1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
//
// convert.c - Little-endian conversion
//
// Written by Eryk Vershen (eryk@apple.com)
//
// See comments in convert.h
//
/*
* Copyright 1996,1997,1998 by Apple Computer, Inc.
* All Rights Reserved
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appears in all copies and
* that both the copyright notice and this permission notice appear in
* supporting documentation.
*
* APPLE COMPUTER DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL APPLE COMPUTER BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
* NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifdef __linux__
#include <endian.h>
#else
#define LITTLE_ENDIAN 1234
#define BIG_ENDIAN 4321
#define BYTE_ORDER 4321
#endif
#include "convert.h"
//
// Defines
//
//
// Types
//
//
// Global Constants
//
//
// Global Variables
//
//
// Forward declarations
//
void reverse2(u8 *bytes);
void reverse4(u8 *bytes);
//
// Routines
//
int
convert_dpme(DPME *data, int to_cpu_form)
{
#if BYTE_ORDER == LITTLE_ENDIAN
// Since we will toss the block if the signature doesn't match
// we don't need to check the signature down here.
reverse2((u8 *)&data->dpme_signature);
reverse2((u8 *)&data->dpme_reserved_1);
reverse4((u8 *)&data->dpme_map_entries);
reverse4((u8 *)&data->dpme_pblock_start);
reverse4((u8 *)&data->dpme_pblocks);
reverse4((u8 *)&data->dpme_lblock_start);
reverse4((u8 *)&data->dpme_lblocks);
reverse4((u8 *)&data->dpme_flags);
reverse4((u8 *)&data->dpme_boot_block);
reverse4((u8 *)&data->dpme_boot_bytes);
reverse4((u8 *)&data->dpme_load_addr);
reverse4((u8 *)&data->dpme_load_addr_2);
reverse4((u8 *)&data->dpme_goto_addr);
reverse4((u8 *)&data->dpme_goto_addr_2);
reverse4((u8 *)&data->dpme_checksum);
convert_bzb((BZB *)data->dpme_bzb, to_cpu_form);
#endif
return 0;
}
#if BYTE_ORDER == LITTLE_ENDIAN
int
convert_bzb(BZB *data, int to_cpu_form)
{
// Since the data here varies according to the type of partition we
// do not want to convert willy-nilly. We use the flag to determine
// whether to check for the signature before or after we flip the bytes.
if (to_cpu_form) {
reverse4((u8 *)&data->bzb_magic);
if (data->bzb_magic != BZBMAGIC) {
reverse4((u8 *)&data->bzb_magic);
if (data->bzb_magic != BZBMAGIC) {
return 0;
}
}
} else {
if (data->bzb_magic != BZBMAGIC) {
return 0;
}
reverse4((u8 *)&data->bzb_magic);
}
reverse2((u8 *)&data->bzb_inode);
reverse4((u8 *)&data->bzb_flags);
reverse4((u8 *)&data->bzb_tmade);
reverse4((u8 *)&data->bzb_tmount);
reverse4((u8 *)&data->bzb_tumount);
return 0;
}
#endif
int
convert_block0(Block0 *data, int to_cpu_form)
{
#if BYTE_ORDER == LITTLE_ENDIAN
DDMap *m;
u16 count;
int i;
// Since this data is optional we do not want to convert willy-nilly.
// We use the flag to determine whether to check for the signature
// before or after we flip the bytes and to determine which form of
// the count to use.
if (to_cpu_form) {
reverse2((u8 *)&data->sbSig);
if (data->sbSig != BLOCK0_SIGNATURE) {
reverse2((u8 *)&data->sbSig);
if (data->sbSig != BLOCK0_SIGNATURE) {
return 0;
}
}
} else {
if (data->sbSig != BLOCK0_SIGNATURE) {
return 0;
}
reverse2((u8 *)&data->sbSig);
}
reverse2((u8 *)&data->sbBlkSize);
reverse4((u8 *)&data->sbBlkCount);
reverse2((u8 *)&data->sbDevType);
reverse2((u8 *)&data->sbDevId);
reverse4((u8 *)&data->sbData);
if (to_cpu_form) {
reverse2((u8 *)&data->sbDrvrCount);
count = data->sbDrvrCount;
} else {
count = data->sbDrvrCount;
reverse2((u8 *)&data->sbDrvrCount);
}
if (count > 0) {
m = (DDMap *) data->sbMap;
for (i = 0; i < count; i++) {
reverse4((u8 *)&m[i].ddBlock);
reverse2((u8 *)&m[i].ddSize);
reverse2((u8 *)&m[i].ddType);
}
}
#endif
return 0;
}
void
reverse2(u8 *bytes)
{
u8 t;
t = *bytes;
*bytes = bytes[1];
bytes[1] = t;
}
void
reverse4(u8 *bytes)
{
u8 t;
t = *bytes;
*bytes = bytes[3];
bytes[3] = t;
t = bytes[1];
bytes[1] = bytes[2];
bytes[2] = t;
}
|