summaryrefslogtreecommitdiff
path: root/gnu/llvm/lib/ProfileData/InstrProf.cpp
blob: d6777639abe7ab2adf873d97fb6976adc027e75f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
//=-- InstrProf.cpp - Instrumented profiling format support -----------------=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's instrumentation based PGO and
// coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/ManagedStatic.h"

using namespace llvm;

namespace {
class InstrProfErrorCategoryType : public std::error_category {
  const char *name() const LLVM_NOEXCEPT override { return "llvm.instrprof"; }
  std::string message(int IE) const override {
    instrprof_error E = static_cast<instrprof_error>(IE);
    switch (E) {
    case instrprof_error::success:
      return "Success";
    case instrprof_error::eof:
      return "End of File";
    case instrprof_error::unrecognized_format:
      return "Unrecognized instrumentation profile encoding format";
    case instrprof_error::bad_magic:
      return "Invalid instrumentation profile data (bad magic)";
    case instrprof_error::bad_header:
      return "Invalid instrumentation profile data (file header is corrupt)";
    case instrprof_error::unsupported_version:
      return "Unsupported instrumentation profile format version";
    case instrprof_error::unsupported_hash_type:
      return "Unsupported instrumentation profile hash type";
    case instrprof_error::too_large:
      return "Too much profile data";
    case instrprof_error::truncated:
      return "Truncated profile data";
    case instrprof_error::malformed:
      return "Malformed instrumentation profile data";
    case instrprof_error::unknown_function:
      return "No profile data available for function";
    case instrprof_error::hash_mismatch:
      return "Function control flow change detected (hash mismatch)";
    case instrprof_error::count_mismatch:
      return "Function basic block count change detected (counter mismatch)";
    case instrprof_error::counter_overflow:
      return "Counter overflow";
    case instrprof_error::value_site_count_mismatch:
      return "Function value site count change detected (counter mismatch)";
    }
    llvm_unreachable("A value of instrprof_error has no message.");
  }
};
}

static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;

const std::error_category &llvm::instrprof_category() {
  return *ErrorCategory;
}

namespace llvm {

std::string getPGOFuncName(StringRef RawFuncName,
                           GlobalValue::LinkageTypes Linkage,
                           StringRef FileName,
                           uint64_t Version LLVM_ATTRIBUTE_UNUSED) {

  // Function names may be prefixed with a binary '1' to indicate
  // that the backend should not modify the symbols due to any platform
  // naming convention. Do not include that '1' in the PGO profile name.
  if (RawFuncName[0] == '\1')
    RawFuncName = RawFuncName.substr(1);

  std::string FuncName = RawFuncName;
  if (llvm::GlobalValue::isLocalLinkage(Linkage)) {
    // For local symbols, prepend the main file name to distinguish them.
    // Do not include the full path in the file name since there's no guarantee
    // that it will stay the same, e.g., if the files are checked out from
    // version control in different locations.
    if (FileName.empty())
      FuncName = FuncName.insert(0, "<unknown>:");
    else
      FuncName = FuncName.insert(0, FileName.str() + ":");
  }
  return FuncName;
}

std::string getPGOFuncName(const Function &F, uint64_t Version) {
  return getPGOFuncName(F.getName(), F.getLinkage(), F.getParent()->getName(),
                        Version);
}

StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
  if (FileName.empty())
    return PGOFuncName;
  // Drop the file name including ':'. See also getPGOFuncName.
  if (PGOFuncName.startswith(FileName))
    PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
  return PGOFuncName;
}

// \p FuncName is the string used as profile lookup key for the function. A
// symbol is created to hold the name. Return the legalized symbol name.
static std::string getPGOFuncNameVarName(StringRef FuncName,
                                         GlobalValue::LinkageTypes Linkage) {
  std::string VarName = getInstrProfNameVarPrefix();
  VarName += FuncName;

  if (!GlobalValue::isLocalLinkage(Linkage))
    return VarName;

  // Now fix up illegal chars in local VarName that may upset the assembler.
  const char *InvalidChars = "-:<>\"'";
  size_t found = VarName.find_first_of(InvalidChars);
  while (found != std::string::npos) {
    VarName[found] = '_';
    found = VarName.find_first_of(InvalidChars, found + 1);
  }
  return VarName;
}

GlobalVariable *createPGOFuncNameVar(Module &M,
                                     GlobalValue::LinkageTypes Linkage,
                                     StringRef FuncName) {

  // We generally want to match the function's linkage, but available_externally
  // and extern_weak both have the wrong semantics, and anything that doesn't
  // need to link across compilation units doesn't need to be visible at all.
  if (Linkage == GlobalValue::ExternalWeakLinkage)
    Linkage = GlobalValue::LinkOnceAnyLinkage;
  else if (Linkage == GlobalValue::AvailableExternallyLinkage)
    Linkage = GlobalValue::LinkOnceODRLinkage;
  else if (Linkage == GlobalValue::InternalLinkage ||
           Linkage == GlobalValue::ExternalLinkage)
    Linkage = GlobalValue::PrivateLinkage;

  auto *Value = ConstantDataArray::getString(M.getContext(), FuncName, false);
  auto FuncNameVar =
      new GlobalVariable(M, Value->getType(), true, Linkage, Value,
                         getPGOFuncNameVarName(FuncName, Linkage));

  // Hide the symbol so that we correctly get a copy for each executable.
  if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
    FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);

  return FuncNameVar;
}

GlobalVariable *createPGOFuncNameVar(Function &F, StringRef FuncName) {
  return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), FuncName);
}

int collectPGOFuncNameStrings(const std::vector<std::string> &NameStrs,
                              bool doCompression, std::string &Result) {
  uint8_t Header[16], *P = Header;
  std::string UncompressedNameStrings =
      join(NameStrs.begin(), NameStrs.end(), StringRef(" "));

  unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
  P += EncLen;

  auto WriteStringToResult = [&](size_t CompressedLen,
                                 const std::string &InputStr) {
    EncLen = encodeULEB128(CompressedLen, P);
    P += EncLen;
    char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
    unsigned HeaderLen = P - &Header[0];
    Result.append(HeaderStr, HeaderLen);
    Result += InputStr;
    return 0;
  };

  if (!doCompression)
    return WriteStringToResult(0, UncompressedNameStrings);

  SmallVector<char, 128> CompressedNameStrings;
  zlib::Status Success =
      zlib::compress(StringRef(UncompressedNameStrings), CompressedNameStrings,
                     zlib::BestSizeCompression);

  if (Success != zlib::StatusOK)
    return 1;

  return WriteStringToResult(
      CompressedNameStrings.size(),
      std::string(CompressedNameStrings.data(), CompressedNameStrings.size()));
}

StringRef getPGOFuncNameInitializer(GlobalVariable *NameVar) {
  auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
  StringRef NameStr =
      Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
  return NameStr;
}

int collectPGOFuncNameStrings(const std::vector<GlobalVariable *> &NameVars,
                              std::string &Result) {
  std::vector<std::string> NameStrs;
  for (auto *NameVar : NameVars) {
    NameStrs.push_back(getPGOFuncNameInitializer(NameVar));
  }
  return collectPGOFuncNameStrings(NameStrs, zlib::isAvailable(), Result);
}

int readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
  const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data());
  const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() +
                                                          NameStrings.size());
  while (P < EndP) {
    uint32_t N;
    uint64_t UncompressedSize = decodeULEB128(P, &N);
    P += N;
    uint64_t CompressedSize = decodeULEB128(P, &N);
    P += N;
    bool isCompressed = (CompressedSize != 0);
    SmallString<128> UncompressedNameStrings;
    StringRef NameStrings;
    if (isCompressed) {
      StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
                                      CompressedSize);
      if (zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
                           UncompressedSize) != zlib::StatusOK)
        return 1;
      P += CompressedSize;
      NameStrings = StringRef(UncompressedNameStrings.data(),
                              UncompressedNameStrings.size());
    } else {
      NameStrings =
          StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
      P += UncompressedSize;
    }
    // Now parse the name strings.
    SmallVector<StringRef, 0> Names;
    NameStrings.split(Names, ' ');
    for (StringRef &Name : Names)
      Symtab.addFuncName(Name);

    while (P < EndP && *P == 0)
      P++;
  }
  Symtab.finalizeSymtab();
  return 0;
}

instrprof_error InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
                                                uint64_t Weight) {
  this->sortByTargetValues();
  Input.sortByTargetValues();
  auto I = ValueData.begin();
  auto IE = ValueData.end();
  instrprof_error Result = instrprof_error::success;
  for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
       ++J) {
    while (I != IE && I->Value < J->Value)
      ++I;
    if (I != IE && I->Value == J->Value) {
      bool Overflowed;
      I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
      if (Overflowed)
        Result = instrprof_error::counter_overflow;
      ++I;
      continue;
    }
    ValueData.insert(I, *J);
  }
  return Result;
}

instrprof_error InstrProfValueSiteRecord::scale(uint64_t Weight) {
  instrprof_error Result = instrprof_error::success;
  for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
    bool Overflowed;
    I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed);
    if (Overflowed)
      Result = instrprof_error::counter_overflow;
  }
  return Result;
}

// Merge Value Profile data from Src record to this record for ValueKind.
// Scale merged value counts by \p Weight.
instrprof_error InstrProfRecord::mergeValueProfData(uint32_t ValueKind,
                                                    InstrProfRecord &Src,
                                                    uint64_t Weight) {
  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
  uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
  if (ThisNumValueSites != OtherNumValueSites)
    return instrprof_error::value_site_count_mismatch;
  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
      getValueSitesForKind(ValueKind);
  std::vector<InstrProfValueSiteRecord> &OtherSiteRecords =
      Src.getValueSitesForKind(ValueKind);
  instrprof_error Result = instrprof_error::success;
  for (uint32_t I = 0; I < ThisNumValueSites; I++)
    MergeResult(Result, ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight));
  return Result;
}

instrprof_error InstrProfRecord::merge(InstrProfRecord &Other,
                                       uint64_t Weight) {
  // If the number of counters doesn't match we either have bad data
  // or a hash collision.
  if (Counts.size() != Other.Counts.size())
    return instrprof_error::count_mismatch;

  instrprof_error Result = instrprof_error::success;

  for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
    bool Overflowed;
    Counts[I] =
        SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
    if (Overflowed)
      Result = instrprof_error::counter_overflow;
  }

  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    MergeResult(Result, mergeValueProfData(Kind, Other, Weight));

  return Result;
}

instrprof_error InstrProfRecord::scaleValueProfData(uint32_t ValueKind,
                                                    uint64_t Weight) {
  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
      getValueSitesForKind(ValueKind);
  instrprof_error Result = instrprof_error::success;
  for (uint32_t I = 0; I < ThisNumValueSites; I++)
    MergeResult(Result, ThisSiteRecords[I].scale(Weight));
  return Result;
}

instrprof_error InstrProfRecord::scale(uint64_t Weight) {
  instrprof_error Result = instrprof_error::success;
  for (auto &Count : this->Counts) {
    bool Overflowed;
    Count = SaturatingMultiply(Count, Weight, &Overflowed);
    if (Overflowed && Result == instrprof_error::success) {
      Result = instrprof_error::counter_overflow;
    }
  }
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    MergeResult(Result, scaleValueProfData(Kind, Weight));

  return Result;
}

// Map indirect call target name hash to name string.
uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
                                     ValueMapType *ValueMap) {
  if (!ValueMap)
    return Value;
  switch (ValueKind) {
  case IPVK_IndirectCallTarget: {
    auto Result =
        std::lower_bound(ValueMap->begin(), ValueMap->end(), Value,
                         [](const std::pair<uint64_t, uint64_t> &LHS,
                            uint64_t RHS) { return LHS.first < RHS; });
    if (Result != ValueMap->end())
      Value = (uint64_t)Result->second;
    break;
  }
  }
  return Value;
}

void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
                                   InstrProfValueData *VData, uint32_t N,
                                   ValueMapType *ValueMap) {
  for (uint32_t I = 0; I < N; I++) {
    VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
  }
  std::vector<InstrProfValueSiteRecord> &ValueSites =
      getValueSitesForKind(ValueKind);
  if (N == 0)
    ValueSites.push_back(InstrProfValueSiteRecord());
  else
    ValueSites.emplace_back(VData, VData + N);
}

#define INSTR_PROF_COMMON_API_IMPL
#include "llvm/ProfileData/InstrProfData.inc"

/*!
 * \brief ValueProfRecordClosure Interface implementation for  InstrProfRecord
 *  class. These C wrappers are used as adaptors so that C++ code can be
 *  invoked as callbacks.
 */
uint32_t getNumValueKindsInstrProf(const void *Record) {
  return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
}

uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
  return reinterpret_cast<const InstrProfRecord *>(Record)
      ->getNumValueSites(VKind);
}

uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
  return reinterpret_cast<const InstrProfRecord *>(Record)
      ->getNumValueData(VKind);
}

uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
                                         uint32_t S) {
  return reinterpret_cast<const InstrProfRecord *>(R)
      ->getNumValueDataForSite(VK, S);
}

void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
                              uint32_t K, uint32_t S,
                              uint64_t (*Mapper)(uint32_t, uint64_t)) {
  return reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(
      Dst, K, S, Mapper);
}

ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
  ValueProfData *VD =
      (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
  memset(VD, 0, TotalSizeInBytes);
  return VD;
}

static ValueProfRecordClosure InstrProfRecordClosure = {
    0,
    getNumValueKindsInstrProf,
    getNumValueSitesInstrProf,
    getNumValueDataInstrProf,
    getNumValueDataForSiteInstrProf,
    0,
    getValueForSiteInstrProf,
    allocValueProfDataInstrProf};

// Wrapper implementation using the closure mechanism.
uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
  InstrProfRecordClosure.Record = &Record;
  return getValueProfDataSize(&InstrProfRecordClosure);
}

// Wrapper implementation using the closure mechanism.
std::unique_ptr<ValueProfData>
ValueProfData::serializeFrom(const InstrProfRecord &Record) {
  InstrProfRecordClosure.Record = &Record;

  std::unique_ptr<ValueProfData> VPD(
      serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
  return VPD;
}

void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
                                    InstrProfRecord::ValueMapType *VMap) {
  Record.reserveSites(Kind, NumValueSites);

  InstrProfValueData *ValueData = getValueProfRecordValueData(this);
  for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
    uint8_t ValueDataCount = this->SiteCountArray[VSite];
    Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap);
    ValueData += ValueDataCount;
  }
}

// For writing/serializing,  Old is the host endianness, and  New is
// byte order intended on disk. For Reading/deserialization, Old
// is the on-disk source endianness, and New is the host endianness.
void ValueProfRecord::swapBytes(support::endianness Old,
                                support::endianness New) {
  using namespace support;
  if (Old == New)
    return;

  if (getHostEndianness() != Old) {
    sys::swapByteOrder<uint32_t>(NumValueSites);
    sys::swapByteOrder<uint32_t>(Kind);
  }
  uint32_t ND = getValueProfRecordNumValueData(this);
  InstrProfValueData *VD = getValueProfRecordValueData(this);

  // No need to swap byte array: SiteCountArrray.
  for (uint32_t I = 0; I < ND; I++) {
    sys::swapByteOrder<uint64_t>(VD[I].Value);
    sys::swapByteOrder<uint64_t>(VD[I].Count);
  }
  if (getHostEndianness() == Old) {
    sys::swapByteOrder<uint32_t>(NumValueSites);
    sys::swapByteOrder<uint32_t>(Kind);
  }
}

void ValueProfData::deserializeTo(InstrProfRecord &Record,
                                  InstrProfRecord::ValueMapType *VMap) {
  if (NumValueKinds == 0)
    return;

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < NumValueKinds; K++) {
    VR->deserializeTo(Record, VMap);
    VR = getValueProfRecordNext(VR);
  }
}

template <class T>
static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
  using namespace support;
  if (Orig == little)
    return endian::readNext<T, little, unaligned>(D);
  else
    return endian::readNext<T, big, unaligned>(D);
}

static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
  return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
                                            ValueProfData());
}

instrprof_error ValueProfData::checkIntegrity() {
  if (NumValueKinds > IPVK_Last + 1)
    return instrprof_error::malformed;
  // Total size needs to be mulltiple of quadword size.
  if (TotalSize % sizeof(uint64_t))
    return instrprof_error::malformed;

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < this->NumValueKinds; K++) {
    if (VR->Kind > IPVK_Last)
      return instrprof_error::malformed;
    VR = getValueProfRecordNext(VR);
    if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
      return instrprof_error::malformed;
  }
  return instrprof_error::success;
}

ErrorOr<std::unique_ptr<ValueProfData>>
ValueProfData::getValueProfData(const unsigned char *D,
                                const unsigned char *const BufferEnd,
                                support::endianness Endianness) {
  using namespace support;
  if (D + sizeof(ValueProfData) > BufferEnd)
    return instrprof_error::truncated;

  const unsigned char *Header = D;
  uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
  if (D + TotalSize > BufferEnd)
    return instrprof_error::too_large;

  std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
  memcpy(VPD.get(), D, TotalSize);
  // Byte swap.
  VPD->swapBytesToHost(Endianness);

  instrprof_error EC = VPD->checkIntegrity();
  if (EC != instrprof_error::success)
    return EC;

  return std::move(VPD);
}

void ValueProfData::swapBytesToHost(support::endianness Endianness) {
  using namespace support;
  if (Endianness == getHostEndianness())
    return;

  sys::swapByteOrder<uint32_t>(TotalSize);
  sys::swapByteOrder<uint32_t>(NumValueKinds);

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < NumValueKinds; K++) {
    VR->swapBytes(Endianness, getHostEndianness());
    VR = getValueProfRecordNext(VR);
  }
}

void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
  using namespace support;
  if (Endianness == getHostEndianness())
    return;

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < NumValueKinds; K++) {
    ValueProfRecord *NVR = getValueProfRecordNext(VR);
    VR->swapBytes(getHostEndianness(), Endianness);
    VR = NVR;
  }
  sys::swapByteOrder<uint32_t>(TotalSize);
  sys::swapByteOrder<uint32_t>(NumValueKinds);
}

}