1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
/* $NetBSD: n_erf.c,v 1.1 1995/10/10 23:36:43 ragge Exp $ */
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static char sccsid[] = "@(#)erf.c 8.1 (Berkeley) 6/4/93";
#endif /* not lint */
#include "mathimpl.h"
/* Modified Nov 30, 1992 P. McILROY:
* Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
* Replaced even+odd with direct calculation for x < .84375,
* to avoid destructive cancellation.
*
* Performance of erfc(x):
* In 300000 trials in the range [.83, .84375] the
* maximum observed error was 3.6ulp.
*
* In [.84735,1.25] the maximum observed error was <2.5ulp in
* 100000 runs in the range [1.2, 1.25].
*
* In [1.25,26] (Not including subnormal results)
* the error is < 1.7ulp.
*/
/* double erf(double x)
* double erfc(double x)
* x
* 2 |\
* erf(x) = --------- | exp(-t*t)dt
* sqrt(pi) \|
* 0
*
* erfc(x) = 1-erf(x)
*
* Method:
* 1. Reduce x to |x| by erf(-x) = -erf(x)
* 2. For x in [0, 0.84375]
* erf(x) = x + x*P(x^2)
* erfc(x) = 1 - erf(x) if x<=0.25
* = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375]
* where
* 2 2 4 20
* P = P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x )
* is an approximation to (erf(x)-x)/x with precision
*
* -56.45
* | P - (erf(x)-x)/x | <= 2
*
*
* Remark. The formula is derived by noting
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
* and that
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
* is close to one. The interval is chosen because the fixed
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
* near 0.6174), and by some experiment, 0.84375 is chosen to
* guarantee the error is less than one ulp for erf.
*
* 3. For x in [0.84375,1.25], let s = x - 1, and
* c = 0.84506291151 rounded to single (24 bits)
* erf(x) = c + P1(s)/Q1(s)
* erfc(x) = (1-c) - P1(s)/Q1(s)
* |P1/Q1 - (erf(x)-c)| <= 2**-59.06
* Remark: here we use the taylor series expansion at x=1.
* erf(1+s) = erf(1) + s*Poly(s)
* = 0.845.. + P1(s)/Q1(s)
* That is, we use rational approximation to approximate
* erf(1+s) - (c = (single)0.84506291151)
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
* where
* P1(s) = degree 6 poly in s
* Q1(s) = degree 6 poly in s
*
* 4. For x in [1.25, 2]; [2, 4]
* erf(x) = 1.0 - tiny
* erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
*
* Where z = 1/(x*x), R is degree 9, and S is degree 3;
*
* 5. For x in [4,28]
* erf(x) = 1.0 - tiny
* erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
*
* Where P is degree 14 polynomial in 1/(x*x).
*
* Notes:
* Here 4 and 5 make use of the asymptotic series
* exp(-x*x)
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
* x*sqrt(pi)
*
* where for z = 1/(x*x)
* P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
*
* Thus we use rational approximation to approximate
* erfc*x*exp(x*x) ~ 1/sqrt(pi);
*
* The error bound for the target function, G(z) for
* the interval
* [4, 28]:
* |eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
* for [2, 4]:
* |R(z)/S(z) - G(z)| < 2**(-58.24)
* for [1.25, 2]:
* |R(z)/S(z) - G(z)| < 2**(-58.12)
*
* 6. For inf > x >= 28
* erf(x) = 1 - tiny (raise inexact)
* erfc(x) = tiny*tiny (raise underflow)
*
* 7. Special cases:
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
* erfc/erf(NaN) is NaN
*/
#if defined(__vax__) || defined(tahoe)
#define _IEEE 0
#define TRUNC(x) (double) (float) (x)
#else
#define _IEEE 1
#define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
#define infnan(x) 0.0
#endif
#ifdef _IEEE_LIBM
/*
* redefining "___function" to "function" in _IEEE_LIBM mode
*/
#include "ieee_libm.h"
#endif
static double
tiny = 1e-300,
half = 0.5,
one = 1.0,
two = 2.0,
c = 8.45062911510467529297e-01, /* (float)0.84506291151 */
/*
* Coefficients for approximation to erf in [0,0.84375]
*/
p0t8 = 1.02703333676410051049867154944018394163280,
p0 = 1.283791670955125638123339436800229927041e-0001,
p1 = -3.761263890318340796574473028946097022260e-0001,
p2 = 1.128379167093567004871858633779992337238e-0001,
p3 = -2.686617064084433642889526516177508374437e-0002,
p4 = 5.223977576966219409445780927846432273191e-0003,
p5 = -8.548323822001639515038738961618255438422e-0004,
p6 = 1.205520092530505090384383082516403772317e-0004,
p7 = -1.492214100762529635365672665955239554276e-0005,
p8 = 1.640186161764254363152286358441771740838e-0006,
p9 = -1.571599331700515057841960987689515895479e-0007,
p10= 1.073087585213621540635426191486561494058e-0008;
/*
* Coefficients for approximation to erf in [0.84375,1.25]
*/
static double
pa0 = -2.362118560752659485957248365514511540287e-0003,
pa1 = 4.148561186837483359654781492060070469522e-0001,
pa2 = -3.722078760357013107593507594535478633044e-0001,
pa3 = 3.183466199011617316853636418691420262160e-0001,
pa4 = -1.108946942823966771253985510891237782544e-0001,
pa5 = 3.547830432561823343969797140537411825179e-0002,
pa6 = -2.166375594868790886906539848893221184820e-0003,
qa1 = 1.064208804008442270765369280952419863524e-0001,
qa2 = 5.403979177021710663441167681878575087235e-0001,
qa3 = 7.182865441419627066207655332170665812023e-0002,
qa4 = 1.261712198087616469108438860983447773726e-0001,
qa5 = 1.363708391202905087876983523620537833157e-0002,
qa6 = 1.198449984679910764099772682882189711364e-0002;
/*
* log(sqrt(pi)) for large x expansions.
* The tail (lsqrtPI_lo) is included in the rational
* approximations.
*/
static double
lsqrtPI_hi = .5723649429247000819387380943226;
/*
* lsqrtPI_lo = .000000000000000005132975581353913;
*
* Coefficients for approximation to erfc in [2, 4]
*/
static double
rb0 = -1.5306508387410807582e-010, /* includes lsqrtPI_lo */
rb1 = 2.15592846101742183841910806188e-008,
rb2 = 6.24998557732436510470108714799e-001,
rb3 = 8.24849222231141787631258921465e+000,
rb4 = 2.63974967372233173534823436057e+001,
rb5 = 9.86383092541570505318304640241e+000,
rb6 = -7.28024154841991322228977878694e+000,
rb7 = 5.96303287280680116566600190708e+000,
rb8 = -4.40070358507372993983608466806e+000,
rb9 = 2.39923700182518073731330332521e+000,
rb10 = -6.89257464785841156285073338950e-001,
sb1 = 1.56641558965626774835300238919e+001,
sb2 = 7.20522741000949622502957936376e+001,
sb3 = 9.60121069770492994166488642804e+001;
/*
* Coefficients for approximation to erfc in [1.25, 2]
*/
static double
rc0 = -2.47925334685189288817e-007, /* includes lsqrtPI_lo */
rc1 = 1.28735722546372485255126993930e-005,
rc2 = 6.24664954087883916855616917019e-001,
rc3 = 4.69798884785807402408863708843e+000,
rc4 = 7.61618295853929705430118701770e+000,
rc5 = 9.15640208659364240872946538730e-001,
rc6 = -3.59753040425048631334448145935e-001,
rc7 = 1.42862267989304403403849619281e-001,
rc8 = -4.74392758811439801958087514322e-002,
rc9 = 1.09964787987580810135757047874e-002,
rc10 = -1.28856240494889325194638463046e-003,
sc1 = 9.97395106984001955652274773456e+000,
sc2 = 2.80952153365721279953959310660e+001,
sc3 = 2.19826478142545234106819407316e+001;
/*
* Coefficients for approximation to erfc in [4,28]
*/
static double
rd0 = -2.1491361969012978677e-016, /* includes lsqrtPI_lo */
rd1 = -4.99999999999640086151350330820e-001,
rd2 = 6.24999999772906433825880867516e-001,
rd3 = -1.54166659428052432723177389562e+000,
rd4 = 5.51561147405411844601985649206e+000,
rd5 = -2.55046307982949826964613748714e+001,
rd6 = 1.43631424382843846387913799845e+002,
rd7 = -9.45789244999420134263345971704e+002,
rd8 = 6.94834146607051206956384703517e+003,
rd9 = -5.27176414235983393155038356781e+004,
rd10 = 3.68530281128672766499221324921e+005,
rd11 = -2.06466642800404317677021026611e+006,
rd12 = 7.78293889471135381609201431274e+006,
rd13 = -1.42821001129434127360582351685e+007;
double erf(x)
double x;
{
double R,S,P,Q,ax,s,y,z,r,fabs(),exp();
if(!finite(x)) { /* erf(nan)=nan */
if (isnan(x))
return(x);
return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
}
if ((ax = x) < 0)
ax = - ax;
if (ax < .84375) {
if (ax < 3.7e-09) {
if (ax < 1.0e-308)
return 0.125*(8.0*x+p0t8*x); /*avoid underflow */
return x + p0*x;
}
y = x*x;
r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
return x + x*(p0+r);
}
if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
s = fabs(x)-one;
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
if (x>=0)
return (c + P/Q);
else
return (-c - P/Q);
}
if (ax >= 6.0) { /* inf>|x|>=6 */
if (x >= 0.0)
return (one-tiny);
else
return (tiny-one);
}
/* 1.25 <= |x| < 6 */
z = -ax*ax;
s = -one/z;
if (ax < 2.0) {
R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
S = one+s*(sc1+s*(sc2+s*sc3));
} else {
R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
S = one+s*(sb1+s*(sb2+s*sb3));
}
y = (R/S -.5*s) - lsqrtPI_hi;
z += y;
z = exp(z)/ax;
if (x >= 0)
return (one-z);
else
return (z-one);
}
double erfc(x)
double x;
{
double R,S,P,Q,s,ax,y,z,r,fabs(),__exp__D();
if (!finite(x)) {
if (isnan(x)) /* erfc(NaN) = NaN */
return(x);
else if (x > 0) /* erfc(+-inf)=0,2 */
return 0.0;
else
return 2.0;
}
if ((ax = x) < 0)
ax = -ax;
if (ax < .84375) { /* |x|<0.84375 */
if (ax < 1.38777878078144568e-17) /* |x|<2**-56 */
return one-x;
y = x*x;
r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
if (ax < .0625) { /* |x|<2**-4 */
return (one-(x+x*(p0+r)));
} else {
r = x*(p0+r);
r += (x-half);
return (half - r);
}
}
if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
s = ax-one;
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
if (x>=0) {
z = one-c; return z - P/Q;
} else {
z = c+P/Q; return one+z;
}
}
if (ax >= 28) /* Out of range */
if (x>0)
return (tiny*tiny);
else
return (two-tiny);
z = ax;
TRUNC(z);
y = z - ax; y *= (ax+z);
z *= -z; /* Here z + y = -x^2 */
s = one/(-z-y); /* 1/(x*x) */
if (ax >= 4) { /* 6 <= ax */
R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
+s*(rd11+s*(rd12+s*rd13))))))))))));
y += rd0;
} else if (ax >= 2) {
R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
S = one+s*(sb1+s*(sb2+s*sb3));
y += R/S;
R = -.5*s;
} else {
R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
S = one+s*(sc1+s*(sc2+s*sc3));
y += R/S;
R = -.5*s;
}
/* return exp(-x^2 - lsqrtPI_hi + R + y)/x; */
s = ((R + y) - lsqrtPI_hi) + z;
y = (((z-s) - lsqrtPI_hi) + R) + y;
r = __exp__D(s, y)/x;
if (x>0)
return r;
else
return two-r;
}
|