1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// ----------------------------------------------------------------------------
// Multiply by a single word, z := c * y
// Inputs c, y[n]; outputs function return (carry-out) and z[k]
//
// extern uint64_t bignum_cmul
// (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y);
//
// Does the "z := c * y" operation where y is n digits, result z is p.
// Truncates the result in general unless p >= n + 1.
//
// The return value is a high/carry word that is meaningful when p >= n as
// giving the high part of the result. Since this is always zero if p > n,
// it is mainly of interest in the special case p = n, i.e. where the source
// and destination have the same nominal size, when it gives the extra word
// of the full result.
//
// Standard x86-64 ABI: RDI = k, RSI = z, RDX = c, RCX = n, R8 = y, returns RAX
// Microsoft x64 ABI: RCX = k, RDX = z, R8 = c, R9 = n, [RSP+40] = y, returns RAX
// ----------------------------------------------------------------------------
#include "s2n_bignum_internal.h"
.intel_syntax noprefix
S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_cmul)
S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_cmul)
.text
#define p rdi
#define z rsi
#define c r9
#define n rcx
#define x r8
#define i r10
#define h r11
S2N_BN_SYMBOL(bignum_cmul):
#if WINDOWS_ABI
push rdi
push rsi
mov rdi, rcx
mov rsi, rdx
mov rdx, r8
mov rcx, r9
mov r8, [rsp+56]
#endif
// First clamp the input size n := min(p,n) since we can never need to read
// past the p'th term of the input to generate p-digit output. Now we can
// assume that n <= p
cmp p, n
cmovc n, p
// Initialize current input/output pointer offset i and high part h.
// But then if n = 0 skip the multiplication and go to the tail part
xor h, h
xor i, i
test n, n
jz tail
// Move c into a safer register as multiplies overwrite rdx
mov c, rdx
// Initialization of the loop: [h,l] = c * x_0
mov rax, [x]
mul c
mov [z], rax
mov h, rdx
inc i
cmp i, n
jz tail
// Main loop doing the multiplications
loop:
mov rax, [x+8*i]
mul c
add rax, h
adc rdx, 0
mov [z+8*i], rax
mov h, rdx
inc i
cmp i, n
jc loop
// Add a tail when the destination is longer
tail:
cmp i, p
jnc end
mov [z+8*i], h
xor h, h
inc i
cmp i, p
jnc end
tloop:
mov [z+8*i], h
inc i
cmp i, p
jc tloop
// Return the high/carry word
end:
mov rax, h
#if WINDOWS_ABI
pop rsi
pop rdi
#endif
ret
#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif
|