summaryrefslogtreecommitdiff
path: root/gnu/llvm/lib/Analysis/CFLAliasAnalysis.cpp
blob: 4843ed6587a80362278596c5a1cff13809411e6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
//===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a CFL-based context-insensitive alias analysis
// algorithm. It does not depend on types. The algorithm is a mixture of the one
// described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
// Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
// Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
// papers, we build a graph of the uses of a variable, where each node is a
// memory location, and each edge is an action that happened on that memory
// location.  The "actions" can be one of Dereference, Reference, or Assign.
//
// Two variables are considered as aliasing iff you can reach one value's node
// from the other value's node and the language formed by concatenating all of
// the edge labels (actions) conforms to a context-free grammar.
//
// Because this algorithm requires a graph search on each query, we execute the
// algorithm outlined in "Fast algorithms..." (mentioned above)
// in order to transform the graph into sets of variables that may alias in
// ~nlogn time (n = number of variables.), which makes queries take constant
// time.
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/CFLAliasAnalysis.h"
#include "StratifiedSets.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <memory>
#include <tuple>

using namespace llvm;

#define DEBUG_TYPE "cfl-aa"

CFLAAResult::CFLAAResult(const TargetLibraryInfo &TLI) : AAResultBase(TLI) {}
CFLAAResult::CFLAAResult(CFLAAResult &&Arg) : AAResultBase(std::move(Arg)) {}

// \brief Information we have about a function and would like to keep around
struct CFLAAResult::FunctionInfo {
  StratifiedSets<Value *> Sets;
  // Lots of functions have < 4 returns. Adjust as necessary.
  SmallVector<Value *, 4> ReturnedValues;

  FunctionInfo(StratifiedSets<Value *> &&S, SmallVector<Value *, 4> &&RV)
      : Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
};

// Try to go from a Value* to a Function*. Never returns nullptr.
static Optional<Function *> parentFunctionOfValue(Value *);

// Returns possible functions called by the Inst* into the given
// SmallVectorImpl. Returns true if targets found, false otherwise.
// This is templated because InvokeInst/CallInst give us the same
// set of functions that we care about, and I don't like repeating
// myself.
template <typename Inst>
static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);

// Some instructions need to have their users tracked. Instructions like
// `add` require you to get the users of the Instruction* itself, other
// instructions like `store` require you to get the users of the first
// operand. This function gets the "proper" value to track for each
// type of instruction we support.
static Optional<Value *> getTargetValue(Instruction *);

// There are certain instructions (i.e. FenceInst, etc.) that we ignore.
// This notes that we should ignore those.
static bool hasUsefulEdges(Instruction *);

const StratifiedIndex StratifiedLink::SetSentinel =
    std::numeric_limits<StratifiedIndex>::max();

namespace {
// StratifiedInfo Attribute things.
typedef unsigned StratifiedAttr;
LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
LLVM_CONSTEXPR unsigned AttrAllIndex = 0;
LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
LLVM_CONSTEXPR unsigned AttrUnknownIndex = 2;
LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 3;
LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;

LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;

// \brief StratifiedSets call for knowledge of "direction", so this is how we
// represent that locally.
enum class Level { Same, Above, Below };

// \brief Edges can be one of four "weights" -- each weight must have an inverse
// weight (Assign has Assign; Reference has Dereference).
enum class EdgeType {
  // The weight assigned when assigning from or to a value. For example, in:
  // %b = getelementptr %a, 0
  // ...The relationships are %b assign %a, and %a assign %b. This used to be
  // two edges, but having a distinction bought us nothing.
  Assign,

  // The edge used when we have an edge going from some handle to a Value.
  // Examples of this include:
  // %b = load %a              (%b Dereference %a)
  // %b = extractelement %a, 0 (%a Dereference %b)
  Dereference,

  // The edge used when our edge goes from a value to a handle that may have
  // contained it at some point. Examples:
  // %b = load %a              (%a Reference %b)
  // %b = extractelement %a, 0 (%b Reference %a)
  Reference
};

// \brief Encodes the notion of a "use"
struct Edge {
  // \brief Which value the edge is coming from
  Value *From;

  // \brief Which value the edge is pointing to
  Value *To;

  // \brief Edge weight
  EdgeType Weight;

  // \brief Whether we aliased any external values along the way that may be
  // invisible to the analysis (i.e. landingpad for exceptions, calls for
  // interprocedural analysis, etc.)
  StratifiedAttrs AdditionalAttrs;

  Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
      : From(From), To(To), Weight(W), AdditionalAttrs(A) {}
};

// \brief Gets the edges our graph should have, based on an Instruction*
class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
  CFLAAResult &AA;
  SmallVectorImpl<Edge> &Output;

public:
  GetEdgesVisitor(CFLAAResult &AA, SmallVectorImpl<Edge> &Output)
      : AA(AA), Output(Output) {}

  void visitInstruction(Instruction &) {
    llvm_unreachable("Unsupported instruction encountered");
  }

  void visitPtrToIntInst(PtrToIntInst &Inst) {
    auto *Ptr = Inst.getOperand(0);
    Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
  }

  void visitIntToPtrInst(IntToPtrInst &Inst) {
    auto *Ptr = &Inst;
    Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
  }

  void visitCastInst(CastInst &Inst) {
    Output.push_back(
        Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, AttrNone));
  }

  void visitBinaryOperator(BinaryOperator &Inst) {
    auto *Op1 = Inst.getOperand(0);
    auto *Op2 = Inst.getOperand(1);
    Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
    Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
  }

  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
    auto *Ptr = Inst.getPointerOperand();
    auto *Val = Inst.getNewValOperand();
    Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
  }

  void visitAtomicRMWInst(AtomicRMWInst &Inst) {
    auto *Ptr = Inst.getPointerOperand();
    auto *Val = Inst.getValOperand();
    Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
  }

  void visitPHINode(PHINode &Inst) {
    for (Value *Val : Inst.incoming_values()) {
      Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
    }
  }

  void visitGetElementPtrInst(GetElementPtrInst &Inst) {
    auto *Op = Inst.getPointerOperand();
    Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
    for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
      Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
  }

  void visitSelectInst(SelectInst &Inst) {
    // Condition is not processed here (The actual statement producing
    // the condition result is processed elsewhere). For select, the
    // condition is evaluated, but not loaded, stored, or assigned
    // simply as a result of being the condition of a select.

    auto *TrueVal = Inst.getTrueValue();
    Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
    auto *FalseVal = Inst.getFalseValue();
    Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
  }

  void visitAllocaInst(AllocaInst &) {}

  void visitLoadInst(LoadInst &Inst) {
    auto *Ptr = Inst.getPointerOperand();
    auto *Val = &Inst;
    Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
  }

  void visitStoreInst(StoreInst &Inst) {
    auto *Ptr = Inst.getPointerOperand();
    auto *Val = Inst.getValueOperand();
    Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
  }

  void visitVAArgInst(VAArgInst &Inst) {
    // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
    // two things:
    //  1. Loads a value from *((T*)*Ptr).
    //  2. Increments (stores to) *Ptr by some target-specific amount.
    // For now, we'll handle this like a landingpad instruction (by placing the
    // result in its own group, and having that group alias externals).
    auto *Val = &Inst;
    Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
  }

  static bool isFunctionExternal(Function *Fn) {
    return Fn->isDeclaration() || !Fn->hasLocalLinkage();
  }

  // Gets whether the sets at Index1 above, below, or equal to the sets at
  // Index2. Returns None if they are not in the same set chain.
  static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
                                          StratifiedIndex Index1,
                                          StratifiedIndex Index2) {
    if (Index1 == Index2)
      return Level::Same;

    const auto *Current = &Sets.getLink(Index1);
    while (Current->hasBelow()) {
      if (Current->Below == Index2)
        return Level::Below;
      Current = &Sets.getLink(Current->Below);
    }

    Current = &Sets.getLink(Index1);
    while (Current->hasAbove()) {
      if (Current->Above == Index2)
        return Level::Above;
      Current = &Sets.getLink(Current->Above);
    }

    return NoneType();
  }

  bool
  tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
                             Value *FuncValue,
                             const iterator_range<User::op_iterator> &Args) {
    const unsigned ExpectedMaxArgs = 8;
    const unsigned MaxSupportedArgs = 50;
    assert(Fns.size() > 0);

    // I put this here to give us an upper bound on time taken by IPA. Is it
    // really (realistically) needed? Keep in mind that we do have an n^2 algo.
    if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs)
      return false;

    // Exit early if we'll fail anyway
    for (auto *Fn : Fns) {
      if (isFunctionExternal(Fn) || Fn->isVarArg())
        return false;
      auto &MaybeInfo = AA.ensureCached(Fn);
      if (!MaybeInfo.hasValue())
        return false;
    }

    SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
    SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
    for (auto *Fn : Fns) {
      auto &Info = *AA.ensureCached(Fn);
      auto &Sets = Info.Sets;
      auto &RetVals = Info.ReturnedValues;

      Parameters.clear();
      for (auto &Param : Fn->args()) {
        auto MaybeInfo = Sets.find(&Param);
        // Did a new parameter somehow get added to the function/slip by?
        if (!MaybeInfo.hasValue())
          return false;
        Parameters.push_back(*MaybeInfo);
      }

      // Adding an edge from argument -> return value for each parameter that
      // may alias the return value
      for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
        auto &ParamInfo = Parameters[I];
        auto &ArgVal = Arguments[I];
        bool AddEdge = false;
        StratifiedAttrs Externals;
        for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
          auto MaybeInfo = Sets.find(RetVals[X]);
          if (!MaybeInfo.hasValue())
            return false;

          auto &RetInfo = *MaybeInfo;
          auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
          auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
          auto MaybeRelation =
              getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
          if (MaybeRelation.hasValue()) {
            AddEdge = true;
            Externals |= RetAttrs | ParamAttrs;
          }
        }
        if (AddEdge)
          Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
                                StratifiedAttrs().flip()));
      }

      if (Parameters.size() != Arguments.size())
        return false;

      // Adding edges between arguments for arguments that may end up aliasing
      // each other. This is necessary for functions such as
      // void foo(int** a, int** b) { *a = *b; }
      // (Technically, the proper sets for this would be those below
      // Arguments[I] and Arguments[X], but our algorithm will produce
      // extremely similar, and equally correct, results either way)
      for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
        auto &MainVal = Arguments[I];
        auto &MainInfo = Parameters[I];
        auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
        for (unsigned X = I + 1; X != E; ++X) {
          auto &SubInfo = Parameters[X];
          auto &SubVal = Arguments[X];
          auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
          auto MaybeRelation =
              getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);

          if (!MaybeRelation.hasValue())
            continue;

          auto NewAttrs = SubAttrs | MainAttrs;
          Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
        }
      }
    }
    return true;
  }

  template <typename InstT> void visitCallLikeInst(InstT &Inst) {
    // TODO: Add support for noalias args/all the other fun function attributes
    // that we can tack on.
    SmallVector<Function *, 4> Targets;
    if (getPossibleTargets(&Inst, Targets)) {
      if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
        return;
      // Cleanup from interprocedural analysis
      Output.clear();
    }

    // Because the function is opaque, we need to note that anything
    // could have happened to the arguments, and that the result could alias
    // just about anything, too.
    // The goal of the loop is in part to unify many Values into one set, so we
    // don't care if the function is void there.
    for (Value *V : Inst.arg_operands())
      Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
    if (Inst.getNumArgOperands() == 0 &&
        Inst.getType() != Type::getVoidTy(Inst.getContext()))
      Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
  }

  void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }

  void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }

  // Because vectors/aggregates are immutable and unaddressable,
  // there's nothing we can do to coax a value out of them, other
  // than calling Extract{Element,Value}. We can effectively treat
  // them as pointers to arbitrary memory locations we can store in
  // and load from.
  void visitExtractElementInst(ExtractElementInst &Inst) {
    auto *Ptr = Inst.getVectorOperand();
    auto *Val = &Inst;
    Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
  }

  void visitInsertElementInst(InsertElementInst &Inst) {
    auto *Vec = Inst.getOperand(0);
    auto *Val = Inst.getOperand(1);
    Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
    Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
  }

  void visitLandingPadInst(LandingPadInst &Inst) {
    // Exceptions come from "nowhere", from our analysis' perspective.
    // So we place the instruction its own group, noting that said group may
    // alias externals
    Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
  }

  void visitInsertValueInst(InsertValueInst &Inst) {
    auto *Agg = Inst.getOperand(0);
    auto *Val = Inst.getOperand(1);
    Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
    Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
  }

  void visitExtractValueInst(ExtractValueInst &Inst) {
    auto *Ptr = Inst.getAggregateOperand();
    Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
  }

  void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
    auto *From1 = Inst.getOperand(0);
    auto *From2 = Inst.getOperand(1);
    Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
    Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
  }

  void visitConstantExpr(ConstantExpr *CE) {
    switch (CE->getOpcode()) {
    default:
      llvm_unreachable("Unknown instruction type encountered!");
// Build the switch statement using the Instruction.def file.
#define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
  case Instruction::OPCODE:                                                    \
    visit##OPCODE(*(CLASS *)CE);                                               \
    break;
#include "llvm/IR/Instruction.def"
    }
  }
};

// For a given instruction, we need to know which Value* to get the
// users of in order to build our graph. In some cases (i.e. add),
// we simply need the Instruction*. In other cases (i.e. store),
// finding the users of the Instruction* is useless; we need to find
// the users of the first operand. This handles determining which
// value to follow for us.
//
// Note: we *need* to keep this in sync with GetEdgesVisitor. Add
// something to GetEdgesVisitor, add it here -- remove something from
// GetEdgesVisitor, remove it here.
class GetTargetValueVisitor
    : public InstVisitor<GetTargetValueVisitor, Value *> {
public:
  Value *visitInstruction(Instruction &Inst) { return &Inst; }

  Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }

  Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
    return Inst.getPointerOperand();
  }

  Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
    return Inst.getPointerOperand();
  }

  Value *visitInsertElementInst(InsertElementInst &Inst) {
    return Inst.getOperand(0);
  }

  Value *visitInsertValueInst(InsertValueInst &Inst) {
    return Inst.getAggregateOperand();
  }
};

// Set building requires a weighted bidirectional graph.
template <typename EdgeTypeT> class WeightedBidirectionalGraph {
public:
  typedef std::size_t Node;

private:
  const static Node StartNode = Node(0);

  struct Edge {
    EdgeTypeT Weight;
    Node Other;

    Edge(const EdgeTypeT &W, const Node &N) : Weight(W), Other(N) {}

    bool operator==(const Edge &E) const {
      return Weight == E.Weight && Other == E.Other;
    }

    bool operator!=(const Edge &E) const { return !operator==(E); }
  };

  struct NodeImpl {
    std::vector<Edge> Edges;
  };

  std::vector<NodeImpl> NodeImpls;

  bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }

  const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
  NodeImpl &getNode(Node N) { return NodeImpls[N]; }

public:
  // ----- Various Edge iterators for the graph ----- //

  // \brief Iterator for edges. Because this graph is bidirected, we don't
  // allow modification of the edges using this iterator. Additionally, the
  // iterator becomes invalid if you add edges to or from the node you're
  // getting the edges of.
  struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
                                             std::tuple<EdgeTypeT, Node *>> {
    EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
        : Current(Iter) {}

    EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}

    EdgeIterator &operator++() {
      ++Current;
      return *this;
    }

    EdgeIterator operator++(int) {
      EdgeIterator Copy(Current);
      operator++();
      return Copy;
    }

    std::tuple<EdgeTypeT, Node> &operator*() {
      Store = std::make_tuple(Current->Weight, Current->Other);
      return Store;
    }

    bool operator==(const EdgeIterator &Other) const {
      return Current == Other.Current;
    }

    bool operator!=(const EdgeIterator &Other) const {
      return !operator==(Other);
    }

  private:
    typename std::vector<Edge>::const_iterator Current;
    std::tuple<EdgeTypeT, Node> Store;
  };

  // Wrapper for EdgeIterator with begin()/end() calls.
  struct EdgeIterable {
    EdgeIterable(const std::vector<Edge> &Edges)
        : BeginIter(Edges.begin()), EndIter(Edges.end()) {}

    EdgeIterator begin() { return EdgeIterator(BeginIter); }

    EdgeIterator end() { return EdgeIterator(EndIter); }

  private:
    typename std::vector<Edge>::const_iterator BeginIter;
    typename std::vector<Edge>::const_iterator EndIter;
  };

  // ----- Actual graph-related things ----- //

  WeightedBidirectionalGraph() {}

  WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
      : NodeImpls(std::move(Other.NodeImpls)) {}

  WeightedBidirectionalGraph<EdgeTypeT> &
  operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
    NodeImpls = std::move(Other.NodeImpls);
    return *this;
  }

  Node addNode() {
    auto Index = NodeImpls.size();
    auto NewNode = Node(Index);
    NodeImpls.push_back(NodeImpl());
    return NewNode;
  }

  void addEdge(Node From, Node To, const EdgeTypeT &Weight,
               const EdgeTypeT &ReverseWeight) {
    assert(inbounds(From));
    assert(inbounds(To));
    auto &FromNode = getNode(From);
    auto &ToNode = getNode(To);
    FromNode.Edges.push_back(Edge(Weight, To));
    ToNode.Edges.push_back(Edge(ReverseWeight, From));
  }

  EdgeIterable edgesFor(const Node &N) const {
    const auto &Node = getNode(N);
    return EdgeIterable(Node.Edges);
  }

  bool empty() const { return NodeImpls.empty(); }
  std::size_t size() const { return NodeImpls.size(); }

  // \brief Gets an arbitrary node in the graph as a starting point for
  // traversal.
  Node getEntryNode() {
    assert(inbounds(StartNode));
    return StartNode;
  }
};

typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
typedef DenseMap<Value *, GraphT::Node> NodeMapT;
}

//===----------------------------------------------------------------------===//
// Function declarations that require types defined in the namespace above
//===----------------------------------------------------------------------===//

// Given an argument number, returns the appropriate Attr index to set.
static StratifiedAttr argNumberToAttrIndex(StratifiedAttr);

// Given a Value, potentially return which AttrIndex it maps to.
static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);

// Gets the inverse of a given EdgeType.
static EdgeType flipWeight(EdgeType);

// Gets edges of the given Instruction*, writing them to the SmallVector*.
static void argsToEdges(CFLAAResult &, Instruction *, SmallVectorImpl<Edge> &);

// Gets edges of the given ConstantExpr*, writing them to the SmallVector*.
static void argsToEdges(CFLAAResult &, ConstantExpr *, SmallVectorImpl<Edge> &);

// Gets the "Level" that one should travel in StratifiedSets
// given an EdgeType.
static Level directionOfEdgeType(EdgeType);

// Builds the graph needed for constructing the StratifiedSets for the
// given function
static void buildGraphFrom(CFLAAResult &, Function *,
                           SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);

// Gets the edges of a ConstantExpr as if it was an Instruction. This
// function also acts on any nested ConstantExprs, adding the edges
// of those to the given SmallVector as well.
static void constexprToEdges(CFLAAResult &, ConstantExpr &,
                             SmallVectorImpl<Edge> &);

// Given an Instruction, this will add it to the graph, along with any
// Instructions that are potentially only available from said Instruction
// For example, given the following line:
//   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
// addInstructionToGraph would add both the `load` and `getelementptr`
// instructions to the graph appropriately.
static void addInstructionToGraph(CFLAAResult &, Instruction &,
                                  SmallVectorImpl<Value *> &, NodeMapT &,
                                  GraphT &);

// Notes whether it would be pointless to add the given Value to our sets.
static bool canSkipAddingToSets(Value *Val);

static Optional<Function *> parentFunctionOfValue(Value *Val) {
  if (auto *Inst = dyn_cast<Instruction>(Val)) {
    auto *Bb = Inst->getParent();
    return Bb->getParent();
  }

  if (auto *Arg = dyn_cast<Argument>(Val))
    return Arg->getParent();
  return NoneType();
}

template <typename Inst>
static bool getPossibleTargets(Inst *Call,
                               SmallVectorImpl<Function *> &Output) {
  if (auto *Fn = Call->getCalledFunction()) {
    Output.push_back(Fn);
    return true;
  }

  // TODO: If the call is indirect, we might be able to enumerate all potential
  // targets of the call and return them, rather than just failing.
  return false;
}

static Optional<Value *> getTargetValue(Instruction *Inst) {
  GetTargetValueVisitor V;
  return V.visit(Inst);
}

static bool hasUsefulEdges(Instruction *Inst) {
  bool IsNonInvokeTerminator =
      isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
  return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
}

static bool hasUsefulEdges(ConstantExpr *CE) {
  // ConstantExpr doesn't have terminators, invokes, or fences, so only needs
  // to check for compares.
  return CE->getOpcode() != Instruction::ICmp &&
         CE->getOpcode() != Instruction::FCmp;
}

static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
  if (isa<GlobalValue>(Val))
    return AttrGlobalIndex;

  if (auto *Arg = dyn_cast<Argument>(Val))
    // Only pointer arguments should have the argument attribute,
    // because things can't escape through scalars without us seeing a
    // cast, and thus, interaction with them doesn't matter.
    if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
      return argNumberToAttrIndex(Arg->getArgNo());
  return NoneType();
}

static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
  if (ArgNum >= AttrMaxNumArgs)
    return AttrAllIndex;
  return ArgNum + AttrFirstArgIndex;
}

static EdgeType flipWeight(EdgeType Initial) {
  switch (Initial) {
  case EdgeType::Assign:
    return EdgeType::Assign;
  case EdgeType::Dereference:
    return EdgeType::Reference;
  case EdgeType::Reference:
    return EdgeType::Dereference;
  }
  llvm_unreachable("Incomplete coverage of EdgeType enum");
}

static void argsToEdges(CFLAAResult &Analysis, Instruction *Inst,
                        SmallVectorImpl<Edge> &Output) {
  assert(hasUsefulEdges(Inst) &&
         "Expected instructions to have 'useful' edges");
  GetEdgesVisitor v(Analysis, Output);
  v.visit(Inst);
}

static void argsToEdges(CFLAAResult &Analysis, ConstantExpr *CE,
                        SmallVectorImpl<Edge> &Output) {
  assert(hasUsefulEdges(CE) && "Expected constant expr to have 'useful' edges");
  GetEdgesVisitor v(Analysis, Output);
  v.visitConstantExpr(CE);
}

static Level directionOfEdgeType(EdgeType Weight) {
  switch (Weight) {
  case EdgeType::Reference:
    return Level::Above;
  case EdgeType::Dereference:
    return Level::Below;
  case EdgeType::Assign:
    return Level::Same;
  }
  llvm_unreachable("Incomplete switch coverage");
}

static void constexprToEdges(CFLAAResult &Analysis,
                             ConstantExpr &CExprToCollapse,
                             SmallVectorImpl<Edge> &Results) {
  SmallVector<ConstantExpr *, 4> Worklist;
  Worklist.push_back(&CExprToCollapse);

  SmallVector<Edge, 8> ConstexprEdges;
  SmallPtrSet<ConstantExpr *, 4> Visited;
  while (!Worklist.empty()) {
    auto *CExpr = Worklist.pop_back_val();

    if (!hasUsefulEdges(CExpr))
      continue;

    ConstexprEdges.clear();
    argsToEdges(Analysis, CExpr, ConstexprEdges);
    for (auto &Edge : ConstexprEdges) {
      if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From))
        if (Visited.insert(Nested).second)
          Worklist.push_back(Nested);

      if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To))
        if (Visited.insert(Nested).second)
          Worklist.push_back(Nested);
    }

    Results.append(ConstexprEdges.begin(), ConstexprEdges.end());
  }
}

static void addInstructionToGraph(CFLAAResult &Analysis, Instruction &Inst,
                                  SmallVectorImpl<Value *> &ReturnedValues,
                                  NodeMapT &Map, GraphT &Graph) {
  const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
    auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
    auto &Iter = Pair.first;
    if (Pair.second) {
      auto NewNode = Graph.addNode();
      Iter->second = NewNode;
    }
    return Iter->second;
  };

  // We don't want the edges of most "return" instructions, but we *do* want
  // to know what can be returned.
  if (isa<ReturnInst>(&Inst))
    ReturnedValues.push_back(&Inst);

  if (!hasUsefulEdges(&Inst))
    return;

  SmallVector<Edge, 8> Edges;
  argsToEdges(Analysis, &Inst, Edges);

  // In the case of an unused alloca (or similar), edges may be empty. Note
  // that it exists so we can potentially answer NoAlias.
  if (Edges.empty()) {
    auto MaybeVal = getTargetValue(&Inst);
    assert(MaybeVal.hasValue());
    auto *Target = *MaybeVal;
    findOrInsertNode(Target);
    return;
  }

  const auto addEdgeToGraph = [&Graph, &findOrInsertNode](const Edge &E) {
    auto To = findOrInsertNode(E.To);
    auto From = findOrInsertNode(E.From);
    auto FlippedWeight = flipWeight(E.Weight);
    auto Attrs = E.AdditionalAttrs;
    Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
                  std::make_pair(FlippedWeight, Attrs));
  };

  SmallVector<ConstantExpr *, 4> ConstantExprs;
  for (const Edge &E : Edges) {
    addEdgeToGraph(E);
    if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To))
      ConstantExprs.push_back(Constexpr);
    if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From))
      ConstantExprs.push_back(Constexpr);
  }

  for (ConstantExpr *CE : ConstantExprs) {
    Edges.clear();
    constexprToEdges(Analysis, *CE, Edges);
    std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph);
  }
}

// Aside: We may remove graph construction entirely, because it doesn't really
// buy us much that we don't already have. I'd like to add interprocedural
// analysis prior to this however, in case that somehow requires the graph
// produced by this for efficient execution
static void buildGraphFrom(CFLAAResult &Analysis, Function *Fn,
                           SmallVectorImpl<Value *> &ReturnedValues,
                           NodeMapT &Map, GraphT &Graph) {
  for (auto &Bb : Fn->getBasicBlockList())
    for (auto &Inst : Bb.getInstList())
      addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph);
}

static bool canSkipAddingToSets(Value *Val) {
  // Constants can share instances, which may falsely unify multiple
  // sets, e.g. in
  // store i32* null, i32** %ptr1
  // store i32* null, i32** %ptr2
  // clearly ptr1 and ptr2 should not be unified into the same set, so
  // we should filter out the (potentially shared) instance to
  // i32* null.
  if (isa<Constant>(Val)) {
    bool Container = isa<ConstantVector>(Val) || isa<ConstantArray>(Val) ||
                     isa<ConstantStruct>(Val);
    // TODO: Because all of these things are constant, we can determine whether
    // the data is *actually* mutable at graph building time. This will probably
    // come for free/cheap with offset awareness.
    bool CanStoreMutableData =
        isa<GlobalValue>(Val) || isa<ConstantExpr>(Val) || Container;
    return !CanStoreMutableData;
  }

  return false;
}

// Builds the graph + StratifiedSets for a function.
CFLAAResult::FunctionInfo CFLAAResult::buildSetsFrom(Function *Fn) {
  NodeMapT Map;
  GraphT Graph;
  SmallVector<Value *, 4> ReturnedValues;

  buildGraphFrom(*this, Fn, ReturnedValues, Map, Graph);

  DenseMap<GraphT::Node, Value *> NodeValueMap;
  NodeValueMap.resize(Map.size());
  for (const auto &Pair : Map)
    NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));

  const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
    auto ValIter = NodeValueMap.find(Node);
    assert(ValIter != NodeValueMap.end());
    return ValIter->second;
  };

  StratifiedSetsBuilder<Value *> Builder;

  SmallVector<GraphT::Node, 16> Worklist;
  for (auto &Pair : Map) {
    Worklist.clear();

    auto *Value = Pair.first;
    Builder.add(Value);
    auto InitialNode = Pair.second;
    Worklist.push_back(InitialNode);
    while (!Worklist.empty()) {
      auto Node = Worklist.pop_back_val();
      auto *CurValue = findValueOrDie(Node);
      if (canSkipAddingToSets(CurValue))
        continue;

      for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
        auto Weight = std::get<0>(EdgeTuple);
        auto Label = Weight.first;
        auto &OtherNode = std::get<1>(EdgeTuple);
        auto *OtherValue = findValueOrDie(OtherNode);

        if (canSkipAddingToSets(OtherValue))
          continue;

        bool Added;
        switch (directionOfEdgeType(Label)) {
        case Level::Above:
          Added = Builder.addAbove(CurValue, OtherValue);
          break;
        case Level::Below:
          Added = Builder.addBelow(CurValue, OtherValue);
          break;
        case Level::Same:
          Added = Builder.addWith(CurValue, OtherValue);
          break;
        }

        auto Aliasing = Weight.second;
        if (auto MaybeCurIndex = valueToAttrIndex(CurValue))
          Aliasing.set(*MaybeCurIndex);
        if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
          Aliasing.set(*MaybeOtherIndex);
        Builder.noteAttributes(CurValue, Aliasing);
        Builder.noteAttributes(OtherValue, Aliasing);

        if (Added)
          Worklist.push_back(OtherNode);
      }
    }
  }

  // There are times when we end up with parameters not in our graph (i.e. if
  // it's only used as the condition of a branch). Other bits of code depend on
  // things that were present during construction being present in the graph.
  // So, we add all present arguments here.
  for (auto &Arg : Fn->args()) {
    if (!Builder.add(&Arg))
      continue;

    auto Attrs = valueToAttrIndex(&Arg);
    if (Attrs.hasValue())
      Builder.noteAttributes(&Arg, *Attrs);
  }

  return FunctionInfo(Builder.build(), std::move(ReturnedValues));
}

void CFLAAResult::scan(Function *Fn) {
  auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
  (void)InsertPair;
  assert(InsertPair.second &&
         "Trying to scan a function that has already been cached");

  FunctionInfo Info(buildSetsFrom(Fn));
  Cache[Fn] = std::move(Info);
  Handles.push_front(FunctionHandle(Fn, this));
}

void CFLAAResult::evict(Function *Fn) { Cache.erase(Fn); }

/// \brief Ensures that the given function is available in the cache.
/// Returns the appropriate entry from the cache.
const Optional<CFLAAResult::FunctionInfo> &
CFLAAResult::ensureCached(Function *Fn) {
  auto Iter = Cache.find(Fn);
  if (Iter == Cache.end()) {
    scan(Fn);
    Iter = Cache.find(Fn);
    assert(Iter != Cache.end());
    assert(Iter->second.hasValue());
  }
  return Iter->second;
}

AliasResult CFLAAResult::query(const MemoryLocation &LocA,
                               const MemoryLocation &LocB) {
  auto *ValA = const_cast<Value *>(LocA.Ptr);
  auto *ValB = const_cast<Value *>(LocB.Ptr);

  Function *Fn = nullptr;
  auto MaybeFnA = parentFunctionOfValue(ValA);
  auto MaybeFnB = parentFunctionOfValue(ValB);
  if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
    // The only times this is known to happen are when globals + InlineAsm
    // are involved
    DEBUG(dbgs() << "CFLAA: could not extract parent function information.\n");
    return MayAlias;
  }

  if (MaybeFnA.hasValue()) {
    Fn = *MaybeFnA;
    assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
           "Interprocedural queries not supported");
  } else {
    Fn = *MaybeFnB;
  }

  assert(Fn != nullptr);
  auto &MaybeInfo = ensureCached(Fn);
  assert(MaybeInfo.hasValue());

  auto &Sets = MaybeInfo->Sets;
  auto MaybeA = Sets.find(ValA);
  if (!MaybeA.hasValue())
    return MayAlias;

  auto MaybeB = Sets.find(ValB);
  if (!MaybeB.hasValue())
    return MayAlias;

  auto SetA = *MaybeA;
  auto SetB = *MaybeB;
  auto AttrsA = Sets.getLink(SetA.Index).Attrs;
  auto AttrsB = Sets.getLink(SetB.Index).Attrs;

  // Stratified set attributes are used as markets to signify whether a member
  // of a StratifiedSet (or a member of a set above the current set) has
  // interacted with either arguments or globals. "Interacted with" meaning
  // its value may be different depending on the value of an argument or
  // global. The thought behind this is that, because arguments and globals
  // may alias each other, if AttrsA and AttrsB have touched args/globals,
  // we must conservatively say that they alias. However, if at least one of
  // the sets has no values that could legally be altered by changing the value
  // of an argument or global, then we don't have to be as conservative.
  if (AttrsA.any() && AttrsB.any())
    return MayAlias;

  // We currently unify things even if the accesses to them may not be in
  // bounds, so we can't return partial alias here because we don't
  // know whether the pointer is really within the object or not.
  // IE Given an out of bounds GEP and an alloca'd pointer, we may
  // unify the two. We can't return partial alias for this case.
  // Since we do not currently track enough information to
  // differentiate

  if (SetA.Index == SetB.Index)
    return MayAlias;

  return NoAlias;
}

CFLAAResult CFLAA::run(Function &F, AnalysisManager<Function> *AM) {
  return CFLAAResult(AM->getResult<TargetLibraryAnalysis>(F));
}

char CFLAA::PassID;

char CFLAAWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
                      false, true)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
                    false, true)

ImmutablePass *llvm::createCFLAAWrapperPass() { return new CFLAAWrapperPass(); }

CFLAAWrapperPass::CFLAAWrapperPass() : ImmutablePass(ID) {
  initializeCFLAAWrapperPassPass(*PassRegistry::getPassRegistry());
}

bool CFLAAWrapperPass::doInitialization(Module &M) {
  Result.reset(
      new CFLAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
  return false;
}

bool CFLAAWrapperPass::doFinalization(Module &M) {
  Result.reset();
  return false;
}

void CFLAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
}