1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
|
#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# On PA-7100LC this module performs ~90-50% better, less for longer
# keys, than code generated by gcc 3.2 for PA-RISC 1.1. Latter means
# that compiler utilized xmpyu instruction to perform 32x32=64-bit
# multiplication, which in turn means that "baseline" performance was
# optimal in respect to instruction set capabilities. Fair comparison
# with vendor compiler is problematic, because OpenSSL doesn't define
# BN_LLONG [presumably] for historical reasons, which drives compiler
# toward 4 times 16x16=32-bit multiplicatons [plus complementary
# shifts and additions] instead. This means that you should observe
# several times improvement over code generated by vendor compiler
# for PA-RISC 1.1, but the "baseline" is far from optimal. The actual
# improvement coefficient was never collected on PA-7100LC, or any
# other 1.1 CPU, because I don't have access to such machine with
# vendor compiler. But to give you a taste, PA-RISC 1.1 code path
# reportedly outperformed code generated by cc +DA1.1 +O3 by factor
# of ~5x on PA-8600.
#
# On PA-RISC 2.0 it has to compete with pa-risc2[W].s, which is
# reportedly ~2x faster than vendor compiler generated code [according
# to comment in pa-risc2[W].s]. Here comes a catch. Execution core of
# this implementation is actually 32-bit one, in the sense that it
# operates on 32-bit values. But pa-risc2[W].s operates on arrays of
# 64-bit BN_LONGs... How do they interoperate then? No problem. This
# module picks halves of 64-bit values in reverse order and pretends
# they were 32-bit BN_LONGs. But can 32-bit core compete with "pure"
# 64-bit code such as pa-risc2[W].s then? Well, the thing is that
# 32x32=64-bit multiplication is the best even PA-RISC 2.0 can do,
# i.e. there is no "wider" multiplication like on most other 64-bit
# platforms. This means that even being effectively 32-bit, this
# implementation performs "64-bit" computational task in same amount
# of arithmetic operations, most notably multiplications. It requires
# more memory references, most notably to tp[num], but this doesn't
# seem to exhaust memory port capacity. And indeed, dedicated PA-RISC
# 2.0 code path provides virtually same performance as pa-risc2[W].s:
# it's ~10% better for shortest key length and ~10% worse for longest
# one.
#
# In case it wasn't clear. The module has two distinct code paths:
# PA-RISC 1.1 and PA-RISC 2.0 ones. Latter features carry-free 64-bit
# additions and 64-bit integer loads, not to mention specific
# instruction scheduling. In 64-bit build naturally only 2.0 code path
# is assembled. In 32-bit application context both code paths are
# assembled, PA-RISC 2.0 CPU is detected at run-time and proper path
# is taken automatically. Also, in 32-bit build the module imposes
# couple of limitations: vector lengths has to be even and vector
# addresses has to be 64-bit aligned. Normally neither is a problem:
# most common key lengths are even and vectors are commonly malloc-ed,
# which ensures alignment.
#
# Special thanks to polarhome.com for providing HP-UX account on
# PA-RISC 1.1 machine, and to correspondent who chose to remain
# anonymous for testing the code on PA-RISC 2.0 machine.
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
$flavour = shift;
$output = shift;
open STDOUT,">$output";
if ($flavour =~ /64/) {
$LEVEL ="2.0W";
$SIZE_T =8;
$FRAME_MARKER =80;
$SAVED_RP =16;
$PUSH ="std";
$PUSHMA ="std,ma";
$POP ="ldd";
$POPMB ="ldd,mb";
$BN_SZ =$SIZE_T;
} else {
$LEVEL ="1.1"; #$LEVEL.="\n\t.ALLOW\t2.0";
$SIZE_T =4;
$FRAME_MARKER =48;
$SAVED_RP =20;
$PUSH ="stw";
$PUSHMA ="stwm";
$POP ="ldw";
$POPMB ="ldwm";
$BN_SZ =$SIZE_T;
}
$FRAME=8*$SIZE_T+$FRAME_MARKER; # 8 saved regs + frame marker
# [+ argument transfer]
$LOCALS=$FRAME-$FRAME_MARKER;
$FRAME+=32; # local variables
$tp="%r31";
$ti1="%r29";
$ti0="%r28";
$rp="%r26";
$ap="%r25";
$bp="%r24";
$np="%r23";
$n0="%r22"; # passed through stack in 32-bit
$num="%r21"; # passed through stack in 32-bit
$idx="%r20";
$arrsz="%r19";
$nm1="%r7";
$nm0="%r6";
$ab1="%r5";
$ab0="%r4";
$fp="%r3";
$hi1="%r2";
$hi0="%r1";
$xfer=$n0; # accomodates [-16..15] offset in fld[dw]s
$fm0="%fr4"; $fti=$fm0;
$fbi="%fr5L";
$fn0="%fr5R";
$fai="%fr6"; $fab0="%fr7"; $fab1="%fr8";
$fni="%fr9"; $fnm0="%fr10"; $fnm1="%fr11";
$code=<<___;
.LEVEL $LEVEL
.SPACE \$TEXT\$
.SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY
.EXPORT bn_mul_mont,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR
.ALIGN 64
bn_mul_mont
.PROC
.CALLINFO FRAME=`$FRAME-8*$SIZE_T`,NO_CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=6
.ENTRY
$PUSH %r2,-$SAVED_RP(%sp) ; standard prologue
$PUSHMA %r3,$FRAME(%sp)
$PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp)
$PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp)
$PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp)
$PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp)
$PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp)
$PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp)
$PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp)
ldo -$FRAME(%sp),$fp
___
$code.=<<___ if ($SIZE_T==4);
ldw `-$FRAME_MARKER-4`($fp),$n0
ldw `-$FRAME_MARKER-8`($fp),$num
nop
nop ; alignment
___
$code.=<<___ if ($BN_SZ==4);
comiclr,<= 6,$num,%r0 ; are vectors long enough?
b L\$abort
ldi 0,%r28 ; signal "unhandled"
add,ev %r0,$num,$num ; is $num even?
b L\$abort
nop
or $ap,$np,$ti1
extru,= $ti1,31,3,%r0 ; are ap and np 64-bit aligned?
b L\$abort
nop
nop ; alignment
nop
fldws 0($n0),${fn0}
fldws,ma 4($bp),${fbi} ; bp[0]
___
$code.=<<___ if ($BN_SZ==8);
comib,> 3,$num,L\$abort ; are vectors long enough?
ldi 0,%r28 ; signal "unhandled"
addl $num,$num,$num ; I operate on 32-bit values
fldws 4($n0),${fn0} ; only low part of n0
fldws 4($bp),${fbi} ; bp[0] in flipped word order
___
$code.=<<___;
fldds 0($ap),${fai} ; ap[0,1]
fldds 0($np),${fni} ; np[0,1]
sh2addl $num,%r0,$arrsz
ldi 31,$hi0
ldo 36($arrsz),$hi1 ; space for tp[num+1]
andcm $hi1,$hi0,$hi1 ; align
addl $hi1,%sp,%sp
$PUSH $fp,-$SIZE_T(%sp)
ldo `$LOCALS+16`($fp),$xfer
ldo `$LOCALS+32+4`($fp),$tp
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[0]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[0]
xmpyu ${fn0},${fab0}R,${fm0}
addl $arrsz,$ap,$ap ; point at the end
addl $arrsz,$np,$np
subi 0,$arrsz,$idx ; j=0
ldo 8($idx),$idx ; j++++
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m
fstds ${fab0},-16($xfer)
fstds ${fnm0},-8($xfer)
fstds ${fab1},0($xfer)
fstds ${fnm1},8($xfer)
flddx $idx($ap),${fai} ; ap[2,3]
flddx $idx($np),${fni} ; np[2,3]
___
$code.=<<___ if ($BN_SZ==4);
mtctl $hi0,%cr11 ; $hi0 still holds 31
extrd,u,*= $hi0,%sar,1,$hi0 ; executes on PA-RISC 1.0
b L\$parisc11
nop
___
$code.=<<___; # PA-RISC 2.0 code-path
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldd -16($xfer),$ab0
fstds ${fab0},-16($xfer)
extrd,u $ab0,31,32,$hi0
extrd,u $ab0,63,32,$ab0
ldd -8($xfer),$nm0
fstds ${fnm0},-8($xfer)
ldo 8($idx),$idx ; j++++
addl $ab0,$nm0,$nm0 ; low part is discarded
extrd,u $nm0,31,32,$hi1
L\$1st
xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m
ldd 0($xfer),$ab1
fstds ${fab1},0($xfer)
addl $hi0,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
ldd 8($xfer),$nm1
fstds ${fnm1},8($xfer)
extrd,u $ab1,63,32,$ab1
addl $hi1,$nm1,$nm1
flddx $idx($ap),${fai} ; ap[j,j+1]
flddx $idx($np),${fni} ; np[j,j+1]
addl $ab1,$nm1,$nm1
extrd,u $nm1,31,32,$hi1
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldd -16($xfer),$ab0
fstds ${fab0},-16($xfer)
addl $hi0,$ab0,$ab0
extrd,u $ab0,31,32,$hi0
ldd -8($xfer),$nm0
fstds ${fnm0},-8($xfer)
extrd,u $ab0,63,32,$ab0
addl $hi1,$nm0,$nm0
stw $nm1,-4($tp) ; tp[j-1]
addl $ab0,$nm0,$nm0
stw,ma $nm0,8($tp) ; tp[j-1]
addib,<> 8,$idx,L\$1st ; j++++
extrd,u $nm0,31,32,$hi1
xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m
ldd 0($xfer),$ab1
fstds ${fab1},0($xfer)
addl $hi0,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
ldd 8($xfer),$nm1
fstds ${fnm1},8($xfer)
extrd,u $ab1,63,32,$ab1
addl $hi1,$nm1,$nm1
ldd -16($xfer),$ab0
addl $ab1,$nm1,$nm1
ldd -8($xfer),$nm0
extrd,u $nm1,31,32,$hi1
addl $hi0,$ab0,$ab0
extrd,u $ab0,31,32,$hi0
stw $nm1,-4($tp) ; tp[j-1]
extrd,u $ab0,63,32,$ab0
addl $hi1,$nm0,$nm0
ldd 0($xfer),$ab1
addl $ab0,$nm0,$nm0
ldd,mb 8($xfer),$nm1
extrd,u $nm0,31,32,$hi1
stw,ma $nm0,8($tp) ; tp[j-1]
ldo -1($num),$num ; i--
subi 0,$arrsz,$idx ; j=0
___
$code.=<<___ if ($BN_SZ==4);
fldws,ma 4($bp),${fbi} ; bp[1]
___
$code.=<<___ if ($BN_SZ==8);
fldws 0($bp),${fbi} ; bp[1] in flipped word order
___
$code.=<<___;
flddx $idx($ap),${fai} ; ap[0,1]
flddx $idx($np),${fni} ; np[0,1]
fldws 8($xfer),${fti}R ; tp[0]
addl $hi0,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
ldo 8($idx),$idx ; j++++
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1]
addl $hi1,$nm1,$nm1
addl $ab1,$nm1,$nm1
extrd,u $nm1,31,32,$hi1
fstws,mb ${fab0}L,-8($xfer) ; save high part
stw $nm1,-4($tp) ; tp[j-1]
fcpy,sgl %fr0,${fti}L ; zero high part
fcpy,sgl %fr0,${fab0}L
addl $hi1,$hi0,$hi0
extrd,u $hi0,31,32,$hi1
fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double
fcnvxf,dbl,dbl ${fab0},${fab0}
stw $hi0,0($tp)
stw $hi1,4($tp)
fadd,dbl ${fti},${fab0},${fab0} ; add tp[0]
fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int
xmpyu ${fn0},${fab0}R,${fm0}
ldo `$LOCALS+32+4`($fp),$tp
L\$outer
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m
fstds ${fab0},-16($xfer) ; 33-bit value
fstds ${fnm0},-8($xfer)
flddx $idx($ap),${fai} ; ap[2]
flddx $idx($np),${fni} ; np[2]
ldo 8($idx),$idx ; j++++
ldd -16($xfer),$ab0 ; 33-bit value
ldd -8($xfer),$nm0
ldw 0($xfer),$hi0 ; high part
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
extrd,u $ab0,31,32,$ti0 ; carry bit
extrd,u $ab0,63,32,$ab0
fstds ${fab1},0($xfer)
addl $ti0,$hi0,$hi0 ; account carry bit
fstds ${fnm1},8($xfer)
addl $ab0,$nm0,$nm0 ; low part is discarded
ldw 0($tp),$ti1 ; tp[1]
extrd,u $nm0,31,32,$hi1
fstds ${fab0},-16($xfer)
fstds ${fnm0},-8($xfer)
L\$inner
xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m
ldd 0($xfer),$ab1
fstds ${fab1},0($xfer)
addl $hi0,$ti1,$ti1
addl $ti1,$ab1,$ab1
ldd 8($xfer),$nm1
fstds ${fnm1},8($xfer)
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
flddx $idx($ap),${fai} ; ap[j,j+1]
flddx $idx($np),${fni} ; np[j,j+1]
addl $hi1,$nm1,$nm1
addl $ab1,$nm1,$nm1
ldw 4($tp),$ti0 ; tp[j]
stw $nm1,-4($tp) ; tp[j-1]
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldd -16($xfer),$ab0
fstds ${fab0},-16($xfer)
addl $hi0,$ti0,$ti0
addl $ti0,$ab0,$ab0
ldd -8($xfer),$nm0
fstds ${fnm0},-8($xfer)
extrd,u $ab0,31,32,$hi0
extrd,u $nm1,31,32,$hi1
ldw 8($tp),$ti1 ; tp[j]
extrd,u $ab0,63,32,$ab0
addl $hi1,$nm0,$nm0
addl $ab0,$nm0,$nm0
stw,ma $nm0,8($tp) ; tp[j-1]
addib,<> 8,$idx,L\$inner ; j++++
extrd,u $nm0,31,32,$hi1
xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m
ldd 0($xfer),$ab1
fstds ${fab1},0($xfer)
addl $hi0,$ti1,$ti1
addl $ti1,$ab1,$ab1
ldd 8($xfer),$nm1
fstds ${fnm1},8($xfer)
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
ldw 4($tp),$ti0 ; tp[j]
addl $hi1,$nm1,$nm1
addl $ab1,$nm1,$nm1
ldd -16($xfer),$ab0
ldd -8($xfer),$nm0
extrd,u $nm1,31,32,$hi1
addl $hi0,$ab0,$ab0
addl $ti0,$ab0,$ab0
stw $nm1,-4($tp) ; tp[j-1]
extrd,u $ab0,31,32,$hi0
ldw 8($tp),$ti1 ; tp[j]
extrd,u $ab0,63,32,$ab0
addl $hi1,$nm0,$nm0
ldd 0($xfer),$ab1
addl $ab0,$nm0,$nm0
ldd,mb 8($xfer),$nm1
extrd,u $nm0,31,32,$hi1
stw,ma $nm0,8($tp) ; tp[j-1]
addib,= -1,$num,L\$outerdone ; i--
subi 0,$arrsz,$idx ; j=0
___
$code.=<<___ if ($BN_SZ==4);
fldws,ma 4($bp),${fbi} ; bp[i]
___
$code.=<<___ if ($BN_SZ==8);
ldi 12,$ti0 ; bp[i] in flipped word order
addl,ev %r0,$num,$num
ldi -4,$ti0
addl $ti0,$bp,$bp
fldws 0($bp),${fbi}
___
$code.=<<___;
flddx $idx($ap),${fai} ; ap[0]
addl $hi0,$ab1,$ab1
flddx $idx($np),${fni} ; np[0]
fldws 8($xfer),${fti}R ; tp[0]
addl $ti1,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
ldo 8($idx),$idx ; j++++
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i]
ldw 4($tp),$ti0 ; tp[j]
addl $hi1,$nm1,$nm1
fstws,mb ${fab0}L,-8($xfer) ; save high part
addl $ab1,$nm1,$nm1
extrd,u $nm1,31,32,$hi1
fcpy,sgl %fr0,${fti}L ; zero high part
fcpy,sgl %fr0,${fab0}L
stw $nm1,-4($tp) ; tp[j-1]
fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double
fcnvxf,dbl,dbl ${fab0},${fab0}
addl $hi1,$hi0,$hi0
fadd,dbl ${fti},${fab0},${fab0} ; add tp[0]
addl $ti0,$hi0,$hi0
extrd,u $hi0,31,32,$hi1
fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int
stw $hi0,0($tp)
stw $hi1,4($tp)
xmpyu ${fn0},${fab0}R,${fm0}
b L\$outer
ldo `$LOCALS+32+4`($fp),$tp
L\$outerdone
addl $hi0,$ab1,$ab1
addl $ti1,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
ldw 4($tp),$ti0 ; tp[j]
addl $hi1,$nm1,$nm1
addl $ab1,$nm1,$nm1
extrd,u $nm1,31,32,$hi1
stw $nm1,-4($tp) ; tp[j-1]
addl $hi1,$hi0,$hi0
addl $ti0,$hi0,$hi0
extrd,u $hi0,31,32,$hi1
stw $hi0,0($tp)
stw $hi1,4($tp)
ldo `$LOCALS+32`($fp),$tp
sub %r0,%r0,%r0 ; clear borrow
___
$code.=<<___ if ($BN_SZ==4);
ldws,ma 4($tp),$ti0
extru,= $rp,31,3,%r0 ; is rp 64-bit aligned?
b L\$sub_pa11
addl $tp,$arrsz,$tp
L\$sub
ldwx $idx($np),$hi0
subb $ti0,$hi0,$hi1
ldwx $idx($tp),$ti0
addib,<> 4,$idx,L\$sub
stws,ma $hi1,4($rp)
subb $ti0,%r0,$hi1
ldo -4($tp),$tp
___
$code.=<<___ if ($BN_SZ==8);
ldd,ma 8($tp),$ti0
L\$sub
ldd $idx($np),$hi0
shrpd $ti0,$ti0,32,$ti0 ; flip word order
std $ti0,-8($tp) ; save flipped value
sub,db $ti0,$hi0,$hi1
ldd,ma 8($tp),$ti0
addib,<> 8,$idx,L\$sub
std,ma $hi1,8($rp)
extrd,u $ti0,31,32,$ti0 ; carry in flipped word order
sub,db $ti0,%r0,$hi1
ldo -8($tp),$tp
___
$code.=<<___;
and $tp,$hi1,$ap
andcm $rp,$hi1,$bp
or $ap,$bp,$np
sub $rp,$arrsz,$rp ; rewind rp
subi 0,$arrsz,$idx
ldo `$LOCALS+32`($fp),$tp
L\$copy
ldd $idx($np),$hi0
std,ma %r0,8($tp)
addib,<> 8,$idx,.-8 ; L\$copy
std,ma $hi0,8($rp)
___
if ($BN_SZ==4) { # PA-RISC 1.1 code-path
$ablo=$ab0;
$abhi=$ab1;
$nmlo0=$nm0;
$nmhi0=$nm1;
$nmlo1="%r9";
$nmhi1="%r8";
$code.=<<___;
b L\$done
nop
.ALIGN 8
L\$parisc11
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldw -12($xfer),$ablo
ldw -16($xfer),$hi0
ldw -4($xfer),$nmlo0
ldw -8($xfer),$nmhi0
fstds ${fab0},-16($xfer)
fstds ${fnm0},-8($xfer)
ldo 8($idx),$idx ; j++++
add $ablo,$nmlo0,$nmlo0 ; discarded
addc %r0,$nmhi0,$hi1
ldw 4($xfer),$ablo
ldw 0($xfer),$abhi
nop
L\$1st_pa11
xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0]
flddx $idx($ap),${fai} ; ap[j,j+1]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m
flddx $idx($np),${fni} ; np[j,j+1]
add $hi0,$ablo,$ablo
ldw 12($xfer),$nmlo1
addc %r0,$abhi,$hi0
ldw 8($xfer),$nmhi1
add $ablo,$nmlo1,$nmlo1
fstds ${fab1},0($xfer)
addc %r0,$nmhi1,$nmhi1
fstds ${fnm1},8($xfer)
add $hi1,$nmlo1,$nmlo1
ldw -12($xfer),$ablo
addc %r0,$nmhi1,$hi1
ldw -16($xfer),$abhi
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0]
ldw -4($xfer),$nmlo0
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldw -8($xfer),$nmhi0
add $hi0,$ablo,$ablo
stw $nmlo1,-4($tp) ; tp[j-1]
addc %r0,$abhi,$hi0
fstds ${fab0},-16($xfer)
add $ablo,$nmlo0,$nmlo0
fstds ${fnm0},-8($xfer)
addc %r0,$nmhi0,$nmhi0
ldw 0($xfer),$abhi
add $hi1,$nmlo0,$nmlo0
ldw 4($xfer),$ablo
stws,ma $nmlo0,8($tp) ; tp[j-1]
addib,<> 8,$idx,L\$1st_pa11 ; j++++
addc %r0,$nmhi0,$hi1
ldw 8($xfer),$nmhi1
ldw 12($xfer),$nmlo1
xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m
add $hi0,$ablo,$ablo
fstds ${fab1},0($xfer)
addc %r0,$abhi,$hi0
fstds ${fnm1},8($xfer)
add $ablo,$nmlo1,$nmlo1
ldw -16($xfer),$abhi
addc %r0,$nmhi1,$nmhi1
ldw -12($xfer),$ablo
add $hi1,$nmlo1,$nmlo1
ldw -8($xfer),$nmhi0
addc %r0,$nmhi1,$hi1
ldw -4($xfer),$nmlo0
add $hi0,$ablo,$ablo
stw $nmlo1,-4($tp) ; tp[j-1]
addc %r0,$abhi,$hi0
ldw 0($xfer),$abhi
add $ablo,$nmlo0,$nmlo0
ldw 4($xfer),$ablo
addc %r0,$nmhi0,$nmhi0
ldws,mb 8($xfer),$nmhi1
add $hi1,$nmlo0,$nmlo0
ldw 4($xfer),$nmlo1
addc %r0,$nmhi0,$hi1
stws,ma $nmlo0,8($tp) ; tp[j-1]
ldo -1($num),$num ; i--
subi 0,$arrsz,$idx ; j=0
fldws,ma 4($bp),${fbi} ; bp[1]
flddx $idx($ap),${fai} ; ap[0,1]
flddx $idx($np),${fni} ; np[0,1]
fldws 8($xfer),${fti}R ; tp[0]
add $hi0,$ablo,$ablo
addc %r0,$abhi,$hi0
ldo 8($idx),$idx ; j++++
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1]
add $hi1,$nmlo1,$nmlo1
addc %r0,$nmhi1,$nmhi1
add $ablo,$nmlo1,$nmlo1
addc %r0,$nmhi1,$hi1
fstws,mb ${fab0}L,-8($xfer) ; save high part
stw $nmlo1,-4($tp) ; tp[j-1]
fcpy,sgl %fr0,${fti}L ; zero high part
fcpy,sgl %fr0,${fab0}L
add $hi1,$hi0,$hi0
addc %r0,%r0,$hi1
fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double
fcnvxf,dbl,dbl ${fab0},${fab0}
stw $hi0,0($tp)
stw $hi1,4($tp)
fadd,dbl ${fti},${fab0},${fab0} ; add tp[0]
fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int
xmpyu ${fn0},${fab0}R,${fm0}
ldo `$LOCALS+32+4`($fp),$tp
L\$outer_pa11
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m
fstds ${fab0},-16($xfer) ; 33-bit value
fstds ${fnm0},-8($xfer)
flddx $idx($ap),${fai} ; ap[2,3]
flddx $idx($np),${fni} ; np[2,3]
ldw -16($xfer),$abhi ; carry bit actually
ldo 8($idx),$idx ; j++++
ldw -12($xfer),$ablo
ldw -8($xfer),$nmhi0
ldw -4($xfer),$nmlo0
ldw 0($xfer),$hi0 ; high part
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
fstds ${fab1},0($xfer)
addl $abhi,$hi0,$hi0 ; account carry bit
fstds ${fnm1},8($xfer)
add $ablo,$nmlo0,$nmlo0 ; discarded
ldw 0($tp),$ti1 ; tp[1]
addc %r0,$nmhi0,$hi1
fstds ${fab0},-16($xfer)
fstds ${fnm0},-8($xfer)
ldw 4($xfer),$ablo
ldw 0($xfer),$abhi
L\$inner_pa11
xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i]
flddx $idx($ap),${fai} ; ap[j,j+1]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m
flddx $idx($np),${fni} ; np[j,j+1]
add $hi0,$ablo,$ablo
ldw 4($tp),$ti0 ; tp[j]
addc %r0,$abhi,$abhi
ldw 12($xfer),$nmlo1
add $ti1,$ablo,$ablo
ldw 8($xfer),$nmhi1
addc %r0,$abhi,$hi0
fstds ${fab1},0($xfer)
add $ablo,$nmlo1,$nmlo1
fstds ${fnm1},8($xfer)
addc %r0,$nmhi1,$nmhi1
ldw -12($xfer),$ablo
add $hi1,$nmlo1,$nmlo1
ldw -16($xfer),$abhi
addc %r0,$nmhi1,$hi1
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i]
ldw 8($tp),$ti1 ; tp[j]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldw -4($xfer),$nmlo0
add $hi0,$ablo,$ablo
ldw -8($xfer),$nmhi0
addc %r0,$abhi,$abhi
stw $nmlo1,-4($tp) ; tp[j-1]
add $ti0,$ablo,$ablo
fstds ${fab0},-16($xfer)
addc %r0,$abhi,$hi0
fstds ${fnm0},-8($xfer)
add $ablo,$nmlo0,$nmlo0
ldw 4($xfer),$ablo
addc %r0,$nmhi0,$nmhi0
ldw 0($xfer),$abhi
add $hi1,$nmlo0,$nmlo0
stws,ma $nmlo0,8($tp) ; tp[j-1]
addib,<> 8,$idx,L\$inner_pa11 ; j++++
addc %r0,$nmhi0,$hi1
xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i]
ldw 12($xfer),$nmlo1
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m
ldw 8($xfer),$nmhi1
add $hi0,$ablo,$ablo
ldw 4($tp),$ti0 ; tp[j]
addc %r0,$abhi,$abhi
fstds ${fab1},0($xfer)
add $ti1,$ablo,$ablo
fstds ${fnm1},8($xfer)
addc %r0,$abhi,$hi0
ldw -16($xfer),$abhi
add $ablo,$nmlo1,$nmlo1
ldw -12($xfer),$ablo
addc %r0,$nmhi1,$nmhi1
ldw -8($xfer),$nmhi0
add $hi1,$nmlo1,$nmlo1
ldw -4($xfer),$nmlo0
addc %r0,$nmhi1,$hi1
add $hi0,$ablo,$ablo
stw $nmlo1,-4($tp) ; tp[j-1]
addc %r0,$abhi,$abhi
add $ti0,$ablo,$ablo
ldw 8($tp),$ti1 ; tp[j]
addc %r0,$abhi,$hi0
ldw 0($xfer),$abhi
add $ablo,$nmlo0,$nmlo0
ldw 4($xfer),$ablo
addc %r0,$nmhi0,$nmhi0
ldws,mb 8($xfer),$nmhi1
add $hi1,$nmlo0,$nmlo0
ldw 4($xfer),$nmlo1
addc %r0,$nmhi0,$hi1
stws,ma $nmlo0,8($tp) ; tp[j-1]
addib,= -1,$num,L\$outerdone_pa11; i--
subi 0,$arrsz,$idx ; j=0
fldws,ma 4($bp),${fbi} ; bp[i]
flddx $idx($ap),${fai} ; ap[0]
add $hi0,$ablo,$ablo
addc %r0,$abhi,$abhi
flddx $idx($np),${fni} ; np[0]
fldws 8($xfer),${fti}R ; tp[0]
add $ti1,$ablo,$ablo
addc %r0,$abhi,$hi0
ldo 8($idx),$idx ; j++++
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i]
ldw 4($tp),$ti0 ; tp[j]
add $hi1,$nmlo1,$nmlo1
addc %r0,$nmhi1,$nmhi1
fstws,mb ${fab0}L,-8($xfer) ; save high part
add $ablo,$nmlo1,$nmlo1
addc %r0,$nmhi1,$hi1
fcpy,sgl %fr0,${fti}L ; zero high part
fcpy,sgl %fr0,${fab0}L
stw $nmlo1,-4($tp) ; tp[j-1]
fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double
fcnvxf,dbl,dbl ${fab0},${fab0}
add $hi1,$hi0,$hi0
addc %r0,%r0,$hi1
fadd,dbl ${fti},${fab0},${fab0} ; add tp[0]
add $ti0,$hi0,$hi0
addc %r0,$hi1,$hi1
fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int
stw $hi0,0($tp)
stw $hi1,4($tp)
xmpyu ${fn0},${fab0}R,${fm0}
b L\$outer_pa11
ldo `$LOCALS+32+4`($fp),$tp
L\$outerdone_pa11
add $hi0,$ablo,$ablo
addc %r0,$abhi,$abhi
add $ti1,$ablo,$ablo
addc %r0,$abhi,$hi0
ldw 4($tp),$ti0 ; tp[j]
add $hi1,$nmlo1,$nmlo1
addc %r0,$nmhi1,$nmhi1
add $ablo,$nmlo1,$nmlo1
addc %r0,$nmhi1,$hi1
stw $nmlo1,-4($tp) ; tp[j-1]
add $hi1,$hi0,$hi0
addc %r0,%r0,$hi1
add $ti0,$hi0,$hi0
addc %r0,$hi1,$hi1
stw $hi0,0($tp)
stw $hi1,4($tp)
ldo `$LOCALS+32+4`($fp),$tp
sub %r0,%r0,%r0 ; clear borrow
ldw -4($tp),$ti0
addl $tp,$arrsz,$tp
L\$sub_pa11
ldwx $idx($np),$hi0
subb $ti0,$hi0,$hi1
ldwx $idx($tp),$ti0
addib,<> 4,$idx,L\$sub_pa11
stws,ma $hi1,4($rp)
subb $ti0,%r0,$hi1
ldo -4($tp),$tp
and $tp,$hi1,$ap
andcm $rp,$hi1,$bp
or $ap,$bp,$np
sub $rp,$arrsz,$rp ; rewind rp
subi 0,$arrsz,$idx
ldo `$LOCALS+32`($fp),$tp
L\$copy_pa11
ldwx $idx($np),$hi0
stws,ma %r0,4($tp)
addib,<> 4,$idx,L\$copy_pa11
stws,ma $hi0,4($rp)
nop ; alignment
L\$done
___
}
$code.=<<___;
ldi 1,%r28 ; signal "handled"
ldo $FRAME($fp),%sp ; destroy tp[num+1]
$POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue
$POP `-$FRAME+1*$SIZE_T`(%sp),%r4
$POP `-$FRAME+2*$SIZE_T`(%sp),%r5
$POP `-$FRAME+3*$SIZE_T`(%sp),%r6
$POP `-$FRAME+4*$SIZE_T`(%sp),%r7
$POP `-$FRAME+5*$SIZE_T`(%sp),%r8
$POP `-$FRAME+6*$SIZE_T`(%sp),%r9
$POP `-$FRAME+7*$SIZE_T`(%sp),%r10
L\$abort
bv (%r2)
.EXIT
$POPMB -$FRAME(%sp),%r3
.PROCEND
.STRINGZ "Montgomery Multiplication for PA-RISC, CRYPTOGAMS by <appro\@openssl.org>"
___
# Explicitly encode PA-RISC 2.0 instructions used in this module, so
# that it can be compiled with .LEVEL 1.0. It should be noted that I
# wouldn't have to do this, if GNU assembler understood .ALLOW 2.0
# directive...
my $ldd = sub {
my ($mod,$args) = @_;
my $orig = "ldd$mod\t$args";
if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 4
{ my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3;
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 5
{ my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3;
$opcode|=(($1&0xF)<<17)|(($1&0x10)<<12); # encode offset
$opcode|=(1<<5) if ($mod =~ /^,m/);
$opcode|=(1<<13) if ($mod =~ /^,mb/);
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
else { "\t".$orig; }
};
my $std = sub {
my ($mod,$args) = @_;
my $orig = "std$mod\t$args";
if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 6
{ my $opcode=(0x03<<26)|($3<<21)|($1<<16)|(1<<12)|(0xB<<6);
$opcode|=(($2&0xF)<<1)|(($2&0x10)>>4); # encode offset
$opcode|=(1<<5) if ($mod =~ /^,m/);
$opcode|=(1<<13) if ($mod =~ /^,mb/);
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
else { "\t".$orig; }
};
my $extrd = sub {
my ($mod,$args) = @_;
my $orig = "extrd$mod\t$args";
# I only have ",u" completer, it's implicitly encoded...
if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15
{ my $opcode=(0x36<<26)|($1<<21)|($4<<16);
my $len=32-$3;
$opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos
$opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12
{ my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9);
my $len=32-$2;
$opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len
$opcode |= (1<<13) if ($mod =~ /,\**=/);
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
else { "\t".$orig; }
};
my $shrpd = sub {
my ($mod,$args) = @_;
my $orig = "shrpd$mod\t$args";
if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14
{ my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4;
my $cpos=63-$3;
$opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
else { "\t".$orig; }
};
my $sub = sub {
my ($mod,$args) = @_;
my $orig = "sub$mod\t$args";
if ($mod eq ",db" && $args =~ /%r([0-9]+),%r([0-9]+),%r([0-9]+)/) {
my $opcode=(0x02<<26)|($2<<21)|($1<<16)|$3;
$opcode|=(1<<10); # e1
$opcode|=(1<<8); # e2
$opcode|=(1<<5); # d
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig
}
else { "\t".$orig; }
};
sub assemble {
my ($mnemonic,$mod,$args)=@_;
my $opcode = eval("\$$mnemonic");
ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args";
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
# flip word order in 64-bit mode...
s/(xmpyu\s+)($fai|$fni)([LR])/$1.$2.($3 eq "L"?"R":"L")/e if ($BN_SZ==8);
# assemble 2.0 instructions in 32-bit mode...
s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e if ($BN_SZ==4);
s/\bbv\b/bve/gm if ($SIZE_T==8);
print $_,"\n";
}
close STDOUT;
|