We can be passed an insn or part of one.  If we are passed an insn,
     check if a side-effect of the insn clobbers REG.  */
  if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
    {
      if (FIND_REG_INC_NOTE (insn, reg)
	  || (GET_CODE (insn) == CALL_INSN
	      /* We'd like to test call_used_regs here, but rtlanal.c can't
		 reference that variable due to its use in genattrtab.  So
		 we'll just be more conservative.

		 ??? Unless we could ensure that the CALL_INSN_FUNCTION_USAGE
		 information holds all clobbered registers.  */
	      && ((GET_CODE (reg) == REG
		   && REGNO (reg) < FIRST_PSEUDO_REGISTER)
		  || GET_CODE (reg) == MEM
		  || find_reg_fusage (insn, CLOBBER, reg))))
	return 1;

      body = PATTERN (insn);
    }

  reg_set_reg = reg;
  reg_set_flag = 0;
  note_stores (body, reg_set_p_1);
  return reg_set_flag;
}

/* Similar to reg_set_between_p, but check all registers in X.  Return 0
   only if none of them are modified between START and END.  Do not
   consider non-registers one way or the other.  */

int
regs_set_between_p (x, start, end)
     rtx x;
     rtx start, end;
{
  enum rtx_code code = GET_CODE (x);
  char *fmt;
  int i, j;

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case PC:
    case CC0:
      return 0;

    case REG:
      return reg_set_between_p (x, start, end);
      
    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e' && regs_set_between_p (XEXP (x, i), start, end))
	return 1;

      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (regs_set_between_p (XVECEXP (x, i, j), start, end))
	    return 1;
    }

  return 0;
}

/* Similar to reg_set_between_p, but check all registers in X.  Return 0
   only if none of them are modified between START and END.  Return 1 if
   X contains a MEM; this routine does not perform any memory aliasing.  */

int
modified_between_p (x, start, end)
     rtx x;
     rtx start, end;
{
  enum rtx_code code = GET_CODE (x);
  char *fmt;
  int i, j;

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case PC:
    case CC0:
      return 1;

    case MEM:
      /* If the memory is not constant, assume it is modified.  If it is
	 constant, we still have to check the address.  */
      if (! RTX_UNCHANGING_P (x))
	return 1;
      break;

    case REG:
      return reg_set_between_p (x, start, end);
      
    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
	return 1;

      if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (modified_between_p (XVECEXP (x, i, j), start, end))
	    return 1;
    }

  return 0;
}

/* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
   of them are modified in INSN.  Return 1 if X contains a MEM; this routine
   does not perform any memory aliasing.  */

int
modified_in_p (x, insn)
     rtx x;
     rtx insn;
{
  enum rtx_code code = GET_CODE (x);
  char *fmt;
  int i, j;

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case PC:
    case CC0:
      return 1;

    case MEM:
      /* If the memory is not constant, assume it is modified.  If it is
	 constant, we still have to check the address.  */
      if (! RTX_UNCHANGING_P (x))
	return 1;
      break;

    case REG:
      return reg_set_p (x, insn);

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
	return 1;

      if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (modified_in_p (XVECEXP (x, i, j), insn))
	    return 1;
    }

  return 0;
}

/* Given an INSN, return a SET expression if this insn has only a single SET.
   It may also have CLOBBERs, USEs, or SET whose output
   will not be used, which we ignore.  */

rtx
single_set (insn)
     rtx insn;
{
  rtx set;
  int i;
  
  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
    return 0;

  if (GET_CODE (PATTERN (insn)) == SET)
    return PATTERN (insn);
  
  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
    {
      for (i = 0, set = 0; i < XVECLEN (PATTERN (insn), 0); i++)
	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
	    && (! find_reg_note (insn, REG_UNUSED,
				 SET_DEST (XVECEXP (PATTERN (insn), 0, i)))
		|| side_effects_p (XVECEXP (PATTERN (insn), 0, i))))
	  {
	    if (set)
	      return 0;
	    else
	      set = XVECEXP (PATTERN (insn), 0, i);
	  }
      return set;
    }
  
  return 0;
}

/* Given an INSN, return nonzero if it has more than one SET, else return
   zero.  */

int
multiple_sets (insn)
     rtx insn;
{
  int found;
  int i;
  
  /* INSN must be an insn.  */
  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
    return 0;

  /* Only a PARALLEL can have multiple SETs.  */
  if (GET_CODE (PATTERN (insn)) == PARALLEL)
    {
      for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
	  {
	    /* If we have already found a SET, then return now.  */
	    if (found)
	      return 1;
	    else
	      found = 1;
	  }
    }
  
  /* Either zero or one SET.  */
  return 0;
}

/* Return the last thing that X was assigned from before *PINSN.  Verify that
   the object is not modified up to VALID_TO.  If it was, if we hit
   a partial assignment to X, or hit a CODE_LABEL first, return X.  If we
   found an assignment, update *PINSN to point to it.  
   ALLOW_HWREG is set to 1 if hardware registers are allowed to be the src.  */

rtx
find_last_value (x, pinsn, valid_to, allow_hwreg)
     rtx x;
     rtx *pinsn;
     rtx valid_to;
     int allow_hwreg;
{
  rtx p;

  for (p = PREV_INSN (*pinsn); p && GET_CODE (p) != CODE_LABEL;
       p = PREV_INSN (p))
    if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
      {
	rtx set = single_set (p);
	rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);

	if (set && rtx_equal_p (x, SET_DEST (set)))
	  {
	    rtx src = SET_SRC (set);

	    if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
	      src = XEXP (note, 0);

	    if (! modified_between_p (src, PREV_INSN (p), valid_to)
		/* Reject hard registers because we don't usually want
		   to use them; we'd rather use a pseudo.  */
		&& (! (GET_CODE (src) == REG
		      && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
	      {
		*pinsn = p;
		return src;
	      }
	  }
	  
	/* If set in non-simple way, we don't have a value.  */
	if (reg_set_p (x, p))
	  break;
      }

  return x;
}     

/* Return nonzero if register in range [REGNO, ENDREGNO)
   appears either explicitly or implicitly in X
   other than being stored into.

   References contained within the substructure at LOC do not count.
   LOC may be zero, meaning don't ignore anything.  */

int
refers_to_regno_p (regno, endregno, x, loc)
     int regno, endregno;
     rtx x;
     rtx *loc;
{
  register int i;
  register RTX_CODE code;
  register char *fmt;

 repeat:
  /* The contents of a REG_NONNEG note is always zero, so we must come here
     upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
  if (x == 0)
    return 0;

  code = GET_CODE (x);

  switch (code)
    {
    case REG:
      i = REGNO (x);

      /* If we modifying the stack, frame, or argument pointer, it will
	 clobber a virtual register.  In fact, we could be more precise,
	 but it isn't worth it.  */
      if ((i == STACK_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	   || i == ARG_POINTER_REGNUM
#endif
	   || i == FRAME_POINTER_REGNUM)
	  && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
	return 1;

      return (endregno > i
	      && regno < i + (i < FIRST_PSEUDO_REGISTER 
			      ? HARD_REGNO_NREGS (i, GET_MODE (x))
			      : 1));

    case SUBREG:
      /* If this is a SUBREG of a hard reg, we can see exactly which
	 registers are being modified.  Otherwise, handle normally.  */
      if (GET_CODE (SUBREG_REG (x)) == REG
	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
	{
	  int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
	  int inner_endregno
	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
			     ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);

	  return endregno > inner_regno && regno < inner_endregno;
	}
      break;

    case CLOBBER:
    case SET:
      if (&SET_DEST (x) != loc
	  /* Note setting a SUBREG counts as referring to the REG it is in for
	     a pseudo but not for hard registers since we can
	     treat each word individually.  */
	  && ((GET_CODE (SET_DEST (x)) == SUBREG
	       && loc != &SUBREG_REG (SET_DEST (x))
	       && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
	       && refers_to_regno_p (regno, endregno,
				     SUBREG_REG (SET_DEST (x)), loc))
	      || (GET_CODE (SET_DEST (x)) != REG
		  && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
	return 1;

      if (code == CLOBBER || loc == &SET_SRC (x))
	return 0;
      x = SET_SRC (x);
      goto repeat;

    default:
      break;
    }

  /* X does not match, so try its subexpressions.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e' && loc != &XEXP (x, i))
	{
	  if (i == 0)
	    {
	      x = XEXP (x, 0);
	      goto repeat;
	    }
	  else
	    if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
	      return 1;
	}
      else if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = XVECLEN (x, i) - 1; j >=0; j--)
	    if (loc != &XVECEXP (x, i, j)
		&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
	      return 1;
	}
    }
  return 0;
}

/* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
   we check if any register number in X conflicts with the relevant register
   numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
   contains a MEM (we don't bother checking for memory addresses that can't
   conflict because we expect this to be a rare case.  */

int
reg_overlap_mentioned_p (x, in)
     rtx x, in;
{
  int regno, endregno;

  /* Overly conservative.  */
  if (GET_CODE (x) == STRICT_LOW_PART)
    x = XEXP (x, 0);

  /* If either argument is a constant, then modifying X can not affect IN.  */
  if (CONSTANT_P (x) || CONSTANT_P (in))
    return 0;
  else if (GET_CODE (x) == SUBREG)
    {
      regno = REGNO (SUBREG_REG (x));
      if (regno < FIRST_PSEUDO_REGISTER)
	regno += SUBREG_WORD (x);
    }
  else if (GET_CODE (x) == REG)
    regno = REGNO (x);
  else if (GET_CODE (x) == MEM)
    {
      char *fmt;
      int i;

      if (GET_CODE (in) == MEM)
	return 1;

      fmt = GET_RTX_FORMAT (GET_CODE (in));

      for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
	if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
	  return 1;

      return 0;
    }
  else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
	   || GET_CODE (x) == CC0)
    return reg_mentioned_p (x, in);
  else if (GET_CODE (x) == PARALLEL
	   && GET_MODE (x) == BLKmode)
    {
      register int i;

      /* If any register in here refers to it
	 we return true.  */
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	if (reg_overlap_mentioned_p (SET_DEST (XVECEXP (x, 0, i)), in))
	  return 1;
      return 0;
    }
  else
    abort ();

  endregno = regno + (regno < FIRST_PSEUDO_REGISTER
		      ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);

  return refers_to_regno_p (regno, endregno, in, NULL_PTR);
}

/* Used for communications between the next few functions.  */

static int reg_set_last_unknown;
static rtx reg_set_last_value;
static int reg_set_last_first_regno, reg_set_last_last_regno;

/* Called via note_stores from reg_set_last.  */

static void
reg_set_last_1 (x, pat)
     rtx x;
     rtx pat;
{
  int first, last;

  /* If X is not a register, or is not one in the range we care
     about, ignore.  */
  if (GET_CODE (x) != REG)
    return;

  first = REGNO (x);
  last = first + (first < FIRST_PSEUDO_REGISTER
		  ? HARD_REGNO_NREGS (first, GET_MODE (x)) : 1);

  if (first >= reg_set_last_last_regno
      || last <= reg_set_last_first_regno)
    return;

  /* If this is a CLOBBER or is some complex LHS, or doesn't modify
     exactly the registers we care about, show we don't know the value.  */
  if (GET_CODE (pat) == CLOBBER || SET_DEST (pat) != x
      || first != reg_set_last_first_regno
      || last != reg_set_last_last_regno)
    reg_set_last_unknown = 1;
  else
    reg_set_last_value = SET_SRC (pat);
}

/* Return the last value to which REG was set prior to INSN.  If we can't
   find it easily, return 0.

   We only return a REG, SUBREG, or constant because it is too hard to
   check if a MEM remains unchanged.  */

rtx
reg_set_last (x, insn)
     rtx x;
     rtx insn;
{
  rtx orig_insn = insn;

  reg_set_last_first_regno = REGNO (x);

  reg_set_last_last_regno
    = reg_set_last_first_regno
      + (reg_set_last_first_regno < FIRST_PSEUDO_REGISTER
	 ? HARD_REGNO_NREGS (reg_set_last_first_regno, GET_MODE (x)) : 1);

  reg_set_last_unknown = 0;
  reg_set_last_value = 0;

  /* Scan backwards until reg_set_last_1 changed one of the above flags.
     Stop when we reach a label or X is a hard reg and we reach a
     CALL_INSN (if reg_set_last_last_regno is a hard reg).

     If we find a set of X, ensure that its SET_SRC remains unchanged.  */

  /* We compare with <= here, because reg_set_last_last_regno
     is actually the number of the first reg *not* in X.  */
  for (;
       insn && GET_CODE (insn) != CODE_LABEL
       && ! (GET_CODE (insn) == CALL_INSN
	     && reg_set_last_last_regno <= FIRST_PSEUDO_REGISTER);
       insn = PREV_INSN (insn))
    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
      {
	note_stores (PATTERN (insn), reg_set_last_1);
	if (reg_set_last_unknown)
	  return 0;
	else if (reg_set_last_value)
	  {
	    if (CONSTANT_P (reg_set_last_value)
		|| ((GET_CODE (reg_set_last_value) == REG
		     || GET_CODE (reg_set_last_value) == SUBREG)
		    && ! reg_set_between_p (reg_set_last_value,
					    insn, orig_insn)))
	      return reg_set_last_value;
	    else
	      return 0;
	  }
      }

  return 0;
}

/* This is 1 until after the rtl generation pass.  */
int rtx_equal_function_value_matters;

/* Return 1 if X and Y are identical-looking rtx's.
   This is the Lisp function EQUAL for rtx arguments.  */

int
rtx_equal_p (x, y)
     rtx x, y;
{
  register int i;
  register int j;
  register enum rtx_code code;
  register char *fmt;

  if (x == y)
    return 1;
  if (x == 0 || y == 0)
    return 0;

  code = GET_CODE (x);
  /* Rtx's of different codes cannot be equal.  */
  if (code != GET_CODE (y))
    return 0;

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
     (REG:SI x) and (REG:HI x) are NOT equivalent.  */

  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively.  */

  if (code == REG)
    /* Until rtl generation is complete, don't consider a reference to the
       return register of the current function the same as the return from a
       called function.  This eases the job of function integration.  Once the
       distinction is no longer needed, they can be considered equivalent.  */
    return (REGNO (x) == REGNO (y)
	    && (! rtx_equal_function_value_matters
		|| REG_FUNCTION_VALUE_P (x) == REG_FUNCTION_VALUE_P (y)));
  else if (code == LABEL_REF)
    return XEXP (x, 0) == XEXP (y, 0);
  else if (code == SYMBOL_REF)
    return XSTR (x, 0) == XSTR (y, 0);
  else if (code == SCRATCH || code == CONST_DOUBLE)
    return 0;

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      switch (fmt[i])
	{
	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	  break;

	case 'n':
	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
	  break;

	case 'V':
	case 'E':
	  /* Two vectors must have the same length.  */
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;

	  /* And the corresponding elements must match.  */
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (rtx_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
	      return 0;
	  break;

	case 'e':
	  if (rtx_equal_p (XEXP (x, i), XEXP (y, i)) == 0)
	    return 0;
	  break;

	case 'S':
	case 's':
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
	  break;

	case 'u':
	  /* These are just backpointers, so they don't matter.  */
	  break;

	case '0':
	  break;

	  /* It is believed that rtx's at this level will never
	     contain anything but integers and other rtx's,
	     except for within LABEL_REFs and SYMBOL_REFs.  */
	default:
	  abort ();
	}
    }
  return 1;
}

/* Call FUN on each register or MEM that is stored into or clobbered by X.
   (X would be the pattern of an insn).
   FUN receives two arguments:
     the REG, MEM, CC0 or PC being stored in or clobbered,
     the SET or CLOBBER rtx that does the store.

  If the item being stored in or clobbered is a SUBREG of a hard register,
  the SUBREG will be passed.  */
     
void
note_stores (x, fun)
     register rtx x;
     void (*fun) PROTO ((rtx, rtx));
{
  if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER))
    {
      register rtx dest = SET_DEST (x);
      while ((GET_CODE (dest) == SUBREG
	      && (GET_CODE (SUBREG_REG (dest)) != REG
		  || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SIGN_EXTRACT
	     || GET_CODE (dest) == STRICT_LOW_PART)
	dest = XEXP (dest, 0);

      if (GET_CODE (dest) == PARALLEL
	  && GET_MODE (dest) == BLKmode)
	{
	  register int i;
	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
	    (*fun) (SET_DEST (XVECEXP (dest, 0, i)), x);
	}
      else
	(*fun) (dest, x);
    }
  else if (GET_CODE (x) == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == SET || GET_CODE (y) == CLOBBER)
	    {
	      register rtx dest = SET_DEST (y);
	      while ((GET_CODE (dest) == SUBREG
		      && (GET_CODE (SUBREG_REG (dest)) != REG
			  || (REGNO (SUBREG_REG (dest))
			      >= FIRST_PSEUDO_REGISTER)))
		     || GET_CODE (dest) == ZERO_EXTRACT
		     || GET_CODE (dest) == SIGN_EXTRACT
		     || GET_CODE (dest) == STRICT_LOW_PART)
		dest = XEXP (dest, 0);
	      if (GET_CODE (dest) == PARALLEL
		  && GET_MODE (dest) == BLKmode)
		{
		  register int i;
		  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
		    (*fun) (SET_DEST (XVECEXP (dest, 0, i)), y);
		}
	      else
		(*fun) (dest, y);
	    }
	}
    }
}

/* Return nonzero if X's old contents don't survive after INSN.
   This will be true if X is (cc0) or if X is a register and
   X dies in INSN or because INSN entirely sets X.

   "Entirely set" means set directly and not through a SUBREG,
   ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
   Likewise, REG_INC does not count.

   REG may be a hard or pseudo reg.  Renumbering is not taken into account,
   but for this use that makes no difference, since regs don't overlap
   during their lifetimes.  Therefore, this function may be used
   at any time after deaths have been computed (in flow.c).

   If REG is a hard reg that occupies multiple machine registers, this
   function will only return 1 if each of those registers will be replaced
   by INSN.  */

int
dead_or_set_p (insn, x)
     rtx insn;
     rtx x;
{
  register int regno, last_regno;
  register int i;

  /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
  if (GET_CODE (x) == CC0)
    return 1;

  if (GET_CODE (x) != REG)
    abort ();

  regno = REGNO (x);
  last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
		: regno + HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1);

  for (i = regno; i <= last_regno; i++)
    if (! dead_or_set_regno_p (insn, i))
      return 0;

  return 1;
}

/* Utility function for dead_or_set_p to check an individual register.  Also
   called from flow.c.  */

int
dead_or_set_regno_p (insn, test_regno)
     rtx insn;
     int test_regno;
{
  int regno, endregno;
  rtx link;

  /* See if there is a death note for something that includes
     TEST_REGNO.  */
  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    {
      if (REG_NOTE_KIND (link) != REG_DEAD
	  || GET_CODE (XEXP (link, 0)) != REG)
	continue;

      regno = REGNO (XEXP (link, 0));
      endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
		  : regno + HARD_REGNO_NREGS (regno,
					      GET_MODE (XEXP (link, 0))));

      if (test_regno >= regno && test_regno < endregno)
	return 1;
    }

  if (GET_CODE (insn) == CALL_INSN
      && find_regno_fusage (insn, CLOBBER, test_regno))
    return 1;

  if (GET_CODE (PATTERN (insn)) == SET)
    {
      rtx dest = SET_DEST (PATTERN (insn));
 
      /* A value is totally replaced if it is the destination or the
	 destination is a SUBREG of REGNO that does not change the number of
	 words in it.  */
      if (GET_CODE (dest) == SUBREG
	  && (((GET_MODE_SIZE (GET_MODE (dest))
		+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
	      == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
		   + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
	dest = SUBREG_REG (dest);

      if (GET_CODE (dest) != REG)
	return 0;

      regno = REGNO (dest);
      endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
		  : regno + HARD_REGNO_NREGS (regno, GET_MODE (dest)));

      return (test_regno >= regno && test_regno < endregno);
    }
  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
    {
      register int i;

      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	{
	  rtx body = XVECEXP (PATTERN (insn), 0, i);

	  if (GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
	    {
	      rtx dest = SET_DEST (body);

	      if (GET_CODE (dest) == SUBREG
		  && (((GET_MODE_SIZE (GET_MODE (dest))
			+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
		      == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
			   + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
		dest = SUBREG_REG (dest);

	      if (GET_CODE (dest) != REG)
		continue;

	      regno = REGNO (dest);
	      endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
			  : regno + HARD_REGNO_NREGS (regno, GET_MODE (dest)));

	      if (test_regno >= regno && test_regno < endregno)
		return 1;
	    }
	}
    }

  return 0;
}

/* Return the reg-note of kind KIND in insn INSN, if there is one.
   If DATUM is nonzero, look for one whose datum is DATUM.  */

rtx
find_reg_note (insn, kind, datum)
     rtx insn;
     enum reg_note kind;
     rtx datum;
{
  register rtx link;

  /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
    return 0;

  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (REG_NOTE_KIND (link) == kind
	&& (datum == 0 || datum == XEXP (link, 0)))
      return link;
  return 0;
}

/* Return the reg-note of kind KIND in insn INSN which applies to register
   number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
   the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
   it might be the case that the note overlaps REGNO.  */

rtx
find_regno_note (insn, kind, regno)
     rtx insn;
     enum reg_note kind;
     int regno;
{
  register rtx link;

  /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
    return 0;

  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (REG_NOTE_KIND (link) == kind
	/* Verify that it is a register, so that scratch and MEM won't cause a
	   problem here.  */
	&& GET_CODE (XEXP (link, 0)) == REG
	&& REGNO (XEXP (link, 0)) <= regno
	&& ((REGNO (XEXP (link, 0))
	     + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
		: HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
				    GET_MODE (XEXP (link, 0)))))
	    > regno))
      return link;
  return 0;
}

/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
   in the CALL_INSN_FUNCTION_USAGE information of INSN.  */

int
find_reg_fusage (insn, code, datum)
     rtx insn;
     enum rtx_code code;
     rtx datum;
{
  /* If it's not a CALL_INSN, it can't possibly have a
     CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
  if (GET_CODE (insn) != CALL_INSN)
    return 0;

  if (! datum)
    abort();

  if (GET_CODE (datum) != REG)
    {
      register rtx link;

      for (link = CALL_INSN_FUNCTION_USAGE (insn);
           link;
	   link = XEXP (link, 1))
        if (GET_CODE (XEXP (link, 0)) == code
	    && rtx_equal_p (datum, SET_DEST (XEXP (link, 0))))
          return 1;
    }
  else
    {
      register int regno = REGNO (datum);

      /* CALL_INSN_FUNCTION_USAGE information cannot contain references
	 to pseudo registers, so don't bother checking.  */

      if (regno < FIRST_PSEUDO_REGISTER)
        {
	  int end_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (datum));
	  int i;

	  for (i = regno; i < end_regno; i++)
	    if (find_regno_fusage (insn, code, i))
	      return 1;
        }
    }

  return 0;
}

/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
   in the CALL_INSN_FUNCTION_USAGE information of INSN.  */

int
find_regno_fusage (insn, code, regno)
     rtx insn;
     enum rtx_code code;
     int regno;
{
  register rtx link;

  /* CALL_INSN_FUNCTION_USAGE information cannot contain references
     to pseudo registers, so don't bother checking.  */

  if (regno >= FIRST_PSEUDO_REGISTER
      || GET_CODE (insn) != CALL_INSN )
    return 0;

  for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
   {
    register int regnote;
    register rtx op;

    if (GET_CODE (op = XEXP (link, 0)) == code
	&& GET_CODE (SET_DEST (op)) == REG
	&& (regnote = REGNO (SET_DEST (op))) <= regno
	&& regnote
		+ HARD_REGNO_NREGS (regnote, GET_MODE (SET_DEST (op)))
	    > regno)
      return 1;
   }

  return 0;
}

/* Remove register note NOTE from the REG_NOTES of INSN.  */

void
remove_note (insn, note)
     register rtx note;
     register rtx insn;
{
  register rtx link;

  if (REG_NOTES (insn) == note)
    {
      REG_NOTES (insn) = XEXP (note, 1);
      return;
    }

  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (XEXP (link, 1) == note)
      {
	XEXP (link, 1) = XEXP (note, 1);
	return;
      }

  abort ();
}

/* Search LISTP (an EXPR_LIST) for NODE and remove NODE from the list
   if it is found.

   A simple equality test is used to determine if NODE is on the
   EXPR_LIST.  */

void
remove_node_from_expr_list (node, listp)
     rtx node;
     rtx *listp;
{
  rtx temp = *listp;
  rtx prev = NULL_RTX;

  while (temp)
    {
      if (node == XEXP (temp, 0))
	{
	  /* Splice the node out of the list.  */
	  if (prev)
	    XEXP (prev, 1) = XEXP (temp, 1);
	  else
	    *listp = XEXP (temp, 1);

	  return;
	}
      temp = XEXP (temp, 1);
    }
}

/* Nonzero if X contains any volatile instructions.  These are instructions
   which may cause unpredictable machine state instructions, and thus no
   instructions should be moved or combined across them.  This includes
   only volatile asms and UNSPEC_VOLATILE instructions.  */

int
volatile_insn_p (x)
     rtx x;
{
  register RTX_CODE code;

  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case CC0:
    case PC:
    case REG:
    case SCRATCH:
    case CLOBBER:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case CALL:
    case MEM:
      return 0;

    case UNSPEC_VOLATILE:
 /* case TRAP_IF: This isn't clear yet.  */
      return 1;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    register char *fmt = GET_RTX_FORMAT (code);
    register int i;
    
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    if (volatile_insn_p (XEXP (x, i)))
	      return 1;
	  }
	if (fmt[i] == 'E')
	  {
	    register int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      if (volatile_insn_p (XVECEXP (x, i, j)))
		return 1;
	  }
      }
  }
  return 0;
}

/* Nonzero if X contains any volatile memory references
   UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */

int
volatile_refs_p (x)
     rtx x;
{
  register RTX_CODE code;

  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case CC0:
    case PC:
    case REG:
    case SCRATCH:
    case CLOBBER:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 0;

    case CALL:
    case UNSPEC_VOLATILE:
 /* case TRAP_IF: This isn't clear yet.  */
      return 1;

    case MEM:
    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    register char *fmt = GET_RTX_FORMAT (code);
    register int i;
    
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    if (volatile_refs_p (XEXP (x, i)))
	      return 1;
	  }
	if (fmt[i] == 'E')
	  {
	    register int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      if (volatile_refs_p (XVECEXP (x, i, j)))
		return 1;
	  }
      }
  }
  return 0;
}

/* Similar to above, except that it also rejects register pre- and post-
   incrementing.  */

int
side_effects_p (x)
     rtx x;
{
  register RTX_CODE code;

  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case CC0:
    case PC:
    case REG:
    case SCRATCH:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 0;

    case CLOBBER:
      /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
	 when some combination can't be done.  If we see one, don't think
	 that we can simplify the expression.  */
      return (GET_MODE (x) != VOIDmode);

    case PRE_INC:
    case PRE_DEC:
    case POST_INC:
    case POST_DEC:
    case CALL:
    case UNSPEC_VOLATILE:
 /* case TRAP_IF: This isn't clear yet.  */
      return 1;

    case MEM:
    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    register char *fmt = GET_RTX_FORMAT (code);
    register int i;
    
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    if (side_effects_p (XEXP (x, i)))
	      return 1;
	  }
	if (fmt[i] == 'E')
	  {
	    register int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      if (side_effects_p (XVECEXP (x, i, j)))
		return 1;
	  }
      }
  }
  return 0;
}

/* Return nonzero if evaluating rtx X might cause a trap.  */

int
may_trap_p (x)
     rtx x;
{
  int i;
  enum rtx_code code;
  char *fmt;

  if (x == 0)
    return 0;
  code = GET_CODE (x);
  switch (code)
    {
      /* Handle these cases quickly.  */
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
    case PC:
    case CC0:
    case REG:
    case SCRATCH:
      return 0;

      /* Conditional trap can trap!  */
    case UNSPEC_VOLATILE:
    case TRAP_IF:
      return 1;

      /* Memory ref can trap unless it's a static var or a stack slot.  */
    case MEM:
      return rtx_addr_can_trap_p (XEXP (x, 0));

      /* Division by a non-constant might trap.  */
    case DIV:
    case MOD:
    case UDIV:
    case UMOD:
      if (! CONSTANT_P (XEXP (x, 1))
	  || GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
	return 1;
      /* This was const0_rtx, but by not using that,
	 we can link this file into other programs.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
	return 1;
      break;

    case EXPR_LIST:
      /* An EXPR_LIST is used to represent a function call.  This
	 certainly may trap.  */
      return 1;

    default:
      /* Any floating arithmetic may trap.  */
      if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
	return 1;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (may_trap_p (XEXP (x, i)))
	    return 1;
	}
      else if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (may_trap_p (XVECEXP (x, i, j)))
	      return 1;
	}
    }
  return 0;
}

/* Return nonzero if X contains a comparison that is not either EQ or NE,
   i.e., an inequality.  */

int
inequality_comparisons_p (x)
     rtx x;
{
  register char *fmt;
  register int len, i;
  register enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case REG:
    case SCRATCH:
    case PC:
    case CC0:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      return 0;

    case LT:
    case LTU:
    case GT:
    case GTU:
    case LE:
    case LEU:
    case GE:
    case GEU:
      return 1;
      
    default:
      break;
    }

  len = GET_RTX_LENGTH (code);
  fmt = GET_RTX_FORMAT (code);

  for (i = 0; i < len; i++)
    {
      if (fmt[i] == 'e')
	{
	  if (inequality_comparisons_p (XEXP (x, i)))
	    return 1;
	}
      else if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (inequality_comparisons_p (XVECEXP (x, i, j)))
	      return 1;
	}
    }
	    
  return 0;
}

/* Replace any occurrence of FROM in X with TO.  The function does
   not enter into CONST_DOUBLE for the replace.

   Note that copying is not done so X must not be shared unless all copies
   are to be modified.  */

rtx
replace_rtx (x, from, to)
     rtx x, from, to;
{
  register int i, j;
  register char *fmt;

  /* The following prevents loops occurrence when we change MEM in
     CONST_DOUBLE onto the same CONST_DOUBLE. */
  if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
    return x;

  if (x == from)
    return to;

  /* Allow this function to make replacements in EXPR_LISTs.  */
  if (x == 0)
    return 0;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
    }

  return x;
}  

/* Throughout the rtx X, replace many registers according to REG_MAP.
   Return the replacement for X (which may be X with altered contents).
   REG_MAP[R] is the replacement for register R, or 0 for don't replace.
   NREGS is the length of REG_MAP; regs >= NREGS are not mapped.  

   We only support REG_MAP entries of REG or SUBREG.  Also, hard registers
   should not be mapped to pseudos or vice versa since validate_change
   is not called.

   If REPLACE_DEST is 1, replacements are also done in destinations;
   otherwise, only sources are replaced.  */

rtx
replace_regs (x, reg_map, nregs, replace_dest)
     rtx x;
     rtx *reg_map;
     int nregs;
     int replace_dest;
{
  register enum rtx_code code;
  register int i;
  register char *fmt;

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case SCRATCH:
    case PC:
    case CC0:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return x;

    case REG:
      /* Verify that the register has an entry before trying to access it.  */
      if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
	{
	  /* SUBREGs can't be shared.  Always return a copy to ensure that if
	     this replacement occurs more than once then each instance will
	     get distinct rtx.  */
	  if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
	    return copy_rtx (reg_map[REGNO (x)]);
	  return reg_map[REGNO (x)];
	}
      return x;

    case SUBREG:
      /* Prevent making nested SUBREGs.  */
      if (GET_CODE (SUBREG_REG (x)) == REG && REGNO (SUBREG_REG (x)) < nregs
	  && reg_map[REGNO (SUBREG_REG (x))] != 0
	  && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
	{
	  rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
	  rtx map_inner = SUBREG_REG (map_val);

	  if (GET_MODE (x) == GET_MODE (map_inner))
	    return map_inner;
	  else
	    {
	      /* We cannot call gen_rtx here since we may be linked with
		 genattrtab.c.  */
	      /* Let's try clobbering the incoming SUBREG and see
		 if this is really safe.  */
	      SUBREG_REG (x) = map_inner;
	      SUBREG_WORD (x) += SUBREG_WORD (map_val);
	      return x;
#if 0
	      rtx new = rtx_alloc (SUBREG);
	      PUT_MODE (new, GET_MODE (x));
	      SUBREG_REG (new) = map_inner;
	      SUBREG_WORD (new) = SUBREG_WORD (x) + SUBREG_WORD (map_val);
#endif
	    }
	}
      break;

    case SET:
      if (replace_dest)
	SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);

      else if (GET_CODE (SET_DEST (x)) == MEM
	       || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
	/* Even if we are not to replace destinations, replace register if it
	   is CONTAINED in destination (destination is memory or
	   STRICT_LOW_PART).  */
	XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
					       reg_map, nregs, 0);
      else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
	/* Similarly, for ZERO_EXTRACT we replace all operands.  */
	break;

      SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
      return x;
      
    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
					      nregs, replace_dest);
	}
    }
  return x;
}

/* Return 1 if X, the SRC_SRC of  SET of (pc) contain a REG or MEM that is
   not in the constant pool and not in the condition of an IF_THEN_ELSE.  */

static int
jmp_uses_reg_or_mem (x)
     rtx x;
{
  enum rtx_code code = GET_CODE (x);
  int i, j;
  char *fmt;

  switch (code)
    {
    case CONST:
    case LABEL_REF:
    case PC:
      return 0;

    case REG:
      return 1;

    case MEM:
      return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
		&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));

    case IF_THEN_ELSE:
      return (jmp_uses_reg_or_mem (XEXP (x, 1))
	      || jmp_uses_reg_or_mem (XEXP (x, 2)));

    case PLUS:  case MINUS:  case MULT:
      return (jmp_uses_reg_or_mem (XEXP (x, 0))
	      || jmp_uses_reg_or_mem (XEXP (x, 1)));

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e'
	  && jmp_uses_reg_or_mem (XEXP (x, i)))
	return 1;

      if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (jmp_uses_reg_or_mem (XVECEXP (x, i, j)))
	    return 1;
    }

  return 0;
}

/* Return nonzero if INSN is an indirect jump (aka computed jump).

   Tablejumps and casesi insns are not considered indirect jumps;
   we can recognize them by a (use (lael_ref)).  */

int
computed_jump_p (insn)
     rtx insn;
{
  int i;
  if (GET_CODE (insn) == JUMP_INSN)
    {
      rtx pat = PATTERN (insn);

      if (GET_CODE (pat) == PARALLEL)
	{
	  int len = XVECLEN (pat, 0);
	  int has_use_labelref = 0;

	  for (i = len - 1; i >= 0; i--)
	    if (GET_CODE (XVECEXP (pat, 0, i)) == USE
		&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
		    == LABEL_REF))
	      has_use_labelref = 1;

	  if (! has_use_labelref)
	    for (i = len - 1; i >= 0; i--)
	      if (GET_CODE (XVECEXP (pat, 0, i)) == SET
		  && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
		  && jmp_uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
		return 1;
	}
      else if (GET_CODE (pat) == SET
	       && SET_DEST (pat) == pc_rtx
	       && jmp_uses_reg_or_mem (SET_SRC (pat)))
	return 1;
    }
  return 0;
}

/* Traverse X via depth-first search, calling F for each
   sub-expression (including X itself).  F is also passed the DATA.
   If F returns -1, do not traverse sub-expressions, but continue
   traversing the rest of the tree.  If F ever returns any other
   non-zero value, stop the traversal, and return the value returned
   by F.  Otherwise, return 0.  This function does not traverse inside
   tree structure that contains RTX_EXPRs, or into sub-expressions
   whose format code is `0' since it is not known whether or not those
   codes are actually RTL.

   This routine is very general, and could (should?) be used to
   implement many of the other routines in this file.  */

int
for_each_rtx (x, f, data)
     rtx *x;
     rtx_function f;
     void *data;
{
  int result;
  int length;
  char* format;
  int i;

  /* Call F on X.  */
  result = (*f)(x, data);
  if (result == -1)
    /* Do not traverse sub-expressions.  */
    return 0;
  else if (result != 0)
    /* Stop the traversal.  */
    return result;

  if (*x == NULL_RTX)
    /* There are no sub-expressions.  */
    return 0;

  length = GET_RTX_LENGTH (GET_CODE (*x));
  format = GET_RTX_FORMAT (GET_CODE (*x));

  for (i = 0; i < length; ++i) 
    {
      switch (format[i]) 
	{
	case 'e':
	  result = for_each_rtx (&XEXP (*x, i), f, data);
	  if (result != 0)
	    return result;
	  break;

	case 'V':
	case 'E':
	  if (XVEC (*x, i) != 0) 
	    {
	      int j;
	      for (j = 0; j < XVECLEN (*x, i); ++j)
		{
		  result = for_each_rtx (&XVECEXP (*x, i, j), f, data);
		  if (result != 0)
		    return result;
		}
	    }
	  break; 

	default:
	  /* Nothing to do.  */
	  break;
	}

    }

  return 0;
}

/* Searches X for any reference to REGNO, returning the rtx of the
   reference found if any.  Otherwise, returns NULL_RTX.  */

rtx
regno_use_in (regno, x)
     int regno;
     rtx x;
{
  register char *fmt;
  int i, j;
  rtx tem;

  if (GET_CODE (x) == REG && REGNO (x) == regno)
    return x;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if ((tem = regno_use_in (regno, XEXP (x, i))))
	    return tem;
	}
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
	    return tem;
    }

  return NULL_RTX;
}


/* Return 1 if X is an autoincrement side effect and the register is
   not the stack pointer.  */
int
auto_inc_p (x)
     rtx x;
{
  switch (GET_CODE (x))
    {
    case PRE_INC:
    case POST_INC:
    case PRE_DEC:
    case POST_DEC:
    case PRE_MODIFY:
    case POST_MODIFY:
      /* There are no REG_INC notes for SP.  */
      if (XEXP (x, 0) != stack_pointer_rtx)
	return 1;
    default:
      break;
    }
  return 0;
}

/* Return 1 if the sequence of instructions beginning with FROM and up
   to and including TO is safe to move.  If NEW_TO is non-NULL, and
   the sequence is not already safe to move, but can be easily
   extended to a sequence which is safe, then NEW_TO will point to the
   end of the extended sequence.  
 
   For now, this function only checks that the region contains whole
   exception regiongs, but it could be extended to check additional
   conditions as well.  */

int
insns_safe_to_move_p (from, to, new_to)
     rtx from;
     rtx to;
     rtx *new_to;
{
  int eh_region_count = 0;
  int past_to_p = 0;
  rtx r = from;

  /* By default, assume the end of the region will be what was
     suggested.  */
  if (new_to)
    *new_to = to;

  while (r)
    {
      if (GET_CODE (r) == NOTE)
	{
	  switch (NOTE_LINE_NUMBER (r))
	    {
	    case NOTE_INSN_EH_REGION_BEG:
	      ++eh_region_count;
	      break;

	    case NOTE_INSN_EH_REGION_END:
	      if (eh_region_count == 0)
		/* This sequence of instructions contains the end of
		   an exception region, but not he beginning.  Moving
		   it will cause chaos.  */
		return 0;

	      --eh_region_count;
	      break;

	    default:
	      break;
	    }
	}
      else if (past_to_p)
	/* If we've passed TO, and we see a non-note instruction, we
	   can't extend the sequence to a movable sequence.  */
	return 0;

      if (r == to)
	{
	  if (!new_to)
	    /* It's OK to move the sequence if there were matched sets of
	       exception region notes.  */
	    return eh_region_count == 0;
	  
	  past_to_p = 1;
	}

      /* It's OK to move the sequence if there were matched sets of
	 exception region notes.  */
      if (past_to_p && eh_region_count == 0)
	{
	  *new_to = r;
	  return 1;
	}

      /* Go to the next instruction.  */
      r = NEXT_INSN (r);
    }
  
  return 0;
}