1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
/* $OpenBSD: ec_mult.c,v 1.33 2024/11/10 05:59:35 tb Exp $ */
/*
* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* Portions of this software developed by SUN MICROSYSTEMS, INC.,
* and contributed to the OpenSSL project.
*/
#include <string.h>
#include <openssl/err.h>
#include "ec_local.h"
/*
* This file implements the wNAF-based interleaving multi-exponentation method
* (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
* for multiplication with precomputation, we use wNAF splitting
* (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
*/
/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
* This is an array r[] of values that are either zero or odd with an
* absolute value less than 2^w satisfying
* scalar = \sum_j r[j]*2^j
* where at most one of any w+1 consecutive digits is non-zero
* with the exception that the most significant digit may be only
* w-1 zeros away from that next non-zero digit.
*/
static signed char *
compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
{
int window_val;
int ok = 0;
signed char *r = NULL;
int sign = 1;
int bit, next_bit, mask;
size_t len = 0, j;
if (BN_is_zero(scalar)) {
r = malloc(1);
if (!r) {
ECerror(ERR_R_MALLOC_FAILURE);
goto err;
}
r[0] = 0;
*ret_len = 1;
return r;
}
if (w <= 0 || w > 7) {
/* 'signed char' can represent integers with
* absolute values less than 2^7 */
ECerror(ERR_R_INTERNAL_ERROR);
goto err;
}
bit = 1 << w; /* at most 128 */
next_bit = bit << 1; /* at most 256 */
mask = next_bit - 1; /* at most 255 */
if (BN_is_negative(scalar)) {
sign = -1;
}
if (scalar->d == NULL || scalar->top == 0) {
ECerror(ERR_R_INTERNAL_ERROR);
goto err;
}
len = BN_num_bits(scalar);
r = malloc(len + 1); /* modified wNAF may be one digit longer than
* binary representation (*ret_len will be
* set to the actual length, i.e. at most
* BN_num_bits(scalar) + 1) */
if (r == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
goto err;
}
window_val = scalar->d[0] & mask;
j = 0;
while ((window_val != 0) || (j + w + 1 < len)) {
/* if j+w+1 >= len, window_val will not increase */
int digit = 0;
/* 0 <= window_val <= 2^(w+1) */
if (window_val & 1) {
/* 0 < window_val < 2^(w+1) */
if (window_val & bit) {
digit = window_val - next_bit; /* -2^w < digit < 0 */
#if 1 /* modified wNAF */
if (j + w + 1 >= len) {
/*
* special case for generating
* modified wNAFs: no new bits will
* be added into window_val, so using
* a positive digit here will
* decrease the total length of the
* representation
*/
digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
}
#endif
} else {
digit = window_val; /* 0 < digit < 2^w */
}
if (digit <= -bit || digit >= bit || !(digit & 1)) {
ECerror(ERR_R_INTERNAL_ERROR);
goto err;
}
window_val -= digit;
/*
* now window_val is 0 or 2^(w+1) in standard wNAF
* generation; for modified window NAFs, it may also
* be 2^w
*/
if (window_val != 0 && window_val != next_bit && window_val != bit) {
ECerror(ERR_R_INTERNAL_ERROR);
goto err;
}
}
r[j++] = sign * digit;
window_val >>= 1;
window_val += bit * BN_is_bit_set(scalar, j + w);
if (window_val > next_bit) {
ECerror(ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (j > len + 1) {
ECerror(ERR_R_INTERNAL_ERROR);
goto err;
}
len = j;
ok = 1;
err:
if (!ok) {
free(r);
r = NULL;
}
if (ok)
*ret_len = len;
return r;
}
/* TODO: table should be optimised for the wNAF-based implementation,
* sometimes smaller windows will give better performance
* (thus the boundaries should be increased)
*/
#define EC_window_bits_for_scalar_size(b) \
((size_t) \
((b) >= 2000 ? 6 : \
(b) >= 800 ? 5 : \
(b) >= 300 ? 4 : \
(b) >= 70 ? 3 : \
(b) >= 20 ? 2 : \
1))
/* Compute
* \sum scalars[i]*points[i],
* also including
* scalar*generator
* in the addition if scalar != NULL
*/
int
ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
{
const EC_POINT *generator = NULL;
EC_POINT *tmp = NULL;
size_t totalnum;
size_t numblocks = 0; /* for wNAF splitting */
size_t i, j;
int k;
int r_is_inverted = 0;
int r_is_at_infinity = 1;
size_t *wsize = NULL; /* individual window sizes */
signed char **wNAF = NULL; /* individual wNAFs */
size_t *wNAF_len = NULL;
size_t max_len = 0;
size_t num_val;
EC_POINT **val = NULL; /* precomputation */
EC_POINT **v;
EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
* 'pre_comp->points' */
int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
* treated like other scalars, i.e.
* precomputation is not available */
int ret = 0;
if (group->meth != r->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if ((scalar == NULL) && (num == 0)) {
return EC_POINT_set_to_infinity(group, r);
}
for (i = 0; i < num; i++) {
if (group->meth != points[i]->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
}
if (scalar != NULL) {
generator = EC_GROUP_get0_generator(group);
if (generator == NULL) {
ECerror(EC_R_UNDEFINED_GENERATOR);
goto err;
}
numblocks = 1;
num_scalar = 1; /* treat 'scalar' like 'num'-th
* element of 'scalars' */
}
totalnum = num + numblocks;
/* includes space for pivot */
wNAF = reallocarray(NULL, (totalnum + 1), sizeof wNAF[0]);
if (wNAF == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
goto err;
}
wNAF[0] = NULL; /* preliminary pivot */
wsize = reallocarray(NULL, totalnum, sizeof wsize[0]);
wNAF_len = reallocarray(NULL, totalnum, sizeof wNAF_len[0]);
val_sub = reallocarray(NULL, totalnum, sizeof val_sub[0]);
if (wsize == NULL || wNAF_len == NULL || val_sub == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
goto err;
}
/* num_val will be the total number of temporarily precomputed points */
num_val = 0;
for (i = 0; i < num + num_scalar; i++) {
size_t bits;
bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
wsize[i] = EC_window_bits_for_scalar_size(bits);
num_val += (size_t) 1 << (wsize[i] - 1);
wNAF[i + 1] = NULL; /* make sure we always have a pivot */
wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
if (wNAF[i] == NULL)
goto err;
if (wNAF_len[i] > max_len)
max_len = wNAF_len[i];
}
if (numblocks) {
/* we go here iff scalar != NULL */
if (num_scalar != 1) {
ECerror(ERR_R_INTERNAL_ERROR);
goto err;
}
}
/*
* All points we precompute now go into a single array 'val'.
* 'val_sub[i]' is a pointer to the subarray for the i-th point, or
* to a subarray of 'pre_comp->points' if we already have
* precomputation.
*/
val = reallocarray(NULL, (num_val + 1), sizeof val[0]);
if (val == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
goto err;
}
val[num_val] = NULL; /* pivot element */
/* allocate points for precomputation */
v = val;
for (i = 0; i < num + num_scalar; i++) {
val_sub[i] = v;
for (j = 0; j < ((size_t) 1 << (wsize[i] - 1)); j++) {
*v = EC_POINT_new(group);
if (*v == NULL)
goto err;
v++;
}
}
if (!(v == val + num_val)) {
ECerror(ERR_R_INTERNAL_ERROR);
goto err;
}
if (!(tmp = EC_POINT_new(group)))
goto err;
/*
* prepare precomputed values:
* val_sub[i][0] := points[i]
* val_sub[i][1] := 3 * points[i]
* val_sub[i][2] := 5 * points[i]
* ...
*/
for (i = 0; i < num + num_scalar; i++) {
if (i < num) {
if (!EC_POINT_copy(val_sub[i][0], points[i]))
goto err;
} else {
if (!EC_POINT_copy(val_sub[i][0], generator))
goto err;
}
if (wsize[i] > 1) {
if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
goto err;
for (j = 1; j < ((size_t) 1 << (wsize[i] - 1)); j++) {
if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
goto err;
}
}
}
if (!EC_POINTs_make_affine(group, num_val, val, ctx))
goto err;
r_is_at_infinity = 1;
for (k = max_len - 1; k >= 0; k--) {
if (!r_is_at_infinity) {
if (!EC_POINT_dbl(group, r, r, ctx))
goto err;
}
for (i = 0; i < totalnum; i++) {
if (wNAF_len[i] > (size_t) k) {
int digit = wNAF[i][k];
int is_neg;
if (digit) {
is_neg = digit < 0;
if (is_neg)
digit = -digit;
if (is_neg != r_is_inverted) {
if (!r_is_at_infinity) {
if (!EC_POINT_invert(group, r, ctx))
goto err;
}
r_is_inverted = !r_is_inverted;
}
/* digit > 0 */
if (r_is_at_infinity) {
if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
goto err;
r_is_at_infinity = 0;
} else {
if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx))
goto err;
}
}
}
}
}
if (r_is_at_infinity) {
if (!EC_POINT_set_to_infinity(group, r))
goto err;
} else {
if (r_is_inverted)
if (!EC_POINT_invert(group, r, ctx))
goto err;
}
ret = 1;
err:
EC_POINT_free(tmp);
free(wsize);
free(wNAF_len);
if (wNAF != NULL) {
signed char **w;
for (w = wNAF; *w != NULL; w++)
free(*w);
free(wNAF);
}
if (val != NULL) {
for (v = val; *v != NULL; v++)
EC_POINT_free(*v);
free(val);
}
free(val_sub);
return ret;
}
|