summaryrefslogtreecommitdiff
path: root/sbin/iked/crypto.c
blob: f66cc77b8dcf6adc7c437014e293cefb37657dda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/*	$OpenBSD: crypto.c,v 1.2 2010/06/14 16:31:29 reyk Exp $	*/
/*	$vantronix: crypto.c,v 1.18 2010/05/28 15:34:35 reyk Exp $	*/

/*
 * Copyright (c) 2010 Reyk Floeter <reyk@vantronix.net>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/param.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/uio.h>

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <event.h>

#include <openssl/hmac.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#include <openssl/md5.h>
#include <openssl/x509.h>

#include "iked.h"
#include "ikev2.h"

struct iked_hash *
hash_new(u_int8_t type, u_int16_t id)
{
	struct iked_hash	*hash;
	const EVP_MD		*md = NULL;
	HMAC_CTX		*ctx = NULL;
	int			 length = 0, fixedkey = 0, trunc = 0;

	switch (type) {
	case IKEV2_XFORMTYPE_PRF:
		switch (id) {
		case IKEV2_XFORMPRF_HMAC_MD5:
			md = EVP_md5();
			length = MD5_DIGEST_LENGTH;
			break;
		case IKEV2_XFORMPRF_HMAC_SHA1:
			md = EVP_sha1();
			length = SHA_DIGEST_LENGTH;
			break;
		case IKEV2_XFORMPRF_HMAC_SHA2_256:
			md = EVP_sha256();
			length = SHA256_DIGEST_LENGTH;
			break;
		case IKEV2_XFORMPRF_HMAC_SHA2_384:
			md = EVP_sha384();
			length = SHA384_DIGEST_LENGTH;
			break;
		case IKEV2_XFORMPRF_HMAC_SHA2_512:
			md = EVP_sha512();
			length = SHA512_DIGEST_LENGTH;
			break;
		case IKEV2_XFORMPRF_AES128_XCBC:
			fixedkey = 128 / 8;
			length = fixedkey;
			/* FALLTHROUGH */
		case IKEV2_XFORMPRF_HMAC_TIGER:
		case IKEV2_XFORMPRF_AES128_CMAC:
		default:
			log_debug("%s: prf %s not supported",
			    print_map(id, ikev2_xformprf_map));
			break;
		}
		break;
	case IKEV2_XFORMTYPE_INTEGR:
		switch (id) {
		case IKEV2_XFORMAUTH_HMAC_MD5_96:
			md = EVP_md5();
			length = MD5_DIGEST_LENGTH;
			trunc = 12;
			break;
		case IKEV2_XFORMAUTH_HMAC_SHA1_96:
			md = EVP_sha1();
			length = SHA_DIGEST_LENGTH;
			trunc = 12;
			break;
		case IKEV2_XFORMAUTH_HMAC_SHA2_256_128:
			md = EVP_sha256();
			length = SHA256_DIGEST_LENGTH;
			trunc = 16;
			break;
		case IKEV2_XFORMAUTH_HMAC_SHA2_384_192:
			md = EVP_sha384();
			length = SHA384_DIGEST_LENGTH;
			trunc = 24;
			break;
		case IKEV2_XFORMAUTH_HMAC_SHA2_512_256:
			md = EVP_sha512();
			length = SHA512_DIGEST_LENGTH;
			trunc = 32;
			break;
		case IKEV2_XFORMAUTH_NONE:
		case IKEV2_XFORMAUTH_DES_MAC:
		case IKEV2_XFORMAUTH_KPDK_MD5:
		case IKEV2_XFORMAUTH_AES_XCBC_96:
		case IKEV2_XFORMAUTH_HMAC_MD5_128:
		case IKEV2_XFORMAUTH_HMAC_SHA1_160:
		case IKEV2_XFORMAUTH_AES_CMAC_96:
		case IKEV2_XFORMAUTH_AES_128_GMAC:
		case IKEV2_XFORMAUTH_AES_192_GMAC:
		case IKEV2_XFORMAUTH_AES_256_GMAC:
		default:
			log_debug("%s: auth %s not supported",
			    print_map(id, ikev2_xformauth_map));
			break;
		}
		break;
	default:
		log_debug("%s: hash type %s not supported",
		    print_map(id, ikev2_xformtype_map));
		break;
	}
	if (md == NULL)
		return (NULL);

	if ((hash = calloc(1, sizeof(*hash))) == NULL) {
		log_debug("%s: alloc hash", __func__);
		return (NULL);
	}

	hash->hash_type = type;
	hash->hash_id = id;
	hash->hash_priv = md;
	hash->hash_ctx = NULL;
	hash->hash_trunc = trunc;
	hash->hash_length = length;
	hash->hash_fixedkey = fixedkey;

	if ((ctx = calloc(1, sizeof(*ctx))) == NULL) {
		log_debug("%s: alloc hash ctx", __func__);
		hash_free(hash);
		return (NULL);
	}

	HMAC_CTX_init(ctx);
	hash->hash_ctx = ctx;

	return (hash);
}

struct ibuf *
hash_setkey(struct iked_hash *hash, void *key, size_t keylen)
{
	ibuf_release(hash->hash_key);
	if ((hash->hash_key = ibuf_new(key, keylen)) == NULL) {
		log_debug("%s: alloc hash key", __func__);
		return (NULL);
	}
	return (hash->hash_key);
}

void
hash_free(struct iked_hash *hash)
{
	if (hash == NULL)
		return;
	if (hash->hash_ctx != NULL) {
		HMAC_CTX_cleanup(hash->hash_ctx);
		free(hash->hash_ctx);
	}
	ibuf_release(hash->hash_key);
	free(hash);
}

void
hash_init(struct iked_hash *hash)
{
	HMAC_Init_ex(hash->hash_ctx, hash->hash_key->buf,
	    ibuf_length(hash->hash_key), hash->hash_priv, NULL);
}

void
hash_update(struct iked_hash *hash, void *buf, size_t len)
{
	HMAC_Update(hash->hash_ctx, buf, len);
}

void
hash_final(struct iked_hash *hash, void *buf, size_t *len)
{
	u_int length = 0;

	HMAC_Final(hash->hash_ctx, buf, &length);
	*len = (size_t)length;

	/* Truncate the result if required by the alg */
	if (hash->hash_trunc && *len > hash->hash_trunc)
		*len = hash->hash_trunc;
}

size_t
hash_length(struct iked_hash *hash)
{
	if (hash->hash_trunc)
		return (hash->hash_trunc);
	return (hash->hash_length);
}

size_t
hash_keylength(struct iked_hash *hash)
{
	return (hash->hash_length);
}

struct iked_cipher *
cipher_new(u_int8_t type, u_int16_t id, u_int16_t id_length)
{
	struct iked_cipher	*encr;
	const EVP_CIPHER	*cipher = NULL;
	EVP_CIPHER_CTX		*ctx = NULL;
	int			 length = 0, fixedkey = 0, ivlength = 0;

	switch (type) {
	case IKEV2_XFORMTYPE_ENCR:
		switch (id) {
		case IKEV2_XFORMENCR_3DES:
			cipher = EVP_des_ede3_cbc();
			length = EVP_CIPHER_block_size(cipher);
			fixedkey = EVP_CIPHER_key_length(cipher);
			ivlength = EVP_CIPHER_iv_length(cipher);
			break;
		case IKEV2_XFORMENCR_AES_CBC:
			switch (id_length) {
			case 128:
				cipher = EVP_aes_128_cbc();
				break;
			case 192:
				cipher = EVP_aes_192_cbc();
				break;
			case 256:
				cipher = EVP_aes_256_cbc();
				break;
			default:
				log_debug("%s: invalid key length %d"
				    " for cipher %s", __func__, id_length,
				    print_map(id, ikev2_xformencr_map));
				break;
			}
			if (cipher == NULL)
				break;
			length = EVP_CIPHER_block_size(cipher);
			ivlength = EVP_CIPHER_iv_length(cipher);
			fixedkey = EVP_CIPHER_key_length(cipher);
			break;
		case IKEV2_XFORMENCR_DES_IV64:
		case IKEV2_XFORMENCR_DES:
		case IKEV2_XFORMENCR_RC5:
		case IKEV2_XFORMENCR_IDEA:
		case IKEV2_XFORMENCR_CAST:
		case IKEV2_XFORMENCR_BLOWFISH:
		case IKEV2_XFORMENCR_3IDEA:
		case IKEV2_XFORMENCR_DES_IV32:
		case IKEV2_XFORMENCR_NULL:
		case IKEV2_XFORMENCR_AES_CTR:
			/* FALLTHROUGH */
		default:
			log_debug("%s: cipher %s not supported",
			    print_map(id, ikev2_xformencr_map));
			cipher = NULL;
			break;
		}
		break;
	default:
		log_debug("%s: cipher type %s not supported",
		    print_map(id, ikev2_xformtype_map));
		break;
	}
	if (cipher == NULL)
		return (NULL);

	if ((encr = calloc(1, sizeof(*encr))) == NULL) {
		log_debug("%s: alloc cipher", __func__);
		return (NULL);
	}

	encr->encr_id = id;
	encr->encr_priv = cipher;
	encr->encr_ctx = NULL;
	encr->encr_length = length;
	encr->encr_fixedkey = fixedkey;
	encr->encr_ivlength = ivlength ? ivlength : length;

	if ((ctx = calloc(1, sizeof(*ctx))) == NULL) {
		log_debug("%s: alloc cipher ctx", __func__);
		cipher_free(encr);
		return (NULL);
	}

	EVP_CIPHER_CTX_init(ctx);
	EVP_CIPHER_CTX_set_padding(ctx, 0);
	encr->encr_ctx = ctx;

	return (encr);
}

struct ibuf *
cipher_setkey(struct iked_cipher *encr, void *key, size_t keylen)
{
	ibuf_release(encr->encr_key);
	if ((encr->encr_key = ibuf_new(key, keylen)) == NULL) {
		log_debug("%s: alloc cipher key", __func__);
		return (NULL);
	}
	return (encr->encr_key);
}

struct ibuf *
cipher_setiv(struct iked_cipher *encr, void *iv, size_t len)
{
	ibuf_release(encr->encr_iv);
	if (iv != NULL) {
		if (len < encr->encr_ivlength) {
			log_debug("%s: invalid IV length %d", len);
			return (NULL);
		}
		encr->encr_iv = ibuf_new(iv, encr->encr_ivlength);
	} else {
		/* Get new random IV */
		encr->encr_iv = ibuf_random(encr->encr_ivlength);
	}
	if (encr->encr_iv == NULL) {
		log_debug("%s: failed to set IV", __func__);
		return (NULL);
	}
	return (encr->encr_iv);
}

void
cipher_free(struct iked_cipher *encr)
{
	if (encr == NULL)
		return;
	if (encr->encr_ctx != NULL) {
		EVP_CIPHER_CTX_cleanup(encr->encr_ctx);
		free(encr->encr_ctx);
	}
	ibuf_release(encr->encr_key);
	free(encr);
}

void
cipher_init(struct iked_cipher *encr, int enc)
{
	EVP_CipherInit_ex(encr->encr_ctx, encr->encr_priv, NULL,
	    ibuf_data(encr->encr_key), ibuf_data(encr->encr_iv), enc);
}

void
cipher_init_encrypt(struct iked_cipher *encr)
{
	cipher_init(encr, 1);
}

void
cipher_init_decrypt(struct iked_cipher *encr)
{
	cipher_init(encr, 0);
}

void
cipher_update(struct iked_cipher *encr, void *in, size_t inlen,
    void *out, size_t *outlen)
{
	int	 olen;

	olen = 0;
	EVP_CipherUpdate(encr->encr_ctx, out, &olen, in, inlen);
	*outlen = (size_t)olen;
}

void
cipher_final(struct iked_cipher *encr, void *out, size_t *outlen)
{
	int	 olen;

	olen = 0;
	if (!EVP_CipherFinal_ex(encr->encr_ctx, out, &olen)) {
		ca_sslerror();
		*outlen = 0;
		return;
	}
	*outlen = (size_t)olen;
}

size_t
cipher_length(struct iked_cipher *encr)
{
	return (encr->encr_length);
}

size_t
cipher_keylength(struct iked_cipher *encr)
{
	if (encr->encr_fixedkey)
		return (encr->encr_fixedkey);

	/* Might return zero */
	return (ibuf_length(encr->encr_key));
}

size_t
cipher_ivlength(struct iked_cipher *encr)
{
	return (encr->encr_ivlength);
}

size_t
cipher_outlength(struct iked_cipher *encr, size_t inlen)
{
	return (inlen + encr->encr_length);
}

struct iked_dsa *
dsa_new(u_int16_t id, struct iked_hash *prf, int sign)
{
	struct iked_dsa		*dsap = NULL, dsa;

	bzero(&dsa, sizeof(dsa));

	switch (id) {
	case IKEV2_AUTH_RSA_SIG:
		/*
		 * XXX RFC4306 is not very clear about this and the
		 * XXX informational RFC4718 says that we should use
		 * XXX SHA1 here, but shouldn't we use the negotiated PRF
		 * XXX alg instead?
		 */
		if ((dsa.dsa_priv =
		    EVP_get_digestbyname("sha1WithRSAEncryption")) == NULL)
			fatalx("dsa_new: cipher not available");
		break;
	case IKEV2_AUTH_SHARED_KEY_MIC:
		if (prf == NULL || prf->hash_priv == NULL)
			fatalx("dsa_new: invalid PRF");
		dsa.dsa_priv = prf->hash_priv;
		dsa.dsa_hmac = 1;
		break;
	case IKEV2_AUTH_DSS_SIG:
		dsa.dsa_priv = EVP_dss1();
		break;
	case IKEV2_AUTH_ECDSA_256:
		dsa.dsa_priv = EVP_sha256();
		break;
	case IKEV2_AUTH_ECDSA_384:
		dsa.dsa_priv = EVP_sha384();
		break;
	case IKEV2_AUTH_ECDSA_512:
		dsa.dsa_priv = EVP_sha512();
		break;
	default:
		log_debug("%s: auth method %s not supported",
		    print_map(id, ikev2_auth_map));
		break;
	}

	if ((dsap = calloc(1, sizeof(*dsap))) == NULL) {
		log_debug("%s: alloc dsa ctx", __func__);

		return (NULL);
	}
	memcpy(dsap, &dsa, sizeof(*dsap));

	dsap->dsa_method = id;
	dsap->dsa_sign = sign;

	if (dsap->dsa_hmac) {
		if ((dsap->dsa_ctx = calloc(1, sizeof(HMAC_CTX))) == NULL) {
			log_debug("%s: alloc hash ctx", __func__);
			dsa_free(dsap);
			return (NULL);
		}
		HMAC_CTX_init((HMAC_CTX *)dsap->dsa_ctx);
	} else {
		if ((dsap->dsa_ctx = EVP_MD_CTX_create()) == NULL) {
			log_debug("%s: alloc digest ctx", __func__);
			dsa_free(dsap);
			return (NULL);
		}
	}

	return (dsap);
}

struct iked_dsa *
dsa_sign_new(u_int16_t id, struct iked_hash *prf)
{
	return (dsa_new(id, prf, 1));
}

struct iked_dsa *
dsa_verify_new(u_int16_t id, struct iked_hash *prf)
{
	return (dsa_new(id, prf, 0));
}

void
dsa_free(struct iked_dsa *dsa)
{
	if (dsa == NULL)
		return;
	if (dsa->dsa_hmac) {
		HMAC_CTX_cleanup((HMAC_CTX *)dsa->dsa_ctx);
		free(dsa->dsa_ctx);
	} else {
		EVP_MD_CTX_destroy((EVP_MD_CTX *)dsa->dsa_ctx);
		if (dsa->dsa_key)
			EVP_PKEY_free(dsa->dsa_key);
		if (dsa->dsa_cert)
			X509_free(dsa->dsa_cert);
	}

	ibuf_release(dsa->dsa_keydata);
}

struct ibuf *
dsa_setkey(struct iked_dsa *dsa, void *key, size_t keylen, u_int8_t type)
{
	BIO		*rawcert = NULL;
	X509		*cert = NULL;
	RSA		*rsa = NULL;
	EVP_PKEY	*pkey = NULL;

	ibuf_release(dsa->dsa_keydata);
	if ((dsa->dsa_keydata = ibuf_new(key, keylen)) == NULL) {
		log_debug("%s: alloc signature key", __func__);
		return (NULL);
	}

	if ((rawcert = BIO_new_mem_buf(key, keylen)) == NULL)
		goto err;

	switch (type) {
	case IKEV2_CERT_X509_CERT:
		if ((cert = d2i_X509_bio(rawcert, NULL)) == NULL)
			goto sslerr;
		if ((pkey = X509_get_pubkey(cert)) == NULL)
			goto sslerr;
		dsa->dsa_cert = cert;
		dsa->dsa_key = pkey;
		break;
	case IKEV2_CERT_RSA_KEY:
		if (dsa->dsa_sign) {
			if ((rsa = d2i_RSAPrivateKey_bio(rawcert,
			    NULL)) == NULL)
				goto sslerr;
		} else {
			if ((rsa = d2i_RSAPublicKey_bio(rawcert,
			    NULL)) == NULL)
				goto sslerr;
		}

		if ((pkey = EVP_PKEY_new()) == NULL)
			goto sslerr;
		if (!EVP_PKEY_set1_RSA(pkey, rsa))
			goto sslerr;

		dsa->dsa_cert = NULL;
		dsa->dsa_key = pkey;
		break;
	default:
		if (dsa->dsa_hmac)
			break;
		log_debug("%s: unsupported key type", __func__);
		goto err;
	}

	return (dsa->dsa_keydata);

 sslerr:
	ca_sslerror();
 err:
	log_debug("%s: error", __func__);

	if (rsa != NULL)
		RSA_free(rsa);
	if (pkey != NULL)
		EVP_PKEY_free(pkey);
	if (cert != NULL)
		X509_free(cert);
	if (rawcert != NULL)
		BIO_free(rawcert);
	ibuf_release(dsa->dsa_keydata);
	return (NULL);
}

int
dsa_init(struct iked_dsa *dsa)
{
	int	 ret;

	if (dsa->dsa_hmac) {
		HMAC_Init_ex(dsa->dsa_ctx, ibuf_data(dsa->dsa_keydata),
		    ibuf_length(dsa->dsa_keydata), dsa->dsa_priv, NULL);
		return (0);
	}

	if (dsa->dsa_sign)
		ret = EVP_SignInit_ex(dsa->dsa_ctx, dsa->dsa_priv, NULL);
	else
		ret = EVP_VerifyInit_ex(dsa->dsa_ctx, dsa->dsa_priv, NULL);

	return (ret ? 0 : -1);
}

int
dsa_update(struct iked_dsa *dsa, const void *buf, size_t len)
{
	int	ret = 1;

	if (dsa->dsa_hmac)
		HMAC_Update(dsa->dsa_ctx, buf, len);
	else if (dsa->dsa_sign)
		ret = EVP_SignUpdate(dsa->dsa_ctx, buf, len);
	else
		ret = EVP_VerifyUpdate(dsa->dsa_ctx, buf, len);

	return (ret ? 0 : -1);
}

size_t
dsa_length(struct iked_dsa *dsa)
{
	if (dsa->dsa_hmac)
		return (EVP_MD_size(dsa->dsa_priv));
	return (EVP_PKEY_size(dsa->dsa_key));
}

ssize_t
dsa_sign_final(struct iked_dsa *dsa, void *buf, size_t len)
{
	u_int		siglen;

	if (len < dsa_length(dsa))
		return (-1);

	if (dsa->dsa_hmac)
		HMAC_Final(dsa->dsa_ctx, buf, &siglen);
	else {
		if (!EVP_SignFinal(dsa->dsa_ctx, buf, &siglen,
		    dsa->dsa_key))
			return (-1);
	}

	return (siglen);
}

ssize_t
dsa_verify_final(struct iked_dsa *dsa, void *buf, size_t len)
{
	u_int8_t	 sig[EVP_MAX_MD_SIZE];
	u_int		 siglen = sizeof(sig);

	if (dsa->dsa_hmac) {
		HMAC_Final(dsa->dsa_ctx, sig, &siglen);
		if (siglen != len || memcmp(buf, sig, siglen) != 0)
			return (-1);
	} else {
		if (!EVP_VerifyFinal(dsa->dsa_ctx, buf, len,
		    dsa->dsa_key)) {
			ca_sslerror();
			return (-1);
		}
	}

	return (0);
}