1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
|
/* $OpenBSD: wp_block.c,v 1.15 2022/11/26 16:08:54 tb Exp $ */
/**
* The Whirlpool hashing function.
*
* <P>
* <b>References</b>
*
* <P>
* The Whirlpool algorithm was developed by
* <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and
* <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
*
* See
* P.S.L.M. Barreto, V. Rijmen,
* ``The Whirlpool hashing function,''
* NESSIE submission, 2000 (tweaked version, 2001),
* <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
*
* Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and
* Vincent Rijmen. Lookup "reference implementations" on
* <http://planeta.terra.com.br/informatica/paulobarreto/>
*
* =============================================================================
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <endian.h>
#include <string.h>
#include <openssl/crypto.h>
#include "wp_local.h"
typedef unsigned char u8;
#if defined(_LP64)
typedef unsigned long u64;
#else
typedef unsigned long long u64;
#endif
#define ROUNDS 10
#undef SMALL_REGISTER_BANK
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
# define SMALL_REGISTER_BANK
# if defined(WHIRLPOOL_ASM)
# ifndef OPENSSL_SMALL_FOOTPRINT
# define OPENSSL_SMALL_FOOTPRINT /* it appears that for elder non-MMX
CPUs this is actually faster! */
# endif
#include "x86_arch.h"
# define GO_FOR_MMX(ctx,inp,num) \
do { \
void whirlpool_block_mmx(void *,const void *,size_t); \
if ((OPENSSL_cpu_caps() & CPUCAP_MASK_MMX) == 0) \
break; \
whirlpool_block_mmx(ctx->H.c,inp,num); \
return; \
} while (0)
# endif
#elif defined(__arm__)
# define SMALL_REGISTER_BANK
#endif
#undef ROTATE
#if defined(__GNUC__) && __GNUC__>=2
# if defined(__x86_64) || defined(__x86_64__)
# define ROTATE(a,n) ({ u64 ret; asm ("rolq %1,%0" \
: "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; })
# endif
#endif
#if defined(OPENSSL_SMALL_FOOTPRINT)
# if !defined(ROTATE)
# if BYTE_ORDER == LITTLE_ENDIAN /* little-endians have to rotate left */
# define ROTATE(i,n) ((i)<<(n) ^ (i)>>(64-n))
# else /* big-endians have to rotate right */
# define ROTATE(i,n) ((i)>>(n) ^ (i)<<(64-n))
# endif
# endif
# if defined(ROTATE) && !defined(__STRICT_ALIGNMENT)
# define __STRICT_ALIGNMENT /* ensure smallest table size */
# endif
#endif
/*
* Table size depends on __STRICT_ALIGNMENT and whether or not endian-
* specific ROTATE macro is defined. If __STRICT_ALIGNMENT is not
* defined, which is normally the case on x86[_64] CPUs, the table is
* 4KB large unconditionally. Otherwise if ROTATE is defined, the
* table is 2KB large, and otherwise - 16KB. 2KB table requires a
* whole bunch of additional rotations, but I'm willing to "trade,"
* because 16KB table certainly trashes L1 cache. I wish all CPUs
* could handle unaligned load as 4KB table doesn't trash the cache,
* nor does it require additional rotations.
*/
/*
* Note that every Cn macro expands as two loads: one byte load and
* one quadword load. One can argue that that many single-byte loads
* is too excessive, as one could load a quadword and "milk" it for
* eight 8-bit values instead. Well, yes, but in order to do so *and*
* avoid excessive loads you have to accommodate a handful of 64-bit
* values in the register bank and issue a bunch of shifts and mask.
* It's a tradeoff: loads vs. shift and mask in big register bank[!].
* On most CPUs eight single-byte loads are faster and I let other
* ones to depend on smart compiler to fold byte loads if beneficial.
* Hand-coded assembler would be another alternative:-)
*/
#ifdef __STRICT_ALIGNMENT
# if defined(ROTATE)
# define N 1
# define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7
# define C0(K,i) (Cx.q[K.c[(i)*8+0]])
# define C1(K,i) ROTATE(Cx.q[K.c[(i)*8+1]],8)
# define C2(K,i) ROTATE(Cx.q[K.c[(i)*8+2]],16)
# define C3(K,i) ROTATE(Cx.q[K.c[(i)*8+3]],24)
# define C4(K,i) ROTATE(Cx.q[K.c[(i)*8+4]],32)
# define C5(K,i) ROTATE(Cx.q[K.c[(i)*8+5]],40)
# define C6(K,i) ROTATE(Cx.q[K.c[(i)*8+6]],48)
# define C7(K,i) ROTATE(Cx.q[K.c[(i)*8+7]],56)
# else
# define N 8
# define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \
c7,c0,c1,c2,c3,c4,c5,c6, \
c6,c7,c0,c1,c2,c3,c4,c5, \
c5,c6,c7,c0,c1,c2,c3,c4, \
c4,c5,c6,c7,c0,c1,c2,c3, \
c3,c4,c5,c6,c7,c0,c1,c2, \
c2,c3,c4,c5,c6,c7,c0,c1, \
c1,c2,c3,c4,c5,c6,c7,c0
# define C0(K,i) (Cx.q[0+8*K.c[(i)*8+0]])
# define C1(K,i) (Cx.q[1+8*K.c[(i)*8+1]])
# define C2(K,i) (Cx.q[2+8*K.c[(i)*8+2]])
# define C3(K,i) (Cx.q[3+8*K.c[(i)*8+3]])
# define C4(K,i) (Cx.q[4+8*K.c[(i)*8+4]])
# define C5(K,i) (Cx.q[5+8*K.c[(i)*8+5]])
# define C6(K,i) (Cx.q[6+8*K.c[(i)*8+6]])
# define C7(K,i) (Cx.q[7+8*K.c[(i)*8+7]])
# endif
#else
# define N 2
# define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \
c0,c1,c2,c3,c4,c5,c6,c7
# define C0(K,i) (((u64*)(Cx.c+0))[2*K.c[(i)*8+0]])
# define C1(K,i) (((u64*)(Cx.c+7))[2*K.c[(i)*8+1]])
# define C2(K,i) (((u64*)(Cx.c+6))[2*K.c[(i)*8+2]])
# define C3(K,i) (((u64*)(Cx.c+5))[2*K.c[(i)*8+3]])
# define C4(K,i) (((u64*)(Cx.c+4))[2*K.c[(i)*8+4]])
# define C5(K,i) (((u64*)(Cx.c+3))[2*K.c[(i)*8+5]])
# define C6(K,i) (((u64*)(Cx.c+2))[2*K.c[(i)*8+6]])
# define C7(K,i) (((u64*)(Cx.c+1))[2*K.c[(i)*8+7]])
#endif
static const
union {
u8 c[(256*N+ROUNDS)*sizeof(u64)];
u64 q[(256*N+ROUNDS)];
} Cx = { {
/* Note endian-neutral representation:-) */
LL(0x18,0x18,0x60,0x18,0xc0,0x78,0x30,0xd8),
LL(0x23,0x23,0x8c,0x23,0x05,0xaf,0x46,0x26),
LL(0xc6,0xc6,0x3f,0xc6,0x7e,0xf9,0x91,0xb8),
LL(0xe8,0xe8,0x87,0xe8,0x13,0x6f,0xcd,0xfb),
LL(0x87,0x87,0x26,0x87,0x4c,0xa1,0x13,0xcb),
LL(0xb8,0xb8,0xda,0xb8,0xa9,0x62,0x6d,0x11),
LL(0x01,0x01,0x04,0x01,0x08,0x05,0x02,0x09),
LL(0x4f,0x4f,0x21,0x4f,0x42,0x6e,0x9e,0x0d),
LL(0x36,0x36,0xd8,0x36,0xad,0xee,0x6c,0x9b),
LL(0xa6,0xa6,0xa2,0xa6,0x59,0x04,0x51,0xff),
LL(0xd2,0xd2,0x6f,0xd2,0xde,0xbd,0xb9,0x0c),
LL(0xf5,0xf5,0xf3,0xf5,0xfb,0x06,0xf7,0x0e),
LL(0x79,0x79,0xf9,0x79,0xef,0x80,0xf2,0x96),
LL(0x6f,0x6f,0xa1,0x6f,0x5f,0xce,0xde,0x30),
LL(0x91,0x91,0x7e,0x91,0xfc,0xef,0x3f,0x6d),
LL(0x52,0x52,0x55,0x52,0xaa,0x07,0xa4,0xf8),
LL(0x60,0x60,0x9d,0x60,0x27,0xfd,0xc0,0x47),
LL(0xbc,0xbc,0xca,0xbc,0x89,0x76,0x65,0x35),
LL(0x9b,0x9b,0x56,0x9b,0xac,0xcd,0x2b,0x37),
LL(0x8e,0x8e,0x02,0x8e,0x04,0x8c,0x01,0x8a),
LL(0xa3,0xa3,0xb6,0xa3,0x71,0x15,0x5b,0xd2),
LL(0x0c,0x0c,0x30,0x0c,0x60,0x3c,0x18,0x6c),
LL(0x7b,0x7b,0xf1,0x7b,0xff,0x8a,0xf6,0x84),
LL(0x35,0x35,0xd4,0x35,0xb5,0xe1,0x6a,0x80),
LL(0x1d,0x1d,0x74,0x1d,0xe8,0x69,0x3a,0xf5),
LL(0xe0,0xe0,0xa7,0xe0,0x53,0x47,0xdd,0xb3),
LL(0xd7,0xd7,0x7b,0xd7,0xf6,0xac,0xb3,0x21),
LL(0xc2,0xc2,0x2f,0xc2,0x5e,0xed,0x99,0x9c),
LL(0x2e,0x2e,0xb8,0x2e,0x6d,0x96,0x5c,0x43),
LL(0x4b,0x4b,0x31,0x4b,0x62,0x7a,0x96,0x29),
LL(0xfe,0xfe,0xdf,0xfe,0xa3,0x21,0xe1,0x5d),
LL(0x57,0x57,0x41,0x57,0x82,0x16,0xae,0xd5),
LL(0x15,0x15,0x54,0x15,0xa8,0x41,0x2a,0xbd),
LL(0x77,0x77,0xc1,0x77,0x9f,0xb6,0xee,0xe8),
LL(0x37,0x37,0xdc,0x37,0xa5,0xeb,0x6e,0x92),
LL(0xe5,0xe5,0xb3,0xe5,0x7b,0x56,0xd7,0x9e),
LL(0x9f,0x9f,0x46,0x9f,0x8c,0xd9,0x23,0x13),
LL(0xf0,0xf0,0xe7,0xf0,0xd3,0x17,0xfd,0x23),
LL(0x4a,0x4a,0x35,0x4a,0x6a,0x7f,0x94,0x20),
LL(0xda,0xda,0x4f,0xda,0x9e,0x95,0xa9,0x44),
LL(0x58,0x58,0x7d,0x58,0xfa,0x25,0xb0,0xa2),
LL(0xc9,0xc9,0x03,0xc9,0x06,0xca,0x8f,0xcf),
LL(0x29,0x29,0xa4,0x29,0x55,0x8d,0x52,0x7c),
LL(0x0a,0x0a,0x28,0x0a,0x50,0x22,0x14,0x5a),
LL(0xb1,0xb1,0xfe,0xb1,0xe1,0x4f,0x7f,0x50),
LL(0xa0,0xa0,0xba,0xa0,0x69,0x1a,0x5d,0xc9),
LL(0x6b,0x6b,0xb1,0x6b,0x7f,0xda,0xd6,0x14),
LL(0x85,0x85,0x2e,0x85,0x5c,0xab,0x17,0xd9),
LL(0xbd,0xbd,0xce,0xbd,0x81,0x73,0x67,0x3c),
LL(0x5d,0x5d,0x69,0x5d,0xd2,0x34,0xba,0x8f),
LL(0x10,0x10,0x40,0x10,0x80,0x50,0x20,0x90),
LL(0xf4,0xf4,0xf7,0xf4,0xf3,0x03,0xf5,0x07),
LL(0xcb,0xcb,0x0b,0xcb,0x16,0xc0,0x8b,0xdd),
LL(0x3e,0x3e,0xf8,0x3e,0xed,0xc6,0x7c,0xd3),
LL(0x05,0x05,0x14,0x05,0x28,0x11,0x0a,0x2d),
LL(0x67,0x67,0x81,0x67,0x1f,0xe6,0xce,0x78),
LL(0xe4,0xe4,0xb7,0xe4,0x73,0x53,0xd5,0x97),
LL(0x27,0x27,0x9c,0x27,0x25,0xbb,0x4e,0x02),
LL(0x41,0x41,0x19,0x41,0x32,0x58,0x82,0x73),
LL(0x8b,0x8b,0x16,0x8b,0x2c,0x9d,0x0b,0xa7),
LL(0xa7,0xa7,0xa6,0xa7,0x51,0x01,0x53,0xf6),
LL(0x7d,0x7d,0xe9,0x7d,0xcf,0x94,0xfa,0xb2),
LL(0x95,0x95,0x6e,0x95,0xdc,0xfb,0x37,0x49),
LL(0xd8,0xd8,0x47,0xd8,0x8e,0x9f,0xad,0x56),
LL(0xfb,0xfb,0xcb,0xfb,0x8b,0x30,0xeb,0x70),
LL(0xee,0xee,0x9f,0xee,0x23,0x71,0xc1,0xcd),
LL(0x7c,0x7c,0xed,0x7c,0xc7,0x91,0xf8,0xbb),
LL(0x66,0x66,0x85,0x66,0x17,0xe3,0xcc,0x71),
LL(0xdd,0xdd,0x53,0xdd,0xa6,0x8e,0xa7,0x7b),
LL(0x17,0x17,0x5c,0x17,0xb8,0x4b,0x2e,0xaf),
LL(0x47,0x47,0x01,0x47,0x02,0x46,0x8e,0x45),
LL(0x9e,0x9e,0x42,0x9e,0x84,0xdc,0x21,0x1a),
LL(0xca,0xca,0x0f,0xca,0x1e,0xc5,0x89,0xd4),
LL(0x2d,0x2d,0xb4,0x2d,0x75,0x99,0x5a,0x58),
LL(0xbf,0xbf,0xc6,0xbf,0x91,0x79,0x63,0x2e),
LL(0x07,0x07,0x1c,0x07,0x38,0x1b,0x0e,0x3f),
LL(0xad,0xad,0x8e,0xad,0x01,0x23,0x47,0xac),
LL(0x5a,0x5a,0x75,0x5a,0xea,0x2f,0xb4,0xb0),
LL(0x83,0x83,0x36,0x83,0x6c,0xb5,0x1b,0xef),
LL(0x33,0x33,0xcc,0x33,0x85,0xff,0x66,0xb6),
LL(0x63,0x63,0x91,0x63,0x3f,0xf2,0xc6,0x5c),
LL(0x02,0x02,0x08,0x02,0x10,0x0a,0x04,0x12),
LL(0xaa,0xaa,0x92,0xaa,0x39,0x38,0x49,0x93),
LL(0x71,0x71,0xd9,0x71,0xaf,0xa8,0xe2,0xde),
LL(0xc8,0xc8,0x07,0xc8,0x0e,0xcf,0x8d,0xc6),
LL(0x19,0x19,0x64,0x19,0xc8,0x7d,0x32,0xd1),
LL(0x49,0x49,0x39,0x49,0x72,0x70,0x92,0x3b),
LL(0xd9,0xd9,0x43,0xd9,0x86,0x9a,0xaf,0x5f),
LL(0xf2,0xf2,0xef,0xf2,0xc3,0x1d,0xf9,0x31),
LL(0xe3,0xe3,0xab,0xe3,0x4b,0x48,0xdb,0xa8),
LL(0x5b,0x5b,0x71,0x5b,0xe2,0x2a,0xb6,0xb9),
LL(0x88,0x88,0x1a,0x88,0x34,0x92,0x0d,0xbc),
LL(0x9a,0x9a,0x52,0x9a,0xa4,0xc8,0x29,0x3e),
LL(0x26,0x26,0x98,0x26,0x2d,0xbe,0x4c,0x0b),
LL(0x32,0x32,0xc8,0x32,0x8d,0xfa,0x64,0xbf),
LL(0xb0,0xb0,0xfa,0xb0,0xe9,0x4a,0x7d,0x59),
LL(0xe9,0xe9,0x83,0xe9,0x1b,0x6a,0xcf,0xf2),
LL(0x0f,0x0f,0x3c,0x0f,0x78,0x33,0x1e,0x77),
LL(0xd5,0xd5,0x73,0xd5,0xe6,0xa6,0xb7,0x33),
LL(0x80,0x80,0x3a,0x80,0x74,0xba,0x1d,0xf4),
LL(0xbe,0xbe,0xc2,0xbe,0x99,0x7c,0x61,0x27),
LL(0xcd,0xcd,0x13,0xcd,0x26,0xde,0x87,0xeb),
LL(0x34,0x34,0xd0,0x34,0xbd,0xe4,0x68,0x89),
LL(0x48,0x48,0x3d,0x48,0x7a,0x75,0x90,0x32),
LL(0xff,0xff,0xdb,0xff,0xab,0x24,0xe3,0x54),
LL(0x7a,0x7a,0xf5,0x7a,0xf7,0x8f,0xf4,0x8d),
LL(0x90,0x90,0x7a,0x90,0xf4,0xea,0x3d,0x64),
LL(0x5f,0x5f,0x61,0x5f,0xc2,0x3e,0xbe,0x9d),
LL(0x20,0x20,0x80,0x20,0x1d,0xa0,0x40,0x3d),
LL(0x68,0x68,0xbd,0x68,0x67,0xd5,0xd0,0x0f),
LL(0x1a,0x1a,0x68,0x1a,0xd0,0x72,0x34,0xca),
LL(0xae,0xae,0x82,0xae,0x19,0x2c,0x41,0xb7),
LL(0xb4,0xb4,0xea,0xb4,0xc9,0x5e,0x75,0x7d),
LL(0x54,0x54,0x4d,0x54,0x9a,0x19,0xa8,0xce),
LL(0x93,0x93,0x76,0x93,0xec,0xe5,0x3b,0x7f),
LL(0x22,0x22,0x88,0x22,0x0d,0xaa,0x44,0x2f),
LL(0x64,0x64,0x8d,0x64,0x07,0xe9,0xc8,0x63),
LL(0xf1,0xf1,0xe3,0xf1,0xdb,0x12,0xff,0x2a),
LL(0x73,0x73,0xd1,0x73,0xbf,0xa2,0xe6,0xcc),
LL(0x12,0x12,0x48,0x12,0x90,0x5a,0x24,0x82),
LL(0x40,0x40,0x1d,0x40,0x3a,0x5d,0x80,0x7a),
LL(0x08,0x08,0x20,0x08,0x40,0x28,0x10,0x48),
LL(0xc3,0xc3,0x2b,0xc3,0x56,0xe8,0x9b,0x95),
LL(0xec,0xec,0x97,0xec,0x33,0x7b,0xc5,0xdf),
LL(0xdb,0xdb,0x4b,0xdb,0x96,0x90,0xab,0x4d),
LL(0xa1,0xa1,0xbe,0xa1,0x61,0x1f,0x5f,0xc0),
LL(0x8d,0x8d,0x0e,0x8d,0x1c,0x83,0x07,0x91),
LL(0x3d,0x3d,0xf4,0x3d,0xf5,0xc9,0x7a,0xc8),
LL(0x97,0x97,0x66,0x97,0xcc,0xf1,0x33,0x5b),
LL(0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00),
LL(0xcf,0xcf,0x1b,0xcf,0x36,0xd4,0x83,0xf9),
LL(0x2b,0x2b,0xac,0x2b,0x45,0x87,0x56,0x6e),
LL(0x76,0x76,0xc5,0x76,0x97,0xb3,0xec,0xe1),
LL(0x82,0x82,0x32,0x82,0x64,0xb0,0x19,0xe6),
LL(0xd6,0xd6,0x7f,0xd6,0xfe,0xa9,0xb1,0x28),
LL(0x1b,0x1b,0x6c,0x1b,0xd8,0x77,0x36,0xc3),
LL(0xb5,0xb5,0xee,0xb5,0xc1,0x5b,0x77,0x74),
LL(0xaf,0xaf,0x86,0xaf,0x11,0x29,0x43,0xbe),
LL(0x6a,0x6a,0xb5,0x6a,0x77,0xdf,0xd4,0x1d),
LL(0x50,0x50,0x5d,0x50,0xba,0x0d,0xa0,0xea),
LL(0x45,0x45,0x09,0x45,0x12,0x4c,0x8a,0x57),
LL(0xf3,0xf3,0xeb,0xf3,0xcb,0x18,0xfb,0x38),
LL(0x30,0x30,0xc0,0x30,0x9d,0xf0,0x60,0xad),
LL(0xef,0xef,0x9b,0xef,0x2b,0x74,0xc3,0xc4),
LL(0x3f,0x3f,0xfc,0x3f,0xe5,0xc3,0x7e,0xda),
LL(0x55,0x55,0x49,0x55,0x92,0x1c,0xaa,0xc7),
LL(0xa2,0xa2,0xb2,0xa2,0x79,0x10,0x59,0xdb),
LL(0xea,0xea,0x8f,0xea,0x03,0x65,0xc9,0xe9),
LL(0x65,0x65,0x89,0x65,0x0f,0xec,0xca,0x6a),
LL(0xba,0xba,0xd2,0xba,0xb9,0x68,0x69,0x03),
LL(0x2f,0x2f,0xbc,0x2f,0x65,0x93,0x5e,0x4a),
LL(0xc0,0xc0,0x27,0xc0,0x4e,0xe7,0x9d,0x8e),
LL(0xde,0xde,0x5f,0xde,0xbe,0x81,0xa1,0x60),
LL(0x1c,0x1c,0x70,0x1c,0xe0,0x6c,0x38,0xfc),
LL(0xfd,0xfd,0xd3,0xfd,0xbb,0x2e,0xe7,0x46),
LL(0x4d,0x4d,0x29,0x4d,0x52,0x64,0x9a,0x1f),
LL(0x92,0x92,0x72,0x92,0xe4,0xe0,0x39,0x76),
LL(0x75,0x75,0xc9,0x75,0x8f,0xbc,0xea,0xfa),
LL(0x06,0x06,0x18,0x06,0x30,0x1e,0x0c,0x36),
LL(0x8a,0x8a,0x12,0x8a,0x24,0x98,0x09,0xae),
LL(0xb2,0xb2,0xf2,0xb2,0xf9,0x40,0x79,0x4b),
LL(0xe6,0xe6,0xbf,0xe6,0x63,0x59,0xd1,0x85),
LL(0x0e,0x0e,0x38,0x0e,0x70,0x36,0x1c,0x7e),
LL(0x1f,0x1f,0x7c,0x1f,0xf8,0x63,0x3e,0xe7),
LL(0x62,0x62,0x95,0x62,0x37,0xf7,0xc4,0x55),
LL(0xd4,0xd4,0x77,0xd4,0xee,0xa3,0xb5,0x3a),
LL(0xa8,0xa8,0x9a,0xa8,0x29,0x32,0x4d,0x81),
LL(0x96,0x96,0x62,0x96,0xc4,0xf4,0x31,0x52),
LL(0xf9,0xf9,0xc3,0xf9,0x9b,0x3a,0xef,0x62),
LL(0xc5,0xc5,0x33,0xc5,0x66,0xf6,0x97,0xa3),
LL(0x25,0x25,0x94,0x25,0x35,0xb1,0x4a,0x10),
LL(0x59,0x59,0x79,0x59,0xf2,0x20,0xb2,0xab),
LL(0x84,0x84,0x2a,0x84,0x54,0xae,0x15,0xd0),
LL(0x72,0x72,0xd5,0x72,0xb7,0xa7,0xe4,0xc5),
LL(0x39,0x39,0xe4,0x39,0xd5,0xdd,0x72,0xec),
LL(0x4c,0x4c,0x2d,0x4c,0x5a,0x61,0x98,0x16),
LL(0x5e,0x5e,0x65,0x5e,0xca,0x3b,0xbc,0x94),
LL(0x78,0x78,0xfd,0x78,0xe7,0x85,0xf0,0x9f),
LL(0x38,0x38,0xe0,0x38,0xdd,0xd8,0x70,0xe5),
LL(0x8c,0x8c,0x0a,0x8c,0x14,0x86,0x05,0x98),
LL(0xd1,0xd1,0x63,0xd1,0xc6,0xb2,0xbf,0x17),
LL(0xa5,0xa5,0xae,0xa5,0x41,0x0b,0x57,0xe4),
LL(0xe2,0xe2,0xaf,0xe2,0x43,0x4d,0xd9,0xa1),
LL(0x61,0x61,0x99,0x61,0x2f,0xf8,0xc2,0x4e),
LL(0xb3,0xb3,0xf6,0xb3,0xf1,0x45,0x7b,0x42),
LL(0x21,0x21,0x84,0x21,0x15,0xa5,0x42,0x34),
LL(0x9c,0x9c,0x4a,0x9c,0x94,0xd6,0x25,0x08),
LL(0x1e,0x1e,0x78,0x1e,0xf0,0x66,0x3c,0xee),
LL(0x43,0x43,0x11,0x43,0x22,0x52,0x86,0x61),
LL(0xc7,0xc7,0x3b,0xc7,0x76,0xfc,0x93,0xb1),
LL(0xfc,0xfc,0xd7,0xfc,0xb3,0x2b,0xe5,0x4f),
LL(0x04,0x04,0x10,0x04,0x20,0x14,0x08,0x24),
LL(0x51,0x51,0x59,0x51,0xb2,0x08,0xa2,0xe3),
LL(0x99,0x99,0x5e,0x99,0xbc,0xc7,0x2f,0x25),
LL(0x6d,0x6d,0xa9,0x6d,0x4f,0xc4,0xda,0x22),
LL(0x0d,0x0d,0x34,0x0d,0x68,0x39,0x1a,0x65),
LL(0xfa,0xfa,0xcf,0xfa,0x83,0x35,0xe9,0x79),
LL(0xdf,0xdf,0x5b,0xdf,0xb6,0x84,0xa3,0x69),
LL(0x7e,0x7e,0xe5,0x7e,0xd7,0x9b,0xfc,0xa9),
LL(0x24,0x24,0x90,0x24,0x3d,0xb4,0x48,0x19),
LL(0x3b,0x3b,0xec,0x3b,0xc5,0xd7,0x76,0xfe),
LL(0xab,0xab,0x96,0xab,0x31,0x3d,0x4b,0x9a),
LL(0xce,0xce,0x1f,0xce,0x3e,0xd1,0x81,0xf0),
LL(0x11,0x11,0x44,0x11,0x88,0x55,0x22,0x99),
LL(0x8f,0x8f,0x06,0x8f,0x0c,0x89,0x03,0x83),
LL(0x4e,0x4e,0x25,0x4e,0x4a,0x6b,0x9c,0x04),
LL(0xb7,0xb7,0xe6,0xb7,0xd1,0x51,0x73,0x66),
LL(0xeb,0xeb,0x8b,0xeb,0x0b,0x60,0xcb,0xe0),
LL(0x3c,0x3c,0xf0,0x3c,0xfd,0xcc,0x78,0xc1),
LL(0x81,0x81,0x3e,0x81,0x7c,0xbf,0x1f,0xfd),
LL(0x94,0x94,0x6a,0x94,0xd4,0xfe,0x35,0x40),
LL(0xf7,0xf7,0xfb,0xf7,0xeb,0x0c,0xf3,0x1c),
LL(0xb9,0xb9,0xde,0xb9,0xa1,0x67,0x6f,0x18),
LL(0x13,0x13,0x4c,0x13,0x98,0x5f,0x26,0x8b),
LL(0x2c,0x2c,0xb0,0x2c,0x7d,0x9c,0x58,0x51),
LL(0xd3,0xd3,0x6b,0xd3,0xd6,0xb8,0xbb,0x05),
LL(0xe7,0xe7,0xbb,0xe7,0x6b,0x5c,0xd3,0x8c),
LL(0x6e,0x6e,0xa5,0x6e,0x57,0xcb,0xdc,0x39),
LL(0xc4,0xc4,0x37,0xc4,0x6e,0xf3,0x95,0xaa),
LL(0x03,0x03,0x0c,0x03,0x18,0x0f,0x06,0x1b),
LL(0x56,0x56,0x45,0x56,0x8a,0x13,0xac,0xdc),
LL(0x44,0x44,0x0d,0x44,0x1a,0x49,0x88,0x5e),
LL(0x7f,0x7f,0xe1,0x7f,0xdf,0x9e,0xfe,0xa0),
LL(0xa9,0xa9,0x9e,0xa9,0x21,0x37,0x4f,0x88),
LL(0x2a,0x2a,0xa8,0x2a,0x4d,0x82,0x54,0x67),
LL(0xbb,0xbb,0xd6,0xbb,0xb1,0x6d,0x6b,0x0a),
LL(0xc1,0xc1,0x23,0xc1,0x46,0xe2,0x9f,0x87),
LL(0x53,0x53,0x51,0x53,0xa2,0x02,0xa6,0xf1),
LL(0xdc,0xdc,0x57,0xdc,0xae,0x8b,0xa5,0x72),
LL(0x0b,0x0b,0x2c,0x0b,0x58,0x27,0x16,0x53),
LL(0x9d,0x9d,0x4e,0x9d,0x9c,0xd3,0x27,0x01),
LL(0x6c,0x6c,0xad,0x6c,0x47,0xc1,0xd8,0x2b),
LL(0x31,0x31,0xc4,0x31,0x95,0xf5,0x62,0xa4),
LL(0x74,0x74,0xcd,0x74,0x87,0xb9,0xe8,0xf3),
LL(0xf6,0xf6,0xff,0xf6,0xe3,0x09,0xf1,0x15),
LL(0x46,0x46,0x05,0x46,0x0a,0x43,0x8c,0x4c),
LL(0xac,0xac,0x8a,0xac,0x09,0x26,0x45,0xa5),
LL(0x89,0x89,0x1e,0x89,0x3c,0x97,0x0f,0xb5),
LL(0x14,0x14,0x50,0x14,0xa0,0x44,0x28,0xb4),
LL(0xe1,0xe1,0xa3,0xe1,0x5b,0x42,0xdf,0xba),
LL(0x16,0x16,0x58,0x16,0xb0,0x4e,0x2c,0xa6),
LL(0x3a,0x3a,0xe8,0x3a,0xcd,0xd2,0x74,0xf7),
LL(0x69,0x69,0xb9,0x69,0x6f,0xd0,0xd2,0x06),
LL(0x09,0x09,0x24,0x09,0x48,0x2d,0x12,0x41),
LL(0x70,0x70,0xdd,0x70,0xa7,0xad,0xe0,0xd7),
LL(0xb6,0xb6,0xe2,0xb6,0xd9,0x54,0x71,0x6f),
LL(0xd0,0xd0,0x67,0xd0,0xce,0xb7,0xbd,0x1e),
LL(0xed,0xed,0x93,0xed,0x3b,0x7e,0xc7,0xd6),
LL(0xcc,0xcc,0x17,0xcc,0x2e,0xdb,0x85,0xe2),
LL(0x42,0x42,0x15,0x42,0x2a,0x57,0x84,0x68),
LL(0x98,0x98,0x5a,0x98,0xb4,0xc2,0x2d,0x2c),
LL(0xa4,0xa4,0xaa,0xa4,0x49,0x0e,0x55,0xed),
LL(0x28,0x28,0xa0,0x28,0x5d,0x88,0x50,0x75),
LL(0x5c,0x5c,0x6d,0x5c,0xda,0x31,0xb8,0x86),
LL(0xf8,0xf8,0xc7,0xf8,0x93,0x3f,0xed,0x6b),
LL(0x86,0x86,0x22,0x86,0x44,0xa4,0x11,0xc2),
#define RC (&(Cx.q[256*N]))
0x18,0x23,0xc6,0xe8,0x87,0xb8,0x01,0x4f, /* rc[ROUNDS] */
0x36,0xa6,0xd2,0xf5,0x79,0x6f,0x91,0x52,
0x60,0xbc,0x9b,0x8e,0xa3,0x0c,0x7b,0x35,
0x1d,0xe0,0xd7,0xc2,0x2e,0x4b,0xfe,0x57,
0x15,0x77,0x37,0xe5,0x9f,0xf0,0x4a,0xda,
0x58,0xc9,0x29,0x0a,0xb1,0xa0,0x6b,0x85,
0xbd,0x5d,0x10,0xf4,0xcb,0x3e,0x05,0x67,
0xe4,0x27,0x41,0x8b,0xa7,0x7d,0x95,0xd8,
0xfb,0xee,0x7c,0x66,0xdd,0x17,0x47,0x9e,
0xca,0x2d,0xbf,0x07,0xad,0x5a,0x83,0x33
}
};
void whirlpool_block(WHIRLPOOL_CTX *ctx,const void *inp,size_t n)
{
int r;
const u8 *p=inp;
union { u64 q[8]; u8 c[64]; } S,K,*H=(void *)ctx->H.q;
#ifdef GO_FOR_MMX
GO_FOR_MMX(ctx,inp,n);
#endif
do {
#ifdef OPENSSL_SMALL_FOOTPRINT
u64 L[8];
int i;
for (i=0;i<64;i++) S.c[i] = (K.c[i] = H->c[i]) ^ p[i];
for (r=0;r<ROUNDS;r++)
{
for (i=0;i<8;i++)
{
L[i] = i ? 0 : RC[r];
L[i] ^= C0(K,i) ^ C1(K,(i-1)&7) ^
C2(K,(i-2)&7) ^ C3(K,(i-3)&7) ^
C4(K,(i-4)&7) ^ C5(K,(i-5)&7) ^
C6(K,(i-6)&7) ^ C7(K,(i-7)&7);
}
memcpy (K.q,L,64);
for (i=0;i<8;i++)
{
L[i] ^= C0(S,i) ^ C1(S,(i-1)&7) ^
C2(S,(i-2)&7) ^ C3(S,(i-3)&7) ^
C4(S,(i-4)&7) ^ C5(S,(i-5)&7) ^
C6(S,(i-6)&7) ^ C7(S,(i-7)&7);
}
memcpy (S.q,L,64);
}
for (i=0;i<64;i++) H->c[i] ^= S.c[i] ^ p[i];
#else
u64 L0,L1,L2,L3,L4,L5,L6,L7;
#ifdef __STRICT_ALIGNMENT
if ((size_t)p & 7)
{
memcpy (S.c,p,64);
S.q[0] ^= (K.q[0] = H->q[0]);
S.q[1] ^= (K.q[1] = H->q[1]);
S.q[2] ^= (K.q[2] = H->q[2]);
S.q[3] ^= (K.q[3] = H->q[3]);
S.q[4] ^= (K.q[4] = H->q[4]);
S.q[5] ^= (K.q[5] = H->q[5]);
S.q[6] ^= (K.q[6] = H->q[6]);
S.q[7] ^= (K.q[7] = H->q[7]);
}
else
#endif
{
const u64 *pa = (const u64*)p;
S.q[0] = (K.q[0] = H->q[0]) ^ pa[0];
S.q[1] = (K.q[1] = H->q[1]) ^ pa[1];
S.q[2] = (K.q[2] = H->q[2]) ^ pa[2];
S.q[3] = (K.q[3] = H->q[3]) ^ pa[3];
S.q[4] = (K.q[4] = H->q[4]) ^ pa[4];
S.q[5] = (K.q[5] = H->q[5]) ^ pa[5];
S.q[6] = (K.q[6] = H->q[6]) ^ pa[6];
S.q[7] = (K.q[7] = H->q[7]) ^ pa[7];
}
for(r=0;r<ROUNDS;r++)
{
#ifdef SMALL_REGISTER_BANK
L0 = C0(K,0) ^ C1(K,7) ^ C2(K,6) ^ C3(K,5) ^
C4(K,4) ^ C5(K,3) ^ C6(K,2) ^ C7(K,1) ^ RC[r];
L1 = C0(K,1) ^ C1(K,0) ^ C2(K,7) ^ C3(K,6) ^
C4(K,5) ^ C5(K,4) ^ C6(K,3) ^ C7(K,2);
L2 = C0(K,2) ^ C1(K,1) ^ C2(K,0) ^ C3(K,7) ^
C4(K,6) ^ C5(K,5) ^ C6(K,4) ^ C7(K,3);
L3 = C0(K,3) ^ C1(K,2) ^ C2(K,1) ^ C3(K,0) ^
C4(K,7) ^ C5(K,6) ^ C6(K,5) ^ C7(K,4);
L4 = C0(K,4) ^ C1(K,3) ^ C2(K,2) ^ C3(K,1) ^
C4(K,0) ^ C5(K,7) ^ C6(K,6) ^ C7(K,5);
L5 = C0(K,5) ^ C1(K,4) ^ C2(K,3) ^ C3(K,2) ^
C4(K,1) ^ C5(K,0) ^ C6(K,7) ^ C7(K,6);
L6 = C0(K,6) ^ C1(K,5) ^ C2(K,4) ^ C3(K,3) ^
C4(K,2) ^ C5(K,1) ^ C6(K,0) ^ C7(K,7);
L7 = C0(K,7) ^ C1(K,6) ^ C2(K,5) ^ C3(K,4) ^
C4(K,3) ^ C5(K,2) ^ C6(K,1) ^ C7(K,0);
K.q[0] = L0; K.q[1] = L1; K.q[2] = L2; K.q[3] = L3;
K.q[4] = L4; K.q[5] = L5; K.q[6] = L6; K.q[7] = L7;
L0 ^= C0(S,0) ^ C1(S,7) ^ C2(S,6) ^ C3(S,5) ^
C4(S,4) ^ C5(S,3) ^ C6(S,2) ^ C7(S,1);
L1 ^= C0(S,1) ^ C1(S,0) ^ C2(S,7) ^ C3(S,6) ^
C4(S,5) ^ C5(S,4) ^ C6(S,3) ^ C7(S,2);
L2 ^= C0(S,2) ^ C1(S,1) ^ C2(S,0) ^ C3(S,7) ^
C4(S,6) ^ C5(S,5) ^ C6(S,4) ^ C7(S,3);
L3 ^= C0(S,3) ^ C1(S,2) ^ C2(S,1) ^ C3(S,0) ^
C4(S,7) ^ C5(S,6) ^ C6(S,5) ^ C7(S,4);
L4 ^= C0(S,4) ^ C1(S,3) ^ C2(S,2) ^ C3(S,1) ^
C4(S,0) ^ C5(S,7) ^ C6(S,6) ^ C7(S,5);
L5 ^= C0(S,5) ^ C1(S,4) ^ C2(S,3) ^ C3(S,2) ^
C4(S,1) ^ C5(S,0) ^ C6(S,7) ^ C7(S,6);
L6 ^= C0(S,6) ^ C1(S,5) ^ C2(S,4) ^ C3(S,3) ^
C4(S,2) ^ C5(S,1) ^ C6(S,0) ^ C7(S,7);
L7 ^= C0(S,7) ^ C1(S,6) ^ C2(S,5) ^ C3(S,4) ^
C4(S,3) ^ C5(S,2) ^ C6(S,1) ^ C7(S,0);
S.q[0] = L0; S.q[1] = L1; S.q[2] = L2; S.q[3] = L3;
S.q[4] = L4; S.q[5] = L5; S.q[6] = L6; S.q[7] = L7;
#else
L0 = C0(K,0); L1 = C1(K,0); L2 = C2(K,0); L3 = C3(K,0);
L4 = C4(K,0); L5 = C5(K,0); L6 = C6(K,0); L7 = C7(K,0);
L0 ^= RC[r];
L1 ^= C0(K,1); L2 ^= C1(K,1); L3 ^= C2(K,1); L4 ^= C3(K,1);
L5 ^= C4(K,1); L6 ^= C5(K,1); L7 ^= C6(K,1); L0 ^= C7(K,1);
L2 ^= C0(K,2); L3 ^= C1(K,2); L4 ^= C2(K,2); L5 ^= C3(K,2);
L6 ^= C4(K,2); L7 ^= C5(K,2); L0 ^= C6(K,2); L1 ^= C7(K,2);
L3 ^= C0(K,3); L4 ^= C1(K,3); L5 ^= C2(K,3); L6 ^= C3(K,3);
L7 ^= C4(K,3); L0 ^= C5(K,3); L1 ^= C6(K,3); L2 ^= C7(K,3);
L4 ^= C0(K,4); L5 ^= C1(K,4); L6 ^= C2(K,4); L7 ^= C3(K,4);
L0 ^= C4(K,4); L1 ^= C5(K,4); L2 ^= C6(K,4); L3 ^= C7(K,4);
L5 ^= C0(K,5); L6 ^= C1(K,5); L7 ^= C2(K,5); L0 ^= C3(K,5);
L1 ^= C4(K,5); L2 ^= C5(K,5); L3 ^= C6(K,5); L4 ^= C7(K,5);
L6 ^= C0(K,6); L7 ^= C1(K,6); L0 ^= C2(K,6); L1 ^= C3(K,6);
L2 ^= C4(K,6); L3 ^= C5(K,6); L4 ^= C6(K,6); L5 ^= C7(K,6);
L7 ^= C0(K,7); L0 ^= C1(K,7); L1 ^= C2(K,7); L2 ^= C3(K,7);
L3 ^= C4(K,7); L4 ^= C5(K,7); L5 ^= C6(K,7); L6 ^= C7(K,7);
K.q[0] = L0; K.q[1] = L1; K.q[2] = L2; K.q[3] = L3;
K.q[4] = L4; K.q[5] = L5; K.q[6] = L6; K.q[7] = L7;
L0 ^= C0(S,0); L1 ^= C1(S,0); L2 ^= C2(S,0); L3 ^= C3(S,0);
L4 ^= C4(S,0); L5 ^= C5(S,0); L6 ^= C6(S,0); L7 ^= C7(S,0);
L1 ^= C0(S,1); L2 ^= C1(S,1); L3 ^= C2(S,1); L4 ^= C3(S,1);
L5 ^= C4(S,1); L6 ^= C5(S,1); L7 ^= C6(S,1); L0 ^= C7(S,1);
L2 ^= C0(S,2); L3 ^= C1(S,2); L4 ^= C2(S,2); L5 ^= C3(S,2);
L6 ^= C4(S,2); L7 ^= C5(S,2); L0 ^= C6(S,2); L1 ^= C7(S,2);
L3 ^= C0(S,3); L4 ^= C1(S,3); L5 ^= C2(S,3); L6 ^= C3(S,3);
L7 ^= C4(S,3); L0 ^= C5(S,3); L1 ^= C6(S,3); L2 ^= C7(S,3);
L4 ^= C0(S,4); L5 ^= C1(S,4); L6 ^= C2(S,4); L7 ^= C3(S,4);
L0 ^= C4(S,4); L1 ^= C5(S,4); L2 ^= C6(S,4); L3 ^= C7(S,4);
L5 ^= C0(S,5); L6 ^= C1(S,5); L7 ^= C2(S,5); L0 ^= C3(S,5);
L1 ^= C4(S,5); L2 ^= C5(S,5); L3 ^= C6(S,5); L4 ^= C7(S,5);
L6 ^= C0(S,6); L7 ^= C1(S,6); L0 ^= C2(S,6); L1 ^= C3(S,6);
L2 ^= C4(S,6); L3 ^= C5(S,6); L4 ^= C6(S,6); L5 ^= C7(S,6);
L7 ^= C0(S,7); L0 ^= C1(S,7); L1 ^= C2(S,7); L2 ^= C3(S,7);
L3 ^= C4(S,7); L4 ^= C5(S,7); L5 ^= C6(S,7); L6 ^= C7(S,7);
S.q[0] = L0; S.q[1] = L1; S.q[2] = L2; S.q[3] = L3;
S.q[4] = L4; S.q[5] = L5; S.q[6] = L6; S.q[7] = L7;
#endif
}
#ifdef __STRICT_ALIGNMENT
if ((size_t)p & 7)
{
int i;
for(i=0;i<64;i++) H->c[i] ^= S.c[i] ^ p[i];
}
else
#endif
{
const u64 *pa=(const u64 *)p;
H->q[0] ^= S.q[0] ^ pa[0];
H->q[1] ^= S.q[1] ^ pa[1];
H->q[2] ^= S.q[2] ^ pa[2];
H->q[3] ^= S.q[3] ^ pa[3];
H->q[4] ^= S.q[4] ^ pa[4];
H->q[5] ^= S.q[5] ^ pa[5];
H->q[6] ^= S.q[6] ^ pa[6];
H->q[7] ^= S.q[7] ^ pa[7];
}
#endif
p += 64;
} while(--n);
}
|