blob: cfd3a7a3b33f319d41709b3de72905ec9d705aec (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
/* ===-- floatundidf.c - Implement __floatundidf ---------------------------===
*
* The LLVM Compiler Infrastructure
*
* This file is dual licensed under the MIT and the University of Illinois Open
* Source Licenses. See LICENSE.TXT for details.
*
* ===----------------------------------------------------------------------===
*
* This file implements __floatundidf for the compiler_rt library.
*
* ===----------------------------------------------------------------------===
*/
/* Returns: convert a to a double, rounding toward even. */
/* Assumption: double is a IEEE 64 bit floating point type
* du_int is a 64 bit integral type
*/
/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */
#include "int_lib.h"
ARM_EABI_FNALIAS(ul2d, floatundidf)
#ifndef __SOFT_FP__
/* Support for systems that have hardware floating-point; we'll set the inexact flag
* as a side-effect of this computation.
*/
COMPILER_RT_ABI double
__floatundidf(du_int a)
{
static const double twop52 = 4503599627370496.0; // 0x1.0p52
static const double twop84 = 19342813113834066795298816.0; // 0x1.0p84
static const double twop84_plus_twop52 = 19342813118337666422669312.0; // 0x1.00000001p84
union { uint64_t x; double d; } high = { .d = twop84 };
union { uint64_t x; double d; } low = { .d = twop52 };
high.x |= a >> 32;
low.x |= a & UINT64_C(0x00000000ffffffff);
const double result = (high.d - twop84_plus_twop52) + low.d;
return result;
}
#else
/* Support for systems that don't have hardware floating-point; there are no flags to
* set, and we don't want to code-gen to an unknown soft-float implementation.
*/
COMPILER_RT_ABI double
__floatundidf(du_int a)
{
if (a == 0)
return 0.0;
const unsigned N = sizeof(du_int) * CHAR_BIT;
int sd = N - __builtin_clzll(a); /* number of significant digits */
int e = sd - 1; /* exponent */
if (sd > DBL_MANT_DIG)
{
/* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
* finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
* 12345678901234567890123456
* 1 = msb 1 bit
* P = bit DBL_MANT_DIG-1 bits to the right of 1
* Q = bit DBL_MANT_DIG bits to the right of 1
* R = "or" of all bits to the right of Q
*/
switch (sd)
{
case DBL_MANT_DIG + 1:
a <<= 1;
break;
case DBL_MANT_DIG + 2:
break;
default:
a = (a >> (sd - (DBL_MANT_DIG+2))) |
((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
};
/* finish: */
a |= (a & 4) != 0; /* Or P into R */
++a; /* round - this step may add a significant bit */
a >>= 2; /* dump Q and R */
/* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
if (a & ((du_int)1 << DBL_MANT_DIG))
{
a >>= 1;
++e;
}
/* a is now rounded to DBL_MANT_DIG bits */
}
else
{
a <<= (DBL_MANT_DIG - sd);
/* a is now rounded to DBL_MANT_DIG bits */
}
double_bits fb;
fb.u.s.high = ((e + 1023) << 20) | /* exponent */
((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
fb.u.s.low = (su_int)a; /* mantissa-low */
return fb.f;
}
#endif
|