summaryrefslogtreecommitdiff
path: root/lib/libcrypto/modes/asm/ghash-sparcv9.pl
blob: 70e7b044a3ec1f6afb3234108b210514ec1a87ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env perl

# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# March 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+128 bytes shared table]. Performance
# results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU
# and are expressed in cycles per processed byte, less is better:
#
#		gcc 3.3.x	cc 5.2		this assembler
#
# 32-bit build	81.4		43.3		12.6	(+546%/+244%)
# 64-bit build	20.2		21.2		12.6	(+60%/+68%)
#
# Here is data collected on UltraSPARC T1 system running Linux:
#
#		gcc 4.4.1			this assembler
#
# 32-bit build	566				50	(+1000%)
# 64-bit build	56				50	(+12%)
#
# I don't quite understand why difference between 32-bit and 64-bit
# compiler-generated code is so big. Compilers *were* instructed to
# generate code for UltraSPARC and should have used 64-bit registers
# for Z vector (see C code) even in 32-bit build... Oh well, it only
# means more impressive improvement coefficients for this assembler
# module;-) Loops are aggressively modulo-scheduled in respect to
# references to input data and Z.hi updates to achieve 12 cycles
# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.

$bits=32;
for (@ARGV)     { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
if ($bits==64)  { $bias=2047; $frame=192; }
else            { $bias=0;    $frame=112; }

$output=shift;
open STDOUT,">$output";

$Zhi="%o0";	# 64-bit values
$Zlo="%o1";
$Thi="%o2";
$Tlo="%o3";
$rem="%o4";
$tmp="%o5";

$nhi="%l0";	# small values and pointers
$nlo="%l1";
$xi0="%l2";
$xi1="%l3";
$rem_4bit="%l4";
$remi="%l5";
$Htblo="%l6";
$cnt="%l7";

$Xi="%i0";	# input argument block
$Htbl="%i1";
$inp="%i2";
$len="%i3";

$code.=<<___;
.section	".text",#alloc,#execinstr

.align	64
rem_4bit:
	.long	`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0
	.long	`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0
	.long	`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0
	.long	`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0
.type	rem_4bit,#object
.size	rem_4bit,(.-rem_4bit)

.globl	gcm_ghash_4bit
.align	32
gcm_ghash_4bit:
	save	%sp,-$frame,%sp
	ldub	[$inp+15],$nlo
	ldub	[$Xi+15],$xi0
	ldub	[$Xi+14],$xi1
	add	$len,$inp,$len
	add	$Htbl,8,$Htblo

1:	call	.+8
	add	%o7,rem_4bit-1b,$rem_4bit

.Louter:
	xor	$xi0,$nlo,$nlo
	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	sll	$nlo,4,$nlo
	ldx	[$Htblo+$nlo],$Zlo
	ldx	[$Htbl+$nlo],$Zhi

	ldub	[$inp+14],$nlo

	ldx	[$Htblo+$nhi],$Tlo
	and	$Zlo,0xf,$remi
	ldx	[$Htbl+$nhi],$Thi
	sll	$remi,3,$remi
	ldx	[$rem_4bit+$remi],$rem
	srlx	$Zlo,4,$Zlo
	mov	13,$cnt
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo

	xor	$xi1,$nlo,$nlo
	and	$Zlo,0xf,$remi
	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	ba	.Lghash_inner
	sll	$nlo,4,$nlo
.align	32
.Lghash_inner:
	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	ldub	[$inp+$cnt],$nlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	ldub	[$Xi+$cnt],$xi1
	xor	$Thi,$Zhi,$Zhi
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$xi1,$nlo,$nlo
	srlx	$Zhi,4,$Zhi
	and	$nlo,0xf0,$nhi
	addcc	$cnt,-1,$cnt
	xor	$Zlo,$tmp,$Zlo
	and	$nlo,0x0f,$nlo
	xor	$Tlo,$Zlo,$Zlo
	sll	$nlo,4,$nlo
	blu	.Lghash_inner
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi

	add	$inp,16,$inp
	cmp	$inp,$len
	be,pn	`$bits==64?"%xcc":"%icc"`,.Ldone
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	ldub	[$inp+15],$nlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	stx	$Zlo,[$Xi+8]
	xor	$rem,$Zhi,$Zhi
	stx	$Zhi,[$Xi]
	srl	$Zlo,8,$xi1
	and	$Zlo,0xff,$xi0
	ba	.Louter
	and	$xi1,0xff,$xi1
.align	32
.Ldone:
	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	stx	$Zlo,[$Xi+8]
	xor	$rem,$Zhi,$Zhi
	stx	$Zhi,[$Xi]

	ret
	restore
.type	gcm_ghash_4bit,#function
.size	gcm_ghash_4bit,(.-gcm_ghash_4bit)
___

undef $inp;
undef $len;

$code.=<<___;
.globl	gcm_gmult_4bit
.align	32
gcm_gmult_4bit:
	save	%sp,-$frame,%sp
	ldub	[$Xi+15],$nlo
	add	$Htbl,8,$Htblo

1:	call	.+8
	add	%o7,rem_4bit-1b,$rem_4bit

	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	sll	$nlo,4,$nlo
	ldx	[$Htblo+$nlo],$Zlo
	ldx	[$Htbl+$nlo],$Zhi

	ldub	[$Xi+14],$nlo

	ldx	[$Htblo+$nhi],$Tlo
	and	$Zlo,0xf,$remi
	ldx	[$Htbl+$nhi],$Thi
	sll	$remi,3,$remi
	ldx	[$rem_4bit+$remi],$rem
	srlx	$Zlo,4,$Zlo
	mov	13,$cnt
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo

	and	$Zlo,0xf,$remi
	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	ba	.Lgmult_inner
	sll	$nlo,4,$nlo
.align	32
.Lgmult_inner:
	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	ldub	[$Xi+$cnt],$nlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	srlx	$Zhi,4,$Zhi
	and	$nlo,0xf0,$nhi
	addcc	$cnt,-1,$cnt
	xor	$Zlo,$tmp,$Zlo
	and	$nlo,0x0f,$nlo
	xor	$Tlo,$Zlo,$Zlo
	sll	$nlo,4,$nlo
	blu	.Lgmult_inner
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	stx	$Zlo,[$Xi+8]
	xor	$rem,$Zhi,$Zhi
	stx	$Zhi,[$Xi]

	ret
	restore
.type	gcm_gmult_4bit,#function
.size	gcm_gmult_4bit,(.-gcm_gmult_4bit)
.asciz	"GHASH for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
.align	4
___

$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT;