1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
/* $OpenBSD: n_log1p.c,v 1.10 2009/04/11 20:03:21 martynas Exp $ */
/* $NetBSD: n_log1p.c,v 1.1 1995/10/10 23:37:00 ragge Exp $ */
/*
* Copyright (c) 1985, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93";
#endif /* not lint */
/* LOG1P(x)
* RETURN THE LOGARITHM OF 1+x
* DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
* CODED IN C BY K.C. NG, 1/19/85;
* REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
*
* Required system supported functions:
* scalbn(x,n)
* copysign(x,y)
* logb(x)
* finite(x)
*
* Required kernel function:
* log__L(z)
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* log(1+f) is computed by
*
* log(1+f) = 2s + s*log__L(s*s)
* where
* log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
*
* See log__L() for the values of the coefficients.
*
* 3. Finally, log(1+x) = k*ln2 + log(1+f).
*
* Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
* n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
* 20 bits (for VAX D format), or the last 21 bits ( for IEEE
* double) is 0. This ensures n*ln2hi is exactly representable.
* 2. In step 1, f may not be representable. A correction term c
* for f is computed. It follows that the correction term for
* f - t (the leading term of log(1+f) in step 2) is c-c*x. We
* add this correction term to n*ln2lo to attenuate the error.
*
*
* Special cases:
* log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
* log1p(INF) is +INF; log1p(-1) is -INF with signal;
* only log1p(0)=0 is exact for finite argument.
*
* Accuracy:
* log1p(x) returns the exact log(1+x) nearly rounded. In a test run
* with 1,536,000 random arguments on a VAX, the maximum observed
* error was .846 ulps (units in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#include <errno.h>
#include "math.h"
#include "mathimpl.h"
static const double ln2hi = 6.9314718055829871446E-1;
static const double ln2lo = 1.6465949582897081279E-12;
static const double sqrt2 = 1.4142135623730950622E0;
double
log1p(double x)
{
static const double zero=0.0, negone= -1.0, one=1.0,
half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
double z,s,t,c;
int k;
if (isnan(x))
return (x);
if(finite(x)) {
if( x > negone ) {
/* argument reduction */
if(copysign(x,one)<small) return(x);
k=logb(one+x); z=scalbn(x,-k); t=scalbn(one,-k);
if(z+t >= sqrt2 )
{ k += 1 ; z *= half; t *= half; }
t += negone; x = z + t;
c = (t-x)+z ; /* correction term for x */
/* compute log(1+x) */
s = x/(2+x); t = x*x*half;
c += (k*ln2lo-c*x);
z = c+s*(t+__log__L(s*s));
x += (z - t) ;
return(k*ln2hi+x);
}
/* end of if (x > negone) */
else {
#if defined(__vax__)
if ( x == negone )
return (infnan(-ERANGE)); /* -INF */
else
return (infnan(EDOM)); /* NaN */
#else /* defined(__vax__) */
/* x = -1, return -INF with signal */
if ( x == negone ) return( negone/zero );
/* negative argument for log, return NaN with signal */
else return ( zero / zero );
#endif /* defined(__vax__) */
}
}
/* end of if (finite(x)) */
/* log(-INF) is NaN */
else if(x<0)
return(zero/zero);
/* log(+INF) is INF */
else return(x);
}
|