summaryrefslogtreecommitdiff
path: root/gnu/llvm/lib/Analysis/LoopUnrollAnalyzer.cpp
blob: c8b91a7a1a516e0ae2f675bd164b812a501ce2e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
//===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements UnrolledInstAnalyzer class. It's used for predicting
// potential effects that loop unrolling might have, such as enabling constant
// propagation and other optimizations.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopUnrollAnalyzer.h"

using namespace llvm;

/// Try to simplify instruction \param I using its SCEV expression.
///
/// The idea is that some AddRec expressions become constants, which then
/// could trigger folding of other instructions. However, that only happens
/// for expressions whose start value is also constant, which isn't always the
/// case. In another common and important case the start value is just some
/// address (i.e. SCEVUnknown) - in this case we compute the offset and save
/// it along with the base address instead.
bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
  if (!SE.isSCEVable(I->getType()))
    return false;

  const SCEV *S = SE.getSCEV(I);
  if (auto *SC = dyn_cast<SCEVConstant>(S)) {
    SimplifiedValues[I] = SC->getValue();
    return true;
  }

  auto *AR = dyn_cast<SCEVAddRecExpr>(S);
  if (!AR || AR->getLoop() != L)
    return false;

  const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
  // Check if the AddRec expression becomes a constant.
  if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
    SimplifiedValues[I] = SC->getValue();
    return true;
  }

  // Check if the offset from the base address becomes a constant.
  auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
  if (!Base)
    return false;
  auto *Offset =
      dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
  if (!Offset)
    return false;
  SimplifiedAddress Address;
  Address.Base = Base->getValue();
  Address.Offset = Offset->getValue();
  SimplifiedAddresses[I] = Address;
  return false;
}

/// Try to simplify binary operator I.
///
/// TODO: Probably it's worth to hoist the code for estimating the
/// simplifications effects to a separate class, since we have a very similar
/// code in InlineCost already.
bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  if (!isa<Constant>(LHS))
    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
      LHS = SimpleLHS;
  if (!isa<Constant>(RHS))
    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
      RHS = SimpleRHS;

  Value *SimpleV = nullptr;
  const DataLayout &DL = I.getModule()->getDataLayout();
  if (auto FI = dyn_cast<FPMathOperator>(&I))
    SimpleV =
        SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
  else
    SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);

  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
    SimplifiedValues[&I] = C;

  if (SimpleV)
    return true;
  return Base::visitBinaryOperator(I);
}

/// Try to fold load I.
bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
  Value *AddrOp = I.getPointerOperand();

  auto AddressIt = SimplifiedAddresses.find(AddrOp);
  if (AddressIt == SimplifiedAddresses.end())
    return false;
  ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;

  auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
  // We're only interested in loads that can be completely folded to a
  // constant.
  if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
    return false;

  ConstantDataSequential *CDS =
      dyn_cast<ConstantDataSequential>(GV->getInitializer());
  if (!CDS)
    return false;

  // We might have a vector load from an array. FIXME: for now we just bail
  // out in this case, but we should be able to resolve and simplify such
  // loads.
  if (CDS->getElementType() != I.getType())
    return false;

  unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
  if (SimplifiedAddrOp->getValue().getActiveBits() > 64)
    return false;
  int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue();
  if (SimplifiedAddrOpV < 0) {
    // FIXME: For now we conservatively ignore out of bound accesses, but
    // we're allowed to perform the optimization in this case.
    return false;
  }
  uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize;
  if (Index >= CDS->getNumElements()) {
    // FIXME: For now we conservatively ignore out of bound accesses, but
    // we're allowed to perform the optimization in this case.
    return false;
  }

  Constant *CV = CDS->getElementAsConstant(Index);
  assert(CV && "Constant expected.");
  SimplifiedValues[&I] = CV;

  return true;
}

/// Try to simplify cast instruction.
bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
  // Propagate constants through casts.
  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
  if (!COp)
    COp = SimplifiedValues.lookup(I.getOperand(0));

  // If we know a simplified value for this operand and cast is valid, save the
  // result to SimplifiedValues.
  // The cast can be invalid, because SimplifiedValues contains results of SCEV
  // analysis, which operates on integers (and, e.g., might convert i8* null to
  // i32 0).
  if (COp && CastInst::castIsValid(I.getOpcode(), COp, I.getType())) {
    if (Constant *C =
            ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
      SimplifiedValues[&I] = C;
      return true;
    }
  }

  return Base::visitCastInst(I);
}

/// Try to simplify cmp instruction.
bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);

  // First try to handle simplified comparisons.
  if (!isa<Constant>(LHS))
    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
      LHS = SimpleLHS;
  if (!isa<Constant>(RHS))
    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
      RHS = SimpleRHS;

  if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
    auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
    if (SimplifiedLHS != SimplifiedAddresses.end()) {
      auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
      if (SimplifiedRHS != SimplifiedAddresses.end()) {
        SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
        SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
        if (LHSAddr.Base == RHSAddr.Base) {
          LHS = LHSAddr.Offset;
          RHS = RHSAddr.Offset;
        }
      }
    }
  }

  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
      if (CLHS->getType() == CRHS->getType()) {
        if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
          SimplifiedValues[&I] = C;
          return true;
        }
      }
    }
  }

  return Base::visitCmpInst(I);
}

bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
  // Run base visitor first. This way we can gather some useful for later
  // analysis information.
  if (Base::visitPHINode(PN))
    return true;

  // The loop induction PHI nodes are definitionally free.
  return PN.getParent() == L->getHeader();
}