summaryrefslogtreecommitdiff
path: root/sbin/routed/routed.8
blob: 14935ec7c1e02dcef3a1d17c57ac467901a832d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
.\"	$OpenBSD: routed.8,v 1.37 2003/08/08 09:34:10 jmc Exp $
.\"
.\" Copyright (c) 1983, 1991, 1993
.\"	The Regents of the University of California.  All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\" 3. Neither the name of the University nor the names of its contributors
.\"    may be used to endorse or promote products derived from this software
.\"    without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\"     @(#)routed.8	8.2 (Berkeley) 12/11/93
.\"
.Dd June 1, 1996
.Dt ROUTED 8
.Os
.Sh NAME
.Nm routed
.Nd network RIP and router discovery routing daemon
.Sh SYNOPSIS
.Nm routed
.Op Fl sqdghmpAt
.Op Fl T Ar tracefile
.Oo
.Fl F
.Ar net Ns Op /mask Ns Op ,metric
.Oc
.Op Fl P Ar parms
.Sh DESCRIPTION
.Nm
is a daemon invoked at boot time to manage the network
routing tables.
It uses Routing Information Protocol, RIPv1 (RFC 1058),
RIPv2 (RFC 1723),
and Internet Router Discovery Protocol (RFC 1256)
to maintain the kernel routing table.
The RIPv1 protocol is based on the reference
.Bx 4.3
daemon.
.Pp
It listens on the
.Xr udp 4
socket for the
.Xr route 8
service (see
.Xr services 5 )
for Routing Information Protocol packets.
It also sends and receives multicast Router Discovery ICMP messages.
If the host is a router,
.Nm
periodically supplies copies
of its routing tables to any directly connected hosts and networks.
It also advertises or solicits default routes using Router Discovery
ICMP messages.
.Pp
When started (or when a network interface is later turned on),
.Nm
uses an AF_ROUTE address family facility to find those
directly connected interfaces configured into the
system and marked
.Dq up .
It adds necessary routes for the interfaces
to the kernel routing table.
Soon after being first started, and provided there is at least one
interface on which RIP has not been disabled,
.Nm
deletes all pre-existing
non-static routes in the kernel table.
Static routes in the kernel table are preserved and
included in RIP responses if they have a valid RIP metric
(see
.Xr route 8 ) .
.Pp
If more than one interface is present (not counting the loopback interface),
it is assumed that the host should forward packets among the
connected networks.
After transmitting a RIP
.Em request
and
Router Discovery Advertisements or Solicitations on a new interface,
the daemon enters a loop, listening for
RIP request and response and Router Discover packets from other hosts.
.Pp
When a
.Em request
packet is received,
.Nm
formulates a reply based on the information maintained in its
internal tables.
The
.Em response
packet generated contains a list of known routes, each marked
with a "hop count" metric (a count of 16 or greater is
considered "infinite").
Advertised metrics reflect the metric associated with interface
(see
.Xr ifconfig 8 ) ,
so setting the metric on an interface
is an effective way to steer traffic.
.Pp
Responses do not contain routes with a first hop on the requesting
network to implement in part
.Em split-horizon .
Requests from query programs
such as
.Xr rtquery 8
are answered with the complete table.
.Pp
The routing table maintained by the daemon
includes space for several gateways for each destination
to speed recovery from a failing router.
RIP
.Em response
packets received are used to update the routing tables provided they are
from one of the several currently recognized gateways or
advertise a better metric than at least one of the existing
gateways.
.Pp
When an update is applied,
.Nm
records the change in its own tables and updates the kernel routing table
if the best route to the destination changes.
The change in the kernel routing table is reflected in the next batch of
.Em response
packets sent.
If the next response is not scheduled for a while, a
.Em flash update
response containing only recently changed routes is sent.
.Pp
In addition to processing incoming packets,
.Nm
also periodically checks the routing table entries.
If an entry has not been updated for 3 minutes, the entry's metric
is set to infinity and marked for deletion.
Deletions are delayed until the route has been advertised with
an infinite metric to ensure the invalidation
is propagated throughout the local internet.
This is a form of
.Em poison reverse .
.Pp
Routes in the kernel table that are added or changed as a result
of ICMP Redirect messages are deleted after a while to minimize
.Em black-holes .
When a TCP connection suffers a timeout,
the kernel tells
.Nm routed ,
which deletes all redirected routes
through the gateway involved, advances the age of all RIP routes through
the gateway to allow an alternate to be chosen, and advances the
age of any relevant Router Discovery Protocol default routes.
.Pp
Hosts acting as internetwork routers gratuitously supply their
routing tables every 30 seconds to all directly connected hosts
and networks.
These RIP responses are sent to the broadcast address on nets that support
broadcasting,
to the destination address on point-to-point links, and to the router's
own address on other networks.
If RIPv2 is enabled, multicast packets are sent on interfaces that
support multicasting.
.Pp
If no response is received on a remote interface, if there are errors
while sending responses,
or if there are more errors than input or output (see
.Xr netstat 1 ) ,
then the cable or some other part of the interface is assumed to be
disconnected or broken, and routes are adjusted appropriately.
.Pp
The
.Em Internet Router Discovery Protocol
is handled similarly.
When the daemon is supplying RIP routes, it also listens for
Router Discovery Solicitations and sends Advertisements.
When it is quiet and only listening to other RIP routers, it
sends Solicitations and listens for Advertisements.
If it receives
a good Advertisement, it stops listening for broadcast or multicast
RIP responses.
It tracks several advertising routers to speed recovery when the
currently chosen router dies.
If all discovered routers disappear,
the daemon resumes listening to RIP responses.
.Pp
While using Router Discovery (which happens by default when
the system has a single network interface and a Router Discover Advertisement
is received), there is a single default route and a variable number of
redirected host routes in the kernel table.
.Pp
The Router Discover standard requires that advertisements
have a default "lifetime" of 30 minutes.
That means should something happen, a client can be without a good route for
30 minutes.
It is a good idea to reduce the default to 45 seconds using
.Fl P Cm rdisc_interval=45
on the command line or
.Cm rdisc_interval=45
in the
.Pa /etc/gateways
file.
.Pp
See the
.Cm pm_rdisc
facility described below to support "legacy" systems
that can handle neither RIPv2 nor Router Discovery.
.Pp
By default, neither Router Discovery advertisements nor solicitations
are sent over point to point links (e.g., PPP).
.Pp
The options are as follows:
.Bl -tag -width Ds
.It Fl s
Forces
.Nm
to supply routing information.
This is the default if multiple network interfaces are present on which
RIP or Router Discovery have not been disabled, and if the kernel switch
ipforwarding=1.
.It Fl q
Opposite of the
.Fl s
option.
.It Fl d
Do not run in the background.
This option is meant for interactive use.
.It Fl g
Used on internetwork routers to offer a route
to the "default" destination.
It is equivalent to
.Fl F
.Cm 0/0,1
and is present mostly for historical reasons.
A better choice is
.Fl P Cm pm_rdisc
on the command line or
.Cm pm_rdisc in the
.Pa /etc/gateways
file,
since a larger metric
will be used, reducing the spread of the potentially dangerous
default route.
This is typically used on a gateway to the Internet,
or on a gateway that uses another routing protocol whose routes
are not reported to other local routers.
Notice that because a metric of 1 is used, this feature is
dangerous.
It is more commonly accidentally used to create chaos with a routing
loop than to solve problems.
.It Fl h
Causes host or point-to-point routes to not be advertised,
provided there is a network route going the same direction.
That is a limited kind of aggregation.
This option is useful on gateways to Ethernets that have other gateway
machines connected with point-to-point links such as SLIP.
.It Fl m
Causes the machine to advertise a host or point-to-point route to
its primary interface.
It is useful on multi-homed machines such as NFS servers.
This option should not be used except when the cost of
the host routes it generates is justified by the popularity of
the server.
It is effective only when the machine is supplying
routing information, because there is more than one interface.
The
.Fl m
option overrides the
.Fl q
option to the limited extent of advertising the host route.
.It Fl A
Do not ignore RIPv2 authentication if we do not care about RIPv2
authentication.
This option is required for conformance with RFC 1723.
However, it makes no sense and breaks using RIP as a discovery protocol
to ignore all RIPv2 packets that carry authentication when this machine
does not care about authentication.
.It Fl T Ar tracefile
Increases the debugging level to at least 1 and
causes debugging information to be appended to the trace file.
Note that because of security concerns, it is wisest to not run
.Nm
routinely with tracing directed to a file.
.It Fl t
Increases the debugging level, which causes more information to be logged
on the tracefile specified with
.Fl T
or standard out.
The debugging level can be increased or decreased
with the
.Dv SIGUSR1
or
.Dv SIGUSR2
signals or with the
.Xr rtquery 8
command.
.It Fl F Ar net[/mask][,metric]
Minimize routes in transmissions via interfaces with addresses that match
.Em net/mask ,
and synthesizes a default route to this machine with the
.Em metric .
The intent is to reduce RIP traffic on slow, point-to-point links
such as PPP links by replacing many large UDP packets of RIP information
with a single, small packet containing a "fake" default route.
If
.Em metric
is absent, a value of 14 is assumed to limit
the spread of the "fake" default route.
This is a dangerous feature that when used carelessly can cause routing
loops.
Notice also that more than one interface can match the specified network
number and mask.
See also
.Fl g .
.It Fl P Ar parms
Equivalent to adding the parameter
line
.Em parms
to the
.Pa /etc/gateways
file.
.El
.Pp
Any other argument supplied is interpreted as the name
of a file in which the actions of
.Nm
should be logged.
It is better to use
.Fl T
instead of
appending the name of the trace file to the command.
.Pp
.Nm
also supports the notion of
"distant"
.Em passive
or
.Em active
gateways.
When
.Nm
is started, it reads the file
.Pa /etc/gateways
to find such distant gateways which may not be located using
only information from a routing socket, to discover if some
of the local gateways are
.Em passive ,
and to obtain other parameters.
Gateways specified in this manner should be marked
.Em passive
if they are not expected to exchange routing information,
while gateways marked
.Em active
should be willing to exchange RIP packets.
Routes through
.Em passive
gateways are installed in the
kernel's routing tables once upon startup and are not included in
transmitted RIP responses.
.Pp
Distant
.Em active
gateways are treated like network interfaces.
RIP responses are sent
to the distant
.Em active
gateway.
If no responses are received, the associated route is deleted from
the kernel table and RIP responses advertised via other interfaces.
If the distant gateway resumes sending RIP responses, the associated
route is restored.
.Pp
Such gateways can be useful on media that do not support broadcasts
or multicasts but otherwise act like classic shared media like
Ethernets such as some ATM networks.
One can list all RIP routers reachable on the ATM network in
.Pa /etc/gateways
with a series of
"host" lines.
.Pp
Gateways marked
.Em external
are also passive, but are not placed in the kernel
routing table nor are they included in routing updates.
The function of external entries is to indicate
that another routing process
will install such a route if necessary,
and that alternate routes to that destination should not be installed
by
.Nm routed .
Such entries are only required when both routers may learn of routes
to the same destination.
.Pp
The
.Pa /etc/gateways
file is comprised of a series of lines, each in
one of the following formats or consist of parameters described below:
.Pp
.Bd -ragged
.Cm net
.Ar Nname[/mask]
.Cm gateway
.Ar Gname
.Cm metric
.Ar value
.Pf < Cm passive No \&|
.Cm active No \&|
.Cm extern Ns >
.Ed
.Bd -ragged
.Cm host
.Ar Hname
.Cm gateway
.Ar Gname
.Cm metric
.Ar value
.Pf < Cm passive No \&|
.Cm active No \&|
.Cm extern Ns >
.Ed
.Pp
.Ar Nname
or
.Ar Hname
is the name of the destination network or host.
It may be a symbolic network name or an Internet address
specified in "dot" notation (see
.Xr inet 3 ) .
(If it is a name, then it must either be defined in
.Pa /etc/networks
or
.Pa /etc/hosts ,
or
.Xr named 8
must have been started before
.Nm routed . )
.Pp
.Ar mask
is an optional number between 1 and 32 indicating the netmask associated
with
.Ar Nname .
.Pp
.Ar Gname
is the name or address of the gateway to which RIP responses should
be forwarded.
.Pp
.Ar value
is the hop count to the destination host or network.
.Ar " host hname "
is equivalent to
.Ar " net  nname/32 " .
.Pp
One of the keywords
.Cm passive ,
.Cm active
or
.Cm external
must be present to indicate whether the gateway should be treated as
.Cm passive
or
.Cm active
(as described above),
or whether the gateway is
.Cm external
to the scope of the RIP protocol.
.Pp
Lines that start with neither "net" nor "host" must consist of one
or more of the following parameter settings, separated by commas or
blanks:
.Bl -tag -width Ds
.It Cm if Ns \&= Ns Ar ifname
Indicates that the other parameters on the line apply to the interface
name
.Ar ifname .
This typically is the first entry in all lines in
.Pa /etc/gateways .
.It Cm subnet Ns \&= Ns Ar nname[/mask][,metric]
Advertises a route to network
.Ar nname
with mask
.Ar mask
and the supplied metric (default 1).
This is useful for filling "holes" in CIDR allocations.
This parameter must appear by itself on a line.
.Pp
Do not use this feature unless necessary.
It is dangerous.
.It Cm passwd Ns \&= Ns Ar XXX
Specifies a RIPv2 password that will be included on all RIPv2
responses sent and checked on all RIPv2 responses received.
The password must not contain any blanks, tab characters, commas
or
.Sq #
characters.
.It Cm no_ag
Turns off aggregation of subnets in RIPv1 and RIPv2 responses.
.It Cm no_super_ag
Turns off aggregation of networks into supernets in RIPv2 responses.
.It Cm passive
Equivalent to
.Cm no_rip Cm no_rdisc .
.It Cm no_rip
Disables all RIP processing on the specified interface (no RIP will be
transmitted, and any received RIP packets will be ignored).
If no interfaces are allowed to process RIP packets,
.Nm
acts purely as a router discovery daemon.
Note that turning off RIP without explicitly turning on router
discovery advertisements with
.Cm rdisc_adv
or
.Fl s
Causes
.Nm
to act as a client router discovery daemon, not advertising.
.It Cm no_ripv1_in
Causes RIPv1 received responses to be ignored.
.It Cm no_ripv2_in
Causes RIPv2 received responses to be ignored.
.It Cm ripv2_out
Turns off RIPv1 output and causes RIPv2 advertisements to be
multicast when possible.
.It Cm no_rdisc
Disables the Internet Router Discovery Protocol.
.It Cm no_solicit
Disables the transmission of Router Discovery Solicitations.
.It Cm send_solicit
Specifies that Router Discovery solicitations should be sent,
even on point-to-point links,
which by default only listen to Router Discovery messages.
.It Cm no_rdisc_adv
Disables the transmission of Router Discovery Advertisements.
.It Cm rdisc_adv
Specifies that Router Discovery advertisements should be sent,
even on point-to-point links,
which by default only listen to Router Discovery messages.
.It Cm bcast_rdisc
Specifies that Router Discovery packets should be broadcast instead of
multicast.
.It Cm rdisc_pref Ns \&= Ns Ar N
Sets the preference in Router Discovery Advertisements to the integer
.Ar N .
.It Cm rdisc_interval Ns \&= Ns Ar N
Sets the nominal interval with which Router Discovery Advertisements
are transmitted to N seconds and their lifetime to 3*N.
.It Cm fake_default Ns \&= Ns Ar metric
Has an identical effect to
.Fl F Ar net[/mask][,metric]
with the network and mask coming from the specified interface.
.It Cm pm_rdisc
Similar to
.Cm fake_default .
When RIPv2 routes are multicast, so that RIPv1 listeners cannot
receive them, this feature causes a RIPv1 default route to be
broadcast to RIPv1 listeners.
Unless modified with
.Cm fake_default ,
the default route is broadcast with a metric of 14.
That serves as a "poor man's router discovery" protocol.
.El
.Pp
Note that the netmask associated with point-to-point links (such as SLIP
or PPP, with the IFF_POINTOPOINT flag) is used by
.Nm
to infer the netmask used by the remote system when RIPv1 is used.
.Sh FILES
.Bl -tag -width /etc/gateways -compact
.It Pa /etc/gateways
for distant gateways
.El
.Sh SEE ALSO
.Xr icmp 4 ,
.Xr udp 4 ,
.Xr rtquery 8
.Rs
.%T Internet Transport Protocols
.%R XSIS 028112
.%Q Xerox System Integration Standard
.Re
.Sh HISTORY
The
.Nm
command appeared in
.Bx 4.2 .
.Sh BUGS
It does not always detect unidirectional failures in network interfaces
(e.g., when the output side fails).