summaryrefslogtreecommitdiff
path: root/lib/libcrypto/engine/eng_rsax.c
blob: ee184390702e26a769856030e768866f8e3828a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
/* $OpenBSD: eng_rsax.c,v 1.7 2014/06/22 12:05:09 jsing Exp $ */
/* Copyright (c) 2010-2010 Intel Corp.
 *   Author: Vinodh.Gopal@intel.com
 *           Jim Guilford
 *           Erdinc.Ozturk@intel.com
 *           Maxim.Perminov@intel.com
 *           Ying.Huang@intel.com
 *
 * More information about algorithm used can be found at:
 *   http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
 */
/* ====================================================================
 * Copyright (c) 1999-2001 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    licensing@OpenSSL.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 */

#include <openssl/opensslconf.h>

#include <stdio.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/buffer.h>
#include <openssl/engine.h>
#ifndef OPENSSL_NO_RSA
#include <openssl/rsa.h>
#endif
#include <openssl/bn.h>
#include <openssl/err.h>

/* RSAX is available **ONLY* on x86_64 CPUs */
#undef COMPILE_RSAX

#if (defined(__x86_64) || defined(__x86_64__) || \
     defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM)
#define COMPILE_RSAX
static ENGINE *ENGINE_rsax (void);
#endif

void ENGINE_load_rsax (void)
{
/* On non-x86 CPUs it just returns. */
#ifdef COMPILE_RSAX
	ENGINE *toadd = ENGINE_rsax();
	if (!toadd)
		return;
	ENGINE_add(toadd);
	ENGINE_free(toadd);
	ERR_clear_error();
#endif
}

#ifdef COMPILE_RSAX
#define E_RSAX_LIB_NAME "rsax engine"

static int e_rsax_destroy(ENGINE *e);
static int e_rsax_init(ENGINE *e);
static int e_rsax_finish(ENGINE *e);
static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));

#ifndef OPENSSL_NO_RSA
/* RSA stuff */
static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa,
    BN_CTX *ctx);
static int e_rsax_rsa_finish(RSA *r);
#endif

static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = {
	{0, NULL, NULL, 0}
};

#ifndef OPENSSL_NO_RSA
/* Our internal RSA_METHOD that we provide pointers to */
static RSA_METHOD e_rsax_rsa = {
	.name = "Intel RSA-X method",
	.rsa_mod_exp = e_rsax_rsa_mod_exp,
	.finish = e_rsax_rsa_finish,
	.flags = RSA_FLAG_CACHE_PUBLIC|RSA_FLAG_CACHE_PRIVATE,
};
#endif

/* Constants used when creating the ENGINE */
static const char *engine_e_rsax_id = "rsax";
static const char *engine_e_rsax_name = "RSAX engine support";

/* This internal function is used by ENGINE_rsax() */
static int
bind_helper(ENGINE *e)
{
#ifndef OPENSSL_NO_RSA
	const RSA_METHOD *meth1;
#endif
	if (!ENGINE_set_id(e, engine_e_rsax_id) ||
	    !ENGINE_set_name(e, engine_e_rsax_name) ||
#ifndef OPENSSL_NO_RSA
	    !ENGINE_set_RSA(e, &e_rsax_rsa) ||
#endif
	    !ENGINE_set_destroy_function(e, e_rsax_destroy) ||
	    !ENGINE_set_init_function(e, e_rsax_init) ||
	    !ENGINE_set_finish_function(e, e_rsax_finish) ||
	    !ENGINE_set_ctrl_function(e, e_rsax_ctrl) ||
	    !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns))
		return 0;

#ifndef OPENSSL_NO_RSA
	meth1 = RSA_PKCS1_SSLeay();
	e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
	e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
	e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
	e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
	e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp;
#endif
	return 1;
}

static ENGINE *
ENGINE_rsax(void)
{
	ENGINE *ret = ENGINE_new();

	if (!ret)
		return NULL;
	if (!bind_helper(ret)) {
		ENGINE_free(ret);
		return NULL;
	}
	return ret;
}

#ifndef OPENSSL_NO_RSA
/* Used to attach our own key-data to an RSA structure */
static int rsax_ex_data_idx = -1;
#endif

static int
e_rsax_destroy(ENGINE *e)
{
	return 1;
}

/* (de)initialisation functions. */
static int
e_rsax_init(ENGINE *e)
{
#ifndef OPENSSL_NO_RSA
	if (rsax_ex_data_idx == -1)
		rsax_ex_data_idx = RSA_get_ex_new_index(0, NULL, NULL,
		    NULL, NULL);
#endif
	if (rsax_ex_data_idx  == -1)
		return 0;
	return 1;
}

static int
e_rsax_finish(ENGINE *e)
{
	return 1;
}

static int
e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
{
	int to_return = 1;

	switch (cmd) {
		/* The command isn't understood by this engine */
	default:
		to_return = 0;
		break;
	}

	return to_return;
}


#ifndef OPENSSL_NO_RSA

typedef unsigned long long UINT64;
typedef unsigned short UINT16;

/* Table t is interleaved in the following manner:
 * The order in memory is t[0][0], t[0][1], ..., t[0][7], t[1][0], ...
 * A particular 512-bit value is stored in t[][index] rather than the more
 * normal t[index][]; i.e. the qwords of a particular entry in t are not
 * adjacent in memory
 */

/* Init BIGNUM b from the interleaved UINT64 array */
static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array);

/* Extract array elements from BIGNUM b
 * To set the whole array from b, call with n=8
 */
static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n,
    UINT64 *array);

struct mod_ctx_512 {
	UINT64 t[8][8];
	UINT64 m[8];
	UINT64 m1[8]; /* 2^278 % m */
	UINT64 m2[8]; /* 2^640 % m */
	UINT64 k1[2]; /* (- 1/m) % 2^128 */
};

static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data);

void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
UINT64 *g,      /* 512 bits, 8 qwords */
UINT64 *exp,    /* 512 bits, 8 qwords */
struct mod_ctx_512 *data);

typedef struct st_e_rsax_mod_ctx {
	UINT64 type;
	union {
		struct mod_ctx_512 b512;
	} ctx;
} E_RSAX_MOD_CTX;

static E_RSAX_MOD_CTX *
e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM* m)
{
	E_RSAX_MOD_CTX *hptr;

	if (idx < 0 || idx > 2)
		return NULL;

	hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
	if (!hptr) {
		hptr = reallocarray(NULL, 3, sizeof(E_RSAX_MOD_CTX));
		if (!hptr)
			return NULL;
		hptr[2].type = hptr[1].type = hptr[0].type = 0;
		RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr);
	}

	if (hptr[idx].type == (UINT64)BN_num_bits(m))
		return hptr + idx;

	if (BN_num_bits(m) == 512) {
		UINT64 _m[8];
		bn_extract_to_array_512(m, 8, _m);
		memset( &hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512));
		mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512);
	}

	hptr[idx].type = BN_num_bits(m);
	return hptr + idx;
}

static int
e_rsax_rsa_finish(RSA *rsa)
{
	E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);

	if (hptr) {
		free(hptr);
		RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL);
	}
	if (rsa->_method_mod_n)
		BN_MONT_CTX_free(rsa->_method_mod_n);
	if (rsa->_method_mod_p)
		BN_MONT_CTX_free(rsa->_method_mod_p);
	if (rsa->_method_mod_q)
		BN_MONT_CTX_free(rsa->_method_mod_q);
	return 1;
}

static int
e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e, const BIGNUM *m,
    BN_CTX *ctx, BN_MONT_CTX *in_mont, E_RSAX_MOD_CTX* rsax_mod_ctx)
{
	if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) {
		if (BN_num_bits(m) == 512) {
			UINT64 _r[8];
			UINT64 _g[8];
			UINT64 _e[8];

			/* Init the arrays from the BIGNUMs */
			bn_extract_to_array_512(g, 8, _g);
			bn_extract_to_array_512(e, 8, _e);

			mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512);
			/* Return the result in the BIGNUM */
			interleaved_array_to_bn_512(r, _r);
			return 1;
		}
	}

	return BN_mod_exp_mont(r, g, e, m, ctx, in_mont);
}

/* Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular
 * exponentiation routine precalculations and a structure to hold the
 * necessary values.  These files are meant to live in crypto/rsa/ in
 * the target openssl.
 */

/*
 * Local method: extracts a piece from a BIGNUM, to fit it into
 * an array. Call with n=8 to extract an entire 512-bit BIGNUM
 */
static int
bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array)
{
	int i;
	UINT64 tmp;
	unsigned char bn_buff[64];

	memset(bn_buff, 0, 64);
	if (BN_num_bytes(b) > 64) {
		printf ("Can't support this byte size\n");
		return 0;
	}
	if (BN_num_bytes(b) != 0) {
		if (!BN_bn2bin(b, bn_buff + (64 - BN_num_bytes(b)))) {
			printf ("Error's in bn2bin\n");
			/* We have to error, here */
			return 0;
		}
	}
	while (n-- > 0) {
		array[n] = 0;
		for (i = 7; i >= 0; i--) {
			tmp = bn_buff[63 - (n*8 + i)];
			array[n] |= tmp << (8*i);
		}
	}
	return 1;
}

/* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */
static int
interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array)
{
	unsigned char tmp[64];
	int n = 8;
	int i;

	while (n-- > 0) {
		for (i = 7; i >= 0; i--) {
			tmp[63 - (n * 8 + i)] =
			    (unsigned char)(array[n] >> (8 * i));
		}
	}
	BN_bin2bn(tmp, 64, b);
	return 0;
}

/* The main 512bit precompute call */
static int
mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data)
{
	BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2;

	/* We need a BN_CTX for the modulo functions */
	BN_CTX* ctx;
	/* Some tmps */
	UINT64 _t[8];
	int i, j, ret = 0;

	/* Init _m with m */
	BN_init(&_m);
	interleaved_array_to_bn_512(&_m, m);
	memset(_t, 0, 64);

	/* Inits */
	BN_init(&two_768);
	BN_init(&two_640);
	BN_init(&two_128);
	BN_init(&two_512);
	BN_init(&tmp);
	BN_init(&tmp2);

	/* Create our context */
	if ((ctx = BN_CTX_new()) == NULL) {
		goto err;
	}
	BN_CTX_start(ctx);

	/*
	 * For production, if you care, these only need to be set once,
	 * and may be made constants.
	 */
	BN_lshift(&two_768, BN_value_one(), 768);
	BN_lshift(&two_640, BN_value_one(), 640);
	BN_lshift(&two_128, BN_value_one(), 128);
	BN_lshift(&two_512, BN_value_one(), 512);

	if (0 == (m[7] & 0x8000000000000000)) {
		exit(1);
	}
	if (0 == (m[0] & 0x1)) {
		/* Odd modulus required for Mont */
		exit(1);
	}

	/* Precompute m1 */
	BN_mod(&tmp, &two_768, &_m, ctx);
	if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) {
		goto err;
	}

	/* Precompute m2 */
	BN_mod(&tmp, &two_640, &_m, ctx);
	if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) {
		goto err;
	}

	/*
	 * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should
	 * be non-negative.
	 */
	BN_mod_inverse(&tmp, &_m, &two_128, ctx);
	if (!BN_is_zero(&tmp)) {
		BN_sub(&tmp, &two_128, &tmp);
	}
	if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) {
		goto err;
	}

	/* Precompute t */
	for (i = 0; i < 8; i++) {
		BN_zero(&tmp);
		if (i & 1) {
			BN_add(&tmp, &two_512, &tmp);
		}
		if (i & 2) {
			BN_add(&tmp, &two_512, &tmp);
		}
		if (i & 4) {
			BN_add(&tmp, &two_640, &tmp);
		}

		BN_nnmod(&tmp2, &tmp, &_m, ctx);
		if (!bn_extract_to_array_512(&tmp2, 8, _t)) {
			goto err;
		}
		for (j = 0; j < 8; j++)
			data->t[j][i] = _t[j];
	}

	/* Precompute m */
	for (i = 0; i < 8; i++) {
		data->m[i] = m[i];
	}

	ret = 1;

err:
	/* Cleanup */
	if (ctx != NULL) {
		BN_CTX_end(ctx);
		BN_CTX_free(ctx);
	}
	BN_free(&two_768);
	BN_free(&two_640);
	BN_free(&two_128);
	BN_free(&two_512);
	BN_free(&tmp);
	BN_free(&tmp2);
	BN_free(&_m);

	return ret;
}

static int
e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
	BIGNUM *r1, *m1, *vrfy;
	BIGNUM local_dmp1, local_dmq1, local_c, local_r1;
	BIGNUM *dmp1, *dmq1, *c, *pr1;
	int ret = 0;

	BN_CTX_start(ctx);
	r1 = BN_CTX_get(ctx);
	m1 = BN_CTX_get(ctx);
	vrfy = BN_CTX_get(ctx);

	{
		BIGNUM local_p, local_q;
		BIGNUM *p = NULL, *q = NULL;
		int error = 0;

		/* Make sure BN_mod_inverse in Montgomery
		 * intialization uses the BN_FLG_CONSTTIME flag
		 * (unless RSA_FLAG_NO_CONSTTIME is set)
		 */
		if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
			BN_init(&local_p);
			p = &local_p;
			BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);

			BN_init(&local_q);
			q = &local_q;
			BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
		} else {
			p = rsa->p;
			q = rsa->q;
		}

		if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
			if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p,
			    CRYPTO_LOCK_RSA, p, ctx))
				error = 1;
			if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q,
			    CRYPTO_LOCK_RSA, q, ctx))
				error = 1;
		}

		/* clean up */
		if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
			BN_free(&local_p);
			BN_free(&local_q);
		}
		if (error )
			goto err;
	}

	if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
		if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n,
		    CRYPTO_LOCK_RSA, rsa->n, ctx))
			goto err;

	/* compute I mod q */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
		c = &local_c;
		BN_with_flags(c, I, BN_FLG_CONSTTIME);
		if (!BN_mod(r1, c,rsa->q, ctx))
			goto err;
	} else {
		if (!BN_mod(r1, I,rsa->q, ctx))
			goto err;
	}

	/* compute r1^dmq1 mod q */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
		dmq1 = &local_dmq1;
		BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
	} else
		dmq1 = rsa->dmq1;

	if (!e_rsax_bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, rsa->_method_mod_q,
	    e_rsax_get_ctx(rsa, 0, rsa->q)))
		goto err;

	/* compute I mod p */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
		c = &local_c;
		BN_with_flags(c, I, BN_FLG_CONSTTIME);
		if (!BN_mod(r1, c,rsa->p, ctx))
			goto err;
	} else {
		if (!BN_mod(r1, I,rsa->p, ctx))
			goto err;
	}

	/* compute r1^dmp1 mod p */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
		dmp1 = &local_dmp1;
		BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
	} else
		dmp1 = rsa->dmp1;

	if (!e_rsax_bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, rsa->_method_mod_p,
	    e_rsax_get_ctx(rsa, 1, rsa->p)))
		goto err;

	if (!BN_sub(r0, r0, m1))
		goto err;
	/* This will help stop the size of r0 increasing, which does
	 * affect the multiply if it optimised for a power of 2 size */
	if (BN_is_negative(r0))
		if (!BN_add(r0, r0, rsa->p))
			goto err;

	if (!BN_mul(r1, r0, rsa->iqmp, ctx))
		goto err;

	/* Turn BN_FLG_CONSTTIME flag on before division operation */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
		pr1 = &local_r1;
		BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
	} else
		pr1 = r1;
	if (!BN_mod(r0, pr1, rsa->p, ctx))
		goto err;

	/* If p < q it is occasionally possible for the correction of
         * adding 'p' if r0 is negative above to leave the result still
	 * negative. This can break the private key operations: the following
	 * second correction should *always* correct this rare occurrence.
	 * This will *never* happen with OpenSSL generated keys because
         * they ensure p > q [steve]
         */
	if (BN_is_negative(r0))
		if (!BN_add(r0, r0, rsa->p))
			goto err;
	if (!BN_mul(r1, r0, rsa->q, ctx))
		goto err;
	if (!BN_add(r0, r1, m1))
		goto err;

	if (rsa->e && rsa->n) {
		if (!e_rsax_bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx,
		    rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n)))
			goto err;

		/* If 'I' was greater than (or equal to) rsa->n, the operation
		 * will be equivalent to using 'I mod n'. However, the result of
		 * the verify will *always* be less than 'n' so we don't check
		 * for absolute equality, just congruency. */
		if (!BN_sub(vrfy, vrfy, I))
			goto err;
		if (!BN_mod(vrfy, vrfy, rsa->n, ctx))
			goto err;
		if (BN_is_negative(vrfy))
			if (!BN_add(vrfy, vrfy, rsa->n))
				goto err;
		if (!BN_is_zero(vrfy)) {
			/* 'I' and 'vrfy' aren't congruent mod n. Don't leak
			 * miscalculated CRT output, just do a raw (slower)
			 * mod_exp and return that instead. */

			BIGNUM local_d;
			BIGNUM *d = NULL;

			if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
				d = &local_d;
				BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
			} else
				d = rsa->d;
			if (!e_rsax_bn_mod_exp(r0, I,d, rsa->n, ctx,
			    rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n)))
				goto err;
		}
	}
	ret = 1;

err:
	BN_CTX_end(ctx);

	return ret;
}
#endif /* !OPENSSL_NO_RSA */
#endif /* !COMPILE_RSAX */