summaryrefslogtreecommitdiff
path: root/lib/libcrypto/ec/ecp_oct.c
blob: 9646e44499c1acc164cdd0ee626c9ee2f3d96cd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/* $OpenBSD: ecp_oct.c,v 1.23 2024/10/22 21:06:16 tb Exp $ */
/* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
 * for the OpenSSL project.
 * Includes code written by Bodo Moeller for the OpenSSL project.
*/
/* ====================================================================
 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
 * and contributed to the OpenSSL project.
 */

#include <stddef.h>
#include <stdint.h>

#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/err.h>

#include "ec_local.h"

int
ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group,
    EC_POINT *point, const BIGNUM *x_, int y_bit, BN_CTX *ctx)
{
	BIGNUM *tmp1, *tmp2, *x, *y;
	int ret = 0;

	/* clear error queue */
	ERR_clear_error();

	y_bit = (y_bit != 0);

	BN_CTX_start(ctx);

	if ((tmp1 = BN_CTX_get(ctx)) == NULL)
		goto err;
	if ((tmp2 = BN_CTX_get(ctx)) == NULL)
		goto err;
	if ((x = BN_CTX_get(ctx)) == NULL)
		goto err;
	if ((y = BN_CTX_get(ctx)) == NULL)
		goto err;

	/*
	 * Recover y.  We have a Weierstrass equation y^2 = x^3 + a*x + b, so
	 * y  is one of the square roots of  x^3 + a*x + b.
	 */

	/* tmp1 := x^3 */
	if (!BN_nnmod(x, x_, &group->field, ctx))
		goto err;
	if (group->meth->field_decode == NULL) {
		/* field_{sqr,mul} work on standard representation */
		if (!group->meth->field_sqr(group, tmp2, x_, ctx))
			goto err;
		if (!group->meth->field_mul(group, tmp1, tmp2, x_, ctx))
			goto err;
	} else {
		if (!BN_mod_sqr(tmp2, x_, &group->field, ctx))
			goto err;
		if (!BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx))
			goto err;
	}

	/* tmp1 := tmp1 + a*x */
	if (group->a_is_minus3) {
		if (!BN_mod_lshift1_quick(tmp2, x, &group->field))
			goto err;
		if (!BN_mod_add_quick(tmp2, tmp2, x, &group->field))
			goto err;
		if (!BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field))
			goto err;
	} else {
		if (group->meth->field_decode) {
			if (!group->meth->field_decode(group, tmp2, &group->a, ctx))
				goto err;
			if (!BN_mod_mul(tmp2, tmp2, x, &group->field, ctx))
				goto err;
		} else {
			/* field_mul works on standard representation */
			if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx))
				goto err;
		}

		if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field))
			goto err;
	}

	/* tmp1 := tmp1 + b */
	if (group->meth->field_decode != NULL) {
		if (!group->meth->field_decode(group, tmp2, &group->b, ctx))
			goto err;
		if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field))
			goto err;
	} else {
		if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field))
			goto err;
	}

	if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) {
		unsigned long err = ERR_peek_last_error();

		if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
			ERR_clear_error();
			ECerror(EC_R_INVALID_COMPRESSED_POINT);
		} else
			ECerror(ERR_R_BN_LIB);
		goto err;
	}
	if (y_bit != BN_is_odd(y)) {
		if (BN_is_zero(y)) {
			ECerror(EC_R_INVALID_COMPRESSION_BIT);
			goto err;
		}
		if (!BN_usub(y, &group->field, y))
			goto err;
		if (y_bit != BN_is_odd(y)) {
			ECerror(ERR_R_INTERNAL_ERROR);
			goto err;
		}
	}
	if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
		goto err;

	ret = 1;

 err:
	BN_CTX_end(ctx);

	return ret;
}

/*
 * Only the last three bits of the leading octet of a point should be set.
 * Bits 3 and 2 encode the conversion form for all points except the point
 * at infinity. In compressed and hybrid form bit 1 indicates if the even
 * or the odd solution of the quadratic equation for y should be used.
 *
 * The public point_conversion_t enum lacks the point at infinity, so we
 * ignore it except at the API boundary.
 */

#define EC_OCT_YBIT			0x01

#define EC_OCT_POINT_AT_INFINITY	0x00
#define EC_OCT_POINT_COMPRESSED		0x02
#define EC_OCT_POINT_UNCOMPRESSED	0x04
#define EC_OCT_POINT_HYBRID		0x06
#define EC_OCT_POINT_CONVERSION_MASK	0x06

static int
ec_oct_conversion_form_is_valid(uint8_t form)
{
	return (form & EC_OCT_POINT_CONVERSION_MASK) == form;
}

size_t
ec_GFp_simple_point2oct(const EC_GROUP *group, const EC_POINT *point,
    point_conversion_form_t conversion_form, unsigned char *buf, size_t len,
    BN_CTX *ctx)
{
	uint8_t form;
	BIGNUM *x, *y;
	size_t field_len, i, skip;
	size_t ret = 0;

	if (conversion_form > UINT8_MAX) {
		ECerror(EC_R_INVALID_FORM);
		return 0;
	}

	form = conversion_form;

	/*
	 * Established behavior is to reject a request for the form 0 for the
	 * point at infinity even if it is valid.
	 */
	if (form == 0 || !ec_oct_conversion_form_is_valid(form)) {
		ECerror(EC_R_INVALID_FORM);
		return 0;
	}

	if (EC_POINT_is_at_infinity(group, point) > 0) {
		/* encodes to a single 0 octet */
		if (buf != NULL) {
			if (len < 1) {
				ECerror(EC_R_BUFFER_TOO_SMALL);
				return 0;
			}
			buf[0] = 0;
		}
		return 1;
	}

	/* ret := required output buffer length */
	field_len = BN_num_bytes(&group->field);
	ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len;

	BN_CTX_start(ctx);

	/* if 'buf' is NULL, just return required length */
	if (buf != NULL) {
		if (len < ret) {
			ECerror(EC_R_BUFFER_TOO_SMALL);
			goto err;
		}

		if ((x = BN_CTX_get(ctx)) == NULL)
			goto err;
		if ((y = BN_CTX_get(ctx)) == NULL)
			goto err;

		if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
			goto err;

		if ((form == POINT_CONVERSION_COMPRESSED || form == POINT_CONVERSION_HYBRID) && BN_is_odd(y))
			buf[0] = form + 1;
		else
			buf[0] = form;

		i = 1;

		skip = field_len - BN_num_bytes(x);
		if (skip > field_len) {
			ECerror(ERR_R_INTERNAL_ERROR);
			goto err;
		}
		while (skip > 0) {
			buf[i++] = 0;
			skip--;
		}
		skip = BN_bn2bin(x, buf + i);
		i += skip;
		if (i != 1 + field_len) {
			ECerror(ERR_R_INTERNAL_ERROR);
			goto err;
		}
		if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) {
			skip = field_len - BN_num_bytes(y);
			if (skip > field_len) {
				ECerror(ERR_R_INTERNAL_ERROR);
				goto err;
			}
			while (skip > 0) {
				buf[i++] = 0;
				skip--;
			}
			skip = BN_bn2bin(y, buf + i);
			i += skip;
		}
		if (i != ret) {
			ECerror(ERR_R_INTERNAL_ERROR);
			goto err;
		}
	}

 err:
	BN_CTX_end(ctx);

	return ret;
}

int
ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
    const unsigned char *buf, size_t len, BN_CTX *ctx)
{
	point_conversion_form_t form;
	int y_bit;
	BIGNUM *x, *y;
	size_t field_len, enc_len;
	int ret = 0;

	if (len == 0) {
		ECerror(EC_R_BUFFER_TOO_SMALL);
		return 0;
	}
	form = buf[0];
	y_bit = form & 1;
	form = form & ~1U;
	if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED)
	    && (form != POINT_CONVERSION_UNCOMPRESSED)
	    && (form != POINT_CONVERSION_HYBRID)) {
		ECerror(EC_R_INVALID_ENCODING);
		return 0;
	}
	if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) {
		ECerror(EC_R_INVALID_ENCODING);
		return 0;
	}
	if (form == 0) {
		if (len != 1) {
			ECerror(EC_R_INVALID_ENCODING);
			return 0;
		}
		return EC_POINT_set_to_infinity(group, point);
	}
	field_len = BN_num_bytes(&group->field);
	enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len;

	if (len != enc_len) {
		ECerror(EC_R_INVALID_ENCODING);
		return 0;
	}

	BN_CTX_start(ctx);

	if ((x = BN_CTX_get(ctx)) == NULL)
		goto err;
	if ((y = BN_CTX_get(ctx)) == NULL)
		goto err;

	if (!BN_bin2bn(buf + 1, field_len, x))
		goto err;
	if (BN_ucmp(x, &group->field) >= 0) {
		ECerror(EC_R_INVALID_ENCODING);
		goto err;
	}
	if (form == POINT_CONVERSION_COMPRESSED) {
		/*
		 * EC_POINT_set_compressed_coordinates checks that the point
		 * is on the curve as required by X9.62.
		 */
		if (!EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx))
			goto err;
	} else {
		if (!BN_bin2bn(buf + 1 + field_len, field_len, y))
			goto err;
		if (BN_ucmp(y, &group->field) >= 0) {
			ECerror(EC_R_INVALID_ENCODING);
			goto err;
		}
		if (form == POINT_CONVERSION_HYBRID) {
			if (y_bit != BN_is_odd(y)) {
				ECerror(EC_R_INVALID_ENCODING);
				goto err;
			}
		}
		/*
		 * EC_POINT_set_affine_coordinates checks that the point is
		 * on the curve as required by X9.62.
		 */
		if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
			goto err;
	}

	ret = 1;

 err:
	BN_CTX_end(ctx);

	return ret;
}