1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
|
.\" $OpenBSD: keynote.4,v 1.13 1999/10/11 04:45:25 angelos Exp $
.\"
.\" The author of this code is Angelos D. Keromytis (angelos@dsl.cis.upenn.edu)
.\"
.\" This code was written by Angelos D. Keromytis in Philadelphia, PA, USA,
.\" in April-May 1998
.\"
.\" Copyright (C) 1998, 1999 by Angelos D. Keromytis.
.\"
.\" Permission to use, copy, and modify this software without fee
.\" is hereby granted, provided that this entire notice is included in
.\" all copies of any software which is or includes a copy or
.\" modification of this software.
.\" You may use this code under the GNU public license if you so wish. Please
.\" contribute changes back to the author.
.\"
.\" THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
.\" IMPLIED WARRANTY. IN PARTICULAR, THE AUTHORS MAKES NO
.\" REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
.\" MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
.\" PURPOSE.
.\"
.Dd May 22, 1999
.Dt keynote 4
.\" .TH KeyNote 4 local
.Os
.Sh NAME
.Nm keynote
.Nd a trust-management system
.Sh SYNOPSIS
.Fd #include <sys/types.h>
.Fd #include <regex.h>
.Fd #include <keynote.h>
.Fd Link options: -lkeynote -lm -lcrypto
.Sh DESCRIPTION
For more details on
.Nm KeyNote ,
see RFC 2704.
.Pp
Details on the API, assertion syntax, and command-line tool are given in
the man pages listed at the end of this manual.
.Pp
Trust management, introduced in the PolicyMaker system, is a unified
approach to specifying and interpreting security policies,
credentials, and relationships; it allows direct authorization of
security-critical actions. A trust-management system provides
standard, general-purpose mechanisms for specifying application
security policies and credentials. Trust-management credentials
describe a specific delegation of trust and subsume the role of public
key certificates; unlike traditional certificates, which bind keys to
names, credentials can bind keys directly to the authorization to
perform specific tasks.
.Pp
A trust-management system has five basic components:
.nf
* A language for describing `actions,' which are operations with
security consequences that are to be controlled by the system.
* A mechanism for identifying `principals,' which are entities that
can be authorized to perform actions.
* A language for specifying application `policies,' which govern the
actions that principals are authorized to perform.
* A language for specifying `credentials,' which allow principals
to delegate authorization to other principals.
* A `compliance checker,' which provides a service to applications
for determining how an action requested by principals should be
handled, given a policy and a set of credentials.
.fi
The trust-management approach has a number of advantages over other
mechanisms for specifying and controlling authorization, especially
when security policy is distributed over a network or is otherwise
decentralized.
.Pp
Trust management unifies the notions of security policy, credentials,
access control, and authorization. An application that uses a
trust-management system can simply ask the compliance checker whether
a requested action should be allowed. Furthermore, policies and
credentials are written in standard languages that are shared by all
trust-managed applications; the security configuration mechanism for
one application carries exactly the same syntactic and semantic
structure as that of another, even when the semantics of the
applications themselves are quite different.
.Pp
Trust-management policies are easy to distribute across networks,
helping to avoid the need for application-specific distributed policy
configuration mechanisms, access control lists, and certificate
parsers and interpreters.
.Pp
For a general discussion of the use of trust management in distributed
system security, see the papers listed at the end of this manual.
.Pp
KeyNote is a simple and flexible trust-management system designed to
work well for a variety of large- and small- scale Internet-based
applications. It provides a single, unified language for both local
policies and credentials. KeyNote policies and credentials, called
`assertions,' contain predicates that describe the trusted actions
permitted by the holders of specific public keys. KeyNote assertions
are essentially small, highly-structured programs. A signed assertion,
which can be sent over an untrusted network, is also called a
`credential assertion.' Credential assertions, which also serve the
role of certificates, have the same syntax as policy assertions but
are also signed by the principal delegating the trust.
.Pp
In KeyNote:
.nf
* Actions are specified as a collection of name-value pairs.
* Principal names can be any convenient string and can directly
represent cryptographic public keys.
* The same language is used for both policies and credentials.
* The policy and credential language is concise, highly expressive,
human readable and writable, and compatible with a variety of
storage and transmission media, including electronic mail.
* The compliance checker returns an application-configured `policy
compliance value' that describes how a request should be handled
by the application. Policy compliance values are always
positively derived from policy and credentials, facilitating
analysis of KeyNote-based systems.
* Compliance checking is efficient enough for high-performance and
real-time applications.
.fi
In KeyNote, the authority to perform trusted actions is associated
with one or more `principals.' A principal may be a physical entity, a
process in an operating system, a public key, or any other convenient
abstraction. KeyNote principals are identified by a string called a
`Principal Identifier.' In some cases, a Principal Identifier will
contain a cryptographic key interpreted by the KeyNote system (e.g.,
for credential signature verification). In other cases, Principal
Identifiers may have a structure that is opaque to KeyNote.
.Pp
Principals perform two functions of concern to KeyNote: They request
`actions' and they issue `assertions.' Actions are any trusted
operations that an application places under KeyNote control.
Assertions delegate the authorization to perform actions to other
principals.
.Pp
Actions are described to the KeyNote compliance checker in terms of a
collection of name-value pairs called an `action attribute set.' The
action attribute set is created by the invoking application. Its
structure and format are described in detail elsewhere of this
document.
.Pp
KeyNote provides advice to applications on the interpretation of
policy with regard to specific requested actions. Applications invoke
the KeyNote compliance checker by issuing a `query' containing a
proposed action attribute set and identifying the principal(s)
requesting it. The KeyNote system determines and returns an
appropriate `policy compliance value' from an ordered set of possible
responses.
.Pp
The policy compliance value returned from a KeyNote query advises the
application how to process the requested action. In the simplest case,
the compliance value is Boolean (e.g., "reject" or "approve").
Assertions can also be written to select from a range of possible
compliance values, when appropriate for the application (e.g., "no
access", "restricted access", "full access"). Applications can
configure the relative ordering (from `weakest' to `strongest') of
compliance values at query time.
.Pp
Assertions are the basic programming unit for specifying policy and
delegating authority. Assertions describe the conditions under which a
principal authorizes actions requested by other principals. An
assertion identifies the principal that made it, which other
principals are being authorized, and the conditions under which the
authorization applies. The syntax of assertions is given
.Xr keynote 5 .
.Pp
A special principal, whose identifier is "POLICY", provides the root
of trust in KeyNote. "POLICY" is therefore considered to be authorized
to perform any action.
.Pp
Assertions issued by the "POLICY" principal are called `policy
assertions' and are used to delegate authority to otherwise untrusted
principals. The KeyNote security policy of an application consists of
a collection of policy assertions.
.Pp
When a principal is identified by a public key, it can digitally sign
assertions and distribute them over untrusted networks for use by
other KeyNote compliance checkers. These signed assertions are also
called `credentials,' and serve a role similar to that of traditional
public key certificates. Policies and credentials share the same
syntax and are evaluated according to the same semantics. A principal
can therefore convert its policy assertions into credentials simply by
digitally signing them.
.Pp
KeyNote is designed to encourage the creation of human-readable
policies and credentials that are amenable to transmission and storage
over a variety of media. Its assertion syntax is inspired by the
format of RFC822-style message headers. A KeyNote assertion contains a
sequence of sections, called `fields,' each of which specifying one
aspect of the assertion's semantics. Fields start with an identifier
at the beginning of a line and continue until the next field is
encountered. For example:
.nf
KeyNote-Version: 2
Comment: A simple, if contrived, email certificate for user mab
Local-Constants: ATT_CA_key = "RSA:acdfa1df1011bbac"
mab_key = "DSA:deadbeefcafe001a"
Authorizer: ATT_CA_key
Licensees: mab_key
Conditions: ((app_domain == "email") # valid for email only
&& (address == "mab@research.att.com"));
Signature: "RSA-SHA1:f00f2244"
.fi
For the exact meanings of all the fields, see the RFC reference at the
end of this manual, and/or
.Xr keynote 5 .
.Pp
KeyNote semantics resolve the relationship between an application's
policy and actions requested by other principals, as supported by
credentials. The KeyNote compliance checker processes the assertions
against the action attribute set to determine the policy compliance
value of a requested action. These semantics are defined later in this
document.
.Pp
An important principle in KeyNote's design is `assertion
monotonicity'; the policy compliance value of an action is always
positively derived from assertions made by trusted principals.
Removing an assertion never results in increasing the compliance value
returned by KeyNote for a given query. The monotonicity property can
simplify the design and analysis of complex network-based security
protocols; network failures that prevent the transmission of
credentials can never result in spurious authorization of dangerous
actions.
.Pp
Trusted actions to be evaluated by KeyNote are described by a
collection of name-value pairs called the `action attribute set'.
Action attributes are the mechanism by which applications communicate
requests to KeyNote and are the primary objects on which KeyNote
assertions operate. An action attribute set is passed to the KeyNote
compliance checker with each query.
.Pp
Each action attribute consists of a name and a value. The semantics of
the names and values are not interpreted by KeyNote itself; they vary
from application to application and must be agreed upon by the writers
of applications and the writers of the policies and credentials that
will be used by them.
.Pp
Action attribute names and values are represented by arbitrary-length
strings. KeyNote guarantees support of attribute names and values up
to 2048 characters long. Applications and assertions should therefore
avoid depending on the the use of attributes with names or values
longer than 2048 characters.
.Pp
Attribute values are inherently untyped and are represented as
character strings by default. Attribute values may contain any non-
NUL ASCII character. Numeric attribute values should first be
converted to an ASCII text representation by the invoking application,
e.g., the value 1234.5 would be represented by the string "1234.5".
.Pp
An <AttributeID> begins with an alphabetic or underscore character and
can be followed by any number of alphanumerics and underscores.
Attribute names are case-sensitive.
.Pp
If an action attribute is not defined its value is considered to be
the empty string.
.Pp
Attribute names beginning with the "_" character are reserved for use
by the KeyNote runtime environment and cannot be passed from
applications as part of queries. The following special attribute names
are used:
.Bl -tag -width indent
.It _MIN_TRUST
Lowest-order (minimum) compliance value in query.
.It _MAX_TRUST
Highest-order (maximum) compliance value in query.
.It _VALUES
Linearly ordered set of compliance value in query.
.It _ACTION_AUTHORIZERS
Names of principals directly authorizing action in query. Comma
separated.
.El
.Pp
In addition, attributes with names of the form "_<N>", where <N> is an
ASCII-encoded integer, are used by the regular expression matching
mechanism described in
.Xr keynote 5 .
.Pp
By convention, the name of the application domain over which action
attributes should be interpreted is given in the attribute named
"app_domain". The IANA (or some other suitable authority) will provide
a registry of reserved app_domain names. The registry will list the
names and meanings of each application's attributes.
.Pp
The app_domain convention helps to ensure that credentials are
interpreted as they were intended. An attribute with any given name
may be used in many different application domains but might have
different meanings in each of them. However, the use of a global
registry is not always required for small-scale, closed applications;
the only requirement is that the policies and credentials made
available to the KeyNote compliance checker interpret attributes
according to the same semantics assumed by the application that
created them.
.Pp
For example, an email application might reserve the app_domain
"RFC822-EMAIL" and might use the attributes named "address" (the mail
address of a message's sender), "name" (the human name of the message
sender), and any "organization" headers present (the organization
name). The values of these attributes would be derived in the obvious
way from the email message headers. The public key of the message's
signer would be given in the "_ACTION_AUTHORIZERS" attribute.
.Pp
.Sh QUERY SEMANTICS
The discussion in the following sections assume some familiarity with
assertion syntax. Please refer to
.Xr keynote 5
for more details on the syntax.
.Pp
.Sh QUERY PARAMETERS
A KeyNote query has four parameters:
.nf
* The identifier of the principal(s) requesting the action.
* The action attribute set describing the action.
* The set of compliance values of interest to the application,
ordered from _MIN_TRUST to _MAX_TRUST
* The policy and credential assertions that should be included in
the evaluation.
.fi
The mechanism for passing these parameters to the KeyNote evaluator is
application dependent. In particular, an evaluator might provide for
some parameters to be passed explicitly, while others are looked up
externally (e.g., credentials might be looked up in a network- based
distribution system), while still others might be requested from the
application as needed by the evaluator, through a `callback' mechanism
(e.g., for attribute values that represent values from among a very
large namespace).
.Pp
.Sh ACTION REQUESTER
At least one Principal must be identified in each query as the
`requester' of the action. Actions may be requested by several
principals, each considered to have individually requested it. This
allows policies that require multiple authorizations, e.g., `two
person control'. The set of authorizing principals is made available
in the special attribute "_ACTION_AUTHORIZERS"; if several principals
are authorizers, their identifiers are separated with commas.
.Pp
.Sh ORDERED COMPLIANCE VALUE SET
The set of compliance values of interest to an application (and their
relative ranking to one another) is determined by the invoking
application and passed to the KeyNote evaluator as a parameter of the
query. In many applications, this will be Boolean, e.g., the ordered
sets {FALSE, TRUE} or {REJECT, APPROVE}. Other applications may
require a range of possible values, e.g., {No_Access, Limited_Access,
Full_Access}. Note that applications should include in this set only
compliance value names that are actually returned by the assertions.
.Pp
The lowest-order and highest-order compliance value strings given in
the query are available in the special attributes named "_MIN_TRUST"
and "_MAX_TRUST", respectively. The complete set of query compliance
values is made available in ascending order (from _MIN_TRUST to
_MAX_TRUST) in the special attribute named "_VALUES". Values are
separated with commas; applications that use assertions that make use
of the _VALUES attribute should therefore avoid the use of compliance
value strings that themselves contain commas.
.Pp
.Sh PRINCIPAL IDENTIFIER NORMALIZATION
Principal identifier comparisons among Cryptographic Principal
Identifiers (that represent keys) in the Authorizer and Licensees
fields or in an action's direct authorizers are performed after
normalizing them by conversion to a canonical form.
.Pp
Every cryptographic algorithm used in KeyNote defines a method for
converting keys to their canonical form and that specifies how the
comparison for equality of two keys is performed. If the algorithm
named in the identifier is unknown to KeyNote, the identifier is
treated as opaque.
.Pp
Opaque identifiers are compared as case-sensitive strings.
.Pp
Notice that use of opaque identifiers in the Authorizer field requires
that the assertion's integrity be locally trusted (since it cannot be
cryptographically verified by the compliance checker).
.Pp
.Sh POLICY COMPLIANCE VALUE CALCULATION
The Policy Compliance Value of a query is the Principal Compliance
Value of the principal named "POLICY".
.Pp
.Sh PRINCIPAL COMPLIANCE VALUE
The Compliance Value of a principal <X> is the highest order (maximum)
of:
.nf
- the Direct Authorization Value of principal <X>; and
- the Assertion Compliance Values of all assertions identifying
<X> in the Authorizer field.
.fi
.Sh DIRECT AUTHORIZATION VALUE
The Direct Authorization Value of a principal <X> is _MAX_TRUST if <X>
is listed in the query as an authorizer of the action. Otherwise, the
Direct Authorization Value of <X> is _MIN_TRUST.
.Pp
.Sh ASSERTION COMPLIANC VALUE
The Assertion Compliance Value of an assertion is the lowest order
(minimum) of the assertion's Conditions Compliance Value and its
Licensee Compliance Value.
.Pp
.Sh CONDITIONS COMPLIANCE VALUE
The Conditions Compliance Value of an assertion is the highest-order
(maximum) value among all successful clauses listed in the conditions
section.
.Pp
If no clause's test succeeds or the Conditions field is empty, an
assertion's Conditions Compliance Value is considered to be the
_MIN_TRUST value, as described previously.
.Pp
If an assertion's Conditions field is missing entirely, its Conditions
Compliance Value is considered to be the _MAX_TRUST value, as defined
previously.
.Pp
The set of successful test clause values is calculated as follows:
.Pp
Recall from the grammar of the Conditions field (see
.Xr keynote 5
for more details) that each clause in the conditions section has two
logical parts: a `test' and an optional `value', which, if present, is
separated from the test with the "->" token. The test subclause is a
predicate that either succeeds (evaluates to logical `true') or fails
(evaluates to logical `false'). The value subclause is a string
expression that evaluates to one value from the ordered set of
compliance values given with the query. If the value subclause is
missing, it is considered to be _MAX_TRUST. That is, the clause
.Bd -literal
foo=="bar";
.Ed
is equivalent to
.Bd literal
foo=="bar" -> _MAX_TRUST;
.Ed
If the value component of a clause is present, in the simplest case it
contains a string expression representing a possible compliance value.
For example, consider an assertion with the following Conditions
field:
.Bd -literal
Conditions:
@user_id == 0 -> "full_access"; # clause (1)
@user_id < 1000 -> "user_access"; # clause (2)
@user_id < 10000 -> "guest_access"; # clause (3)
user_name == "root" -> "full_access"; # clause (4)
.Ed
Here, if the value of the "user_id" attribute is "1073" and the
"user_name" attribute is "root", the possible compliance value set
would contain the values "guest_access" (by clause (3)) and
"full_access" (by clause (4)). If the ordered set of compliance values
given in the query (in ascending order) is {"no_access",
"guest_access", "user_access", "full_access"}, the Conditions
Compliance Value of the assertion would be "full_access" (because
"full_access" has a higher-order value than "guest_access"). If the
"user_id" attribute had the value "19283" and the "user_name"
attribute had the value "nobody", no clause would succeed and the
Conditions Compliance Value would be "no_access", which is the
lowest-order possible value (_MIN_TRUST).
.Pp
If a clause lists an explicit value, its value string must be named in
the query ordered compliance value set. Values not named in the query
compliance value set are considered equivalent to _MIN_TRUST.
.Pp
The value component of a clause can also contain recursively-nested
clauses. Recursively-nested clauses are evaluated only if their parent
test is true. That is,
.Bd -literal
a=="b" -> { b=="c" -> "value1";
d=="e" -> "value2";
true -> "value3"; } ;
.Ed
is equivalent to
.Bd -literal
(a=="b") && (b=="c") -> "value1";
(a=="b") && (d=="e") -> "value2";
(a=="b") -> "value3";
.Ed
Notice that string comparisons are case-sensitive.
.Pp
A regular expression comparison ("~=") is considered true if the
left-hand-side string expression matches the right-hand-side regular
expression. If the POSIX regular expression group matching scheme is
used, the number of groups matched is placed in the temporary meta-
attribute "_0" (dereferenced as _0), and each match is placed in
sequence in the temporary attributes (_1, _2, ..., _N). These
match-attributes' values are valid only within subsequent references
made within the same clause. Regular expression evaluation is case-
sensitive.
.Pp
A runtime error occurring in the evaluation of a test, such as
division by zero or an invalid regular expression, causes the test to
be considered false. For example:
.Bd -literal
foo == "bar" -> {
@a == 1/0 -> "oneval"; # subclause 1
@a == 2 -> "anotherval"; # subclause 2
};
.Ed
Here, subclause 1 triggers a runtime error. Subclause 1 is therefore
false (and has the value _MIN_TRUST). Subclause 2, however, would be
evaluated normally.
.Pp
An invalid <RegExpr> is considered a runtime error and causes the test
in which it occurs to be considered false.
.Pp
.Sh LICENSEE COMPLIANCE VALUE
The Licensee Compliance Value of an assertion is calculated by
evaluating the expression in the Licensees field, based on the
Principal Compliance Value of the principals named there.
.Pp
If an assertion's Licensees field is empty, its Licensee Compliance
Value is considered to be _MIN_TRUST. If an assertion's Licensees
field is missing altogether, its Licensee Compliance Value is
considered to be _MAX_TRUST.
.Pp
For each principal named in the Licensees field, its Principal
Compliance Value is substituted for its name. If no Principal
Compliance Value can be found for some named principal, its name is
substituted with the _MIN_TRUST value.
.Pp
The licensees expression (see
.Xr keynote 5 )
is evaluated as follows:
.nf
* A "(...)" expression has the value of the enclosed subexpression.
* A "&&" expression has the lower-order (minimum) of its two
subexpression values.
* A "||" expression has the higher-order (maximum) of its two
subexpression values.
* A "<K>-of(<List>)" expression has the K-th highest order
compliance value listed in <list>. Values that appear multiple
times are counted with multiplicity. For example, if K = 3 and
the orders of the listed compliance values are (0, 1, 2, 2, 3),
the value of the expression is the compliance value of order 2.
.fi
For example, consider the following Licensees field:
.Bd -literal
Licensees: ("alice" && "bob") || "eve"
.Ed
If the Principal Compliance Value is "yes" for principal "alice", "no"
for principal "bob", and "no" for principal "eve", and "yes" is higher
order than "no" in the query's Compliance Value Set, then the
resulting Licensee Compliance Value is "no".
.Pp
Observe that if there are exactly two possible compliance values
(e.g., "false" and "true"), the rules of Licensee Compliance Value
resolution reduce exactly to standard Boolean logic.
.Pp
.Sh ASSERTION MANAGEMENT
Assertions may be either signed or unsigned. Only signed assertions
should be used as credentials or transmitted or stored on untrusted
media. Unsigned assertions should be used only to specify policy and
for assertions whose integrity has already been verified as conforming
to local policy by some mechanism external to the KeyNote system
itself (e.g., X.509 certificates converted to KeyNote assertions by a
trusted conversion program).
.Pp
Implementations that permit signed credentials to be verified by the
KeyNote compliance checker generally provide two `channels' through
which applications can make assertions available. Unsigned,
locally-trusted assertions are provided over a `trusted' interface,
while signed credentials are provided over an `untrusted' interface.
The KeyNote compliance checker verifies correct signatures for all
assertions submitted over the untrusted interface. The integrity of
KeyNote evaluation requires that only assertions trusted as reflecting
local policy are submitted to KeyNote via the trusted interface.
.Pp
Note that applications that use KeyNote exclusively as a local policy
specification mechanism need use only trusted assertions. Other
applications might need only a small number of infrequently changed
trusted assertions to `bootstrap' a policy whose details are specified
in signed credentials issued by others and submitted over the
untrusted interface.
.Pp
.Sh EXAMPLES
A policy that delegates authority for the "SPEND" application domain
to RSA key dab212 when the amount given in the "dollars" attribute is
less than 10000.
.Bd -literal
Authorizer: "POLICY"
Licensees: "RSA:dab212" # the CFO's key
Conditions: (app_domain=="SPEND") && (@dollars < 10000);
.Ed
RSA key dab212 delegates authorization to any two signers, from a
list, one of which must be DSA key feed1234 in the "SPEND" application
when @dollars < 7500. If the amount in @dollars is 2500 or greater,
the request is approved but logged.
.Bd -literal
KeyNote-Version: 2
Comment: This credential specifies a spending policy
Authorizer: "RSA:dab212" # the CFO
Licensees: "DSA:feed1234" && # The vice president
("RSA:abc123" || # middle manager #1
"DSA:bcd987" || # middle manager #2
"DSA:cde333" || # middle manager #3
"DSA:def975" || # middle manager #4
"DSA:978add") # middle manager #5
Conditions: (app_domain=="SPEND") # note nested clauses
-> { (@(dollars) < 2500)
-> _MAX_TRUST;
(@(dollars) < 7500)
-> "ApproveAndLog";
};
Signature: "RSA-SHA1:9867a1"
.Ed
According to this policy, any two signers from the list of managers
will do if @(dollars) < 1000:
.Bd -literal
KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: 2-of("DSA:feed1234", # The VP
"RSA:abc123", # Middle management clones
"DSA:bcd987",
"DSA:cde333",
"DSA:def975",
"DSA:978add")
Conditions: (app_domain=="SPEND") &&
(@(dollars) < 1000);
.Ed
A credential from dab212 with a similar policy, but only one signer is
required if @(dollars) < 500. A log entry is made if the amount is at
least 100.
.Bd -literal
KeyNote-Version: 2
Comment: This one credential is equivalent to six separate
credentials, one for each VP and middle manager.
Individually, they can spend up to $500, but if
it's $100 or more, we log it.
Authorizer: "RSA:dab212" # From the CFO
Licensees: "DSA:feed1234" || # The VP
"RSA:abc123" || # The middle management clones
"DSA:bcd987" ||
"DSA:cde333" ||
"DSA:def975" ||
"DSA:978add"
Conditions: (app_domain="SPEND") # nested clauses
-> { (@(dollars) < 100) -> _MAX_TRUST;
(@(dollars) < 500) -> "ApproveAndLog";
};
Signature: "RSA-SHA1:186123"
.Ed
Assume a query in which the ordered set of Compliance Values is
{"Reject", "ApproveAndLog", "Approve"}. Under policies E and G, and
credentials F and H, the Policy Compliance Value is "Approve"
(_MAX_TRUST) when:
.Bd -literal
_ACTION_AUTHORIZERS = "DSA:978add"
app_domain = "SPEND"
dollars = "45"
unmentioned_attribute = "whatever"
and
_ACTION_AUTHORIZERS = "RSA:abc123,DSA:cde333"
app_domain = "SPEND"
dollars = "550"
.Ed
The following return "ApproveAndLog":
.Bd -literal
_ACTION_AUTHORIZERS = "DSA:feed1234,DSA:cde333"
app_domain = "SPEND"
dollars = "5500"
and
_ACTION_AUTHORIZERS = "DSA:cde333"
app_domain = "SPEND"
dollars = "150"
.Ed
However, the following return "Reject" (_MIN_TRUST):
.Bd -literal
_ACTION_AUTHORIZERS = "DSA:def975"
app_domain = "SPEND"
dollars = "550"
and
_ACTION_AUTHORIZERS = "DSA:cde333,DSA:978add"
app_domain = "SPEND"
dollars = "5500"
.Ed
.Pp
.Sh FILES
.Fd keynote.h
.Fd libkeynote.a
.Sh SEE ALSO
.Xr keynote 1 ,
.Xr keynote 3 ,
.Xr keynote 5
.Bl -tag -width "AAAAAAA"
.It ``The KeyNote Trust-Management System, Version 2''
M. Blaze, J. Feigenbaum, A. D. Keromytis,
Internet Drafts, RFC 2704.
.It ``Decentralized Trust Management''
M. Blaze, J. Feigenbaum, J. Lacy,
1996 IEEE Conference on Privacy and Security
.It ``Compliance-Checking in the PolicyMaker Trust Management System''
M. Blaze, J. Feigenbaum, M. Strauss,
1998 Financial Crypto Conference
.El
.Sh AUTHOR
Angelos D. Keromytis (angelos@dsl.cis.upenn.edu)
.Sh WEB PAGE
http://www.cis.upenn.edu/~keynote
.Sh BUGS
None that we know of.
If you find any, please report them at
.Bd -literal -offset indent -compact
keynote@research.att.com
.Ed
|