1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
|
.\" $OpenBSD: queue.3,v 1.43 2007/05/31 19:19:48 jmc Exp $
.\" $NetBSD: queue.3,v 1.4 1995/07/03 00:25:36 mycroft Exp $
.\"
.\" Copyright (c) 1993 The Regents of the University of California.
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\" 3. Neither the name of the University nor the names of its contributors
.\" may be used to endorse or promote products derived from this software
.\" without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" @(#)queue.3 8.1 (Berkeley) 12/13/93
.\"
.Dd $Mdocdate: May 31 2007 $
.Dt QUEUE 3
.Os
.Sh NAME
.Nm SLIST_ENTRY ,
.Nm SLIST_HEAD ,
.Nm SLIST_HEAD_INITIALIZER ,
.Nm SLIST_FIRST ,
.Nm SLIST_NEXT ,
.Nm SLIST_END ,
.Nm SLIST_EMPTY ,
.Nm SLIST_FOREACH ,
.Nm SLIST_FOREACH_PREVPTR ,
.Nm SLIST_INIT ,
.Nm SLIST_INSERT_AFTER ,
.Nm SLIST_INSERT_HEAD ,
.Nm SLIST_REMOVE_HEAD ,
.Nm SLIST_REMOVE_NEXT ,
.Nm SLIST_REMOVE ,
.Nm LIST_ENTRY ,
.Nm LIST_HEAD ,
.Nm LIST_HEAD_INITIALIZER ,
.Nm LIST_FIRST ,
.Nm LIST_NEXT ,
.Nm LIST_END ,
.Nm LIST_EMPTY ,
.Nm LIST_FOREACH ,
.Nm LIST_INIT ,
.Nm LIST_INSERT_AFTER ,
.Nm LIST_INSERT_BEFORE ,
.Nm LIST_INSERT_HEAD ,
.Nm LIST_REMOVE ,
.Nm LIST_REPLACE ,
.Nm SIMPLEQ_ENTRY ,
.Nm SIMPLEQ_HEAD ,
.Nm SIMPLEQ_HEAD_INITIALIZER ,
.Nm SIMPLEQ_FIRST ,
.Nm SIMPLEQ_NEXT ,
.Nm SIMPLEQ_END ,
.Nm SIMPLEQ_EMPTY ,
.Nm SIMPLEQ_FOREACH ,
.Nm SIMPLEQ_INIT ,
.Nm SIMPLEQ_INSERT_HEAD ,
.Nm SIMPLEQ_INSERT_TAIL ,
.Nm SIMPLEQ_INSERT_AFTER ,
.Nm SIMPLEQ_REMOVE_HEAD ,
.Nm TAILQ_ENTRY ,
.Nm TAILQ_HEAD ,
.Nm TAILQ_HEAD_INITIALIZER ,
.Nm TAILQ_FIRST ,
.Nm TAILQ_NEXT ,
.Nm TAILQ_END ,
.Nm TAILQ_LAST ,
.Nm TAILQ_PREV ,
.Nm TAILQ_EMPTY ,
.Nm TAILQ_FOREACH ,
.Nm TAILQ_FOREACH_REVERSE ,
.Nm TAILQ_INIT ,
.Nm TAILQ_INSERT_AFTER ,
.Nm TAILQ_INSERT_BEFORE ,
.Nm TAILQ_INSERT_HEAD ,
.Nm TAILQ_INSERT_TAIL ,
.Nm TAILQ_REMOVE ,
.Nm CIRCLEQ_ENTRY ,
.Nm CIRCLEQ_HEAD ,
.Nm CIRCLEQ_HEAD_INITIALIZER ,
.Nm CIRCLEQ_FIRST ,
.Nm CIRCLEQ_LAST ,
.Nm CIRCLEQ_END ,
.Nm CIRCLEQ_NEXT ,
.Nm CIRCLEQ_PREV ,
.Nm CIRCLEQ_EMPTY ,
.Nm CIRCLEQ_FOREACH ,
.Nm CIRCLEQ_FOREACH_REVERSE ,
.Nm CIRCLEQ_INIT ,
.Nm CIRCLEQ_INSERT_AFTER ,
.Nm CIRCLEQ_INSERT_BEFORE ,
.Nm CIRCLEQ_INSERT_HEAD ,
.Nm CIRCLEQ_INSERT_TAIL ,
.Nm CIRCLEQ_REMOVE
.Nd "implementations of singly-linked lists, doubly-linked lists, simple queues, tail queues, and circular queues"
.Sh SYNOPSIS
.Fd #include <sys/queue.h>
.Pp
.Fn SLIST_ENTRY "TYPE"
.Fn SLIST_HEAD "HEADNAME" "TYPE"
.Fn SLIST_HEAD_INITIALIZER "SLIST_HEAD head"
.Ft "struct TYPE *"
.Fn SLIST_FIRST "SLIST_HEAD *head"
.Ft "struct TYPE *"
.Fn SLIST_NEXT "struct TYPE *listelm" "SLIST_ENTRY NAME"
.Ft "struct TYPE *"
.Fn SLIST_END "SLIST_HEAD *head"
.Ft "bool"
.Fn SLIST_EMPTY "SLIST_HEAD *head"
.Fn SLIST_FOREACH "VARNAME" "SLIST_HEAD *head" "SLIST_ENTRY NAME"
.Fn SLIST_FOREACH_PREVPTR "VARNAME" "VARNAMEP" "SLIST_HEAD *head" "SLIST_ENTRY NAME"
.Ft void
.Fn SLIST_INIT "SLIST_HEAD *head"
.Ft void
.Fn SLIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "SLIST_ENTRY NAME"
.Ft void
.Fn SLIST_INSERT_HEAD "SLIST_HEAD *head" "struct TYPE *elm" "SLIST_ENTRY NAME"
.Ft void
.Fn SLIST_REMOVE_HEAD "SLIST_HEAD *head" "SLIST_ENTRY NAME"
.Ft void
.Fn SLIST_REMOVE_NEXT "SLIST_HEAD *head" "struct TYPE *elm" "SLIST_ENTRY NAME"
.Ft void
.Fn SLIST_REMOVE "SLIST_HEAD *head" "struct TYPE *elm" "TYPE" "SLIST_ENTRY NAME"
.Pp
.Fn LIST_ENTRY "TYPE"
.Fn LIST_HEAD "HEADNAME" "TYPE"
.Fn LIST_HEAD_INITIALIZER "LIST_HEAD head"
.Ft "struct TYPE *"
.Fn LIST_FIRST "LIST_HEAD *head"
.Ft "struct TYPE *"
.Fn LIST_NEXT "struct TYPE *listelm" "LIST_ENTRY NAME"
.Ft "struct TYPE *"
.Fn LIST_END "LIST_HEAD *head"
.Ft "bool"
.Fn LIST_EMPTY "LIST_HEAD *head"
.Fn LIST_FOREACH "VARNAME" "LIST_HEAD *head" "LIST_ENTRY NAME"
.Ft void
.Fn LIST_INIT "LIST_HEAD *head"
.Ft void
.Fn LIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "LIST_ENTRY NAME"
.Ft void
.Fn LIST_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "LIST_ENTRY NAME"
.Ft void
.Fn LIST_INSERT_HEAD "LIST_HEAD *head" "struct TYPE *elm" "LIST_ENTRY NAME"
.Ft void
.Fn LIST_REMOVE "struct TYPE *elm" "LIST_ENTRY NAME"
.Ft void
.Fn LIST_REPLACE "struct TYPE *elm" "struct TYPE *elm2" "LIST_ENTRY NAME"
.Pp
.Fn SIMPLEQ_ENTRY "TYPE"
.Fn SIMPLEQ_HEAD "HEADNAME" "TYPE"
.Fn SIMPLEQ_HEAD_INITIALIZER "SIMPLEQ_HEAD head"
.Ft "struct TYPE *"
.Fn SIMPLEQ_FIRST "SIMPLEQ_HEAD *head"
.Ft "struct TYPE *"
.Fn SIMPLEQ_NEXT "struct TYPE *listelm" "SIMPLEQ_ENTRY NAME"
.Ft "struct TYPE *"
.Fn SIMPLEQ_END "SIMPLEQ_HEAD *head"
.Ft void
.Fn SIMPLEQ_INIT "SIMPLEQ_HEAD *head"
.Ft void
.Fn SIMPLEQ_INSERT_HEAD "SIMPLEQ_HEAD *head" "struct TYPE *elm" "SIMPLEQ_ENTRY NAME"
.Ft void
.Fn SIMPLEQ_INSERT_TAIL "SIMPLEQ_HEAD *head" "struct TYPE *elm" "SIMPLEQ_ENTRY NAME"
.Ft void
.Fn SIMPLEQ_INSERT_AFTER "SIMPLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "SIMPLEQ_ENTRY NAME"
.Ft void
.Fn SIMPLEQ_REMOVE_HEAD "SIMPLEQ_HEAD *head" "SIMPLEQ_ENTRY NAME"
.Pp
.Fn TAILQ_ENTRY "TYPE"
.Fn TAILQ_HEAD "HEADNAME" "TYPE"
.Fn TAILQ_HEAD_INITIALIZER "TAILQ_HEAD head"
.Ft "struct TYPE *"
.Fn TAILQ_FIRST "TAILQ_HEAD *head"
.Ft "struct TYPE *"
.Fn TAILQ_NEXT "struct TYPE *listelm" "TAILQ_ENTRY NAME"
.Ft "struct TYPE *"
.Fn TAILQ_END "TAILQ_HEAD *head"
.Ft "struct TYPE *"
.Fn TAILQ_LAST "TAILQ_HEAD *head" "HEADNAME NAME"
.Fn TAILQ_PREV "struct TYPE *listelm" "HEADNAME NAME" "TAILQ_ENTRY NAME"
.Ft "bool"
.Fn TAILQ_EMPTY "TAILQ_HEAD *head"
.Fn TAILQ_FOREACH "VARNAME" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME"
.Fn TAILQ_FOREACH_REVERSE "VARNAME" "TAILQ_HEAD *head" "HEADNAME" "TAILQ_ENTRY NAME"
.Ft void
.Fn TAILQ_INIT "TAILQ_HEAD *head"
.Ft void
.Fn TAILQ_INSERT_AFTER "TAILQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "TAILQ_ENTRY NAME"
.Ft void
.Fn TAILQ_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "TAILQ_ENTRY NAME"
.Ft void
.Fn TAILQ_INSERT_HEAD "TAILQ_HEAD *head" "struct TYPE *elm" "TAILQ_ENTRY NAME"
.Ft void
.Fn TAILQ_INSERT_TAIL "TAILQ_HEAD *head" "struct TYPE *elm" "TAILQ_ENTRY NAME"
.Ft void
.Fn TAILQ_REMOVE "TAILQ_HEAD *head" "struct TYPE *elm" "TAILQ_ENTRY NAME"
.Pp
.Fn CIRCLEQ_ENTRY "TYPE"
.Fn CIRCLEQ_HEAD "HEADNAME" "TYPE"
.Fn CIRCLEQ_HEAD_INITIALIZER "CIRCLEQ_HEAD head"
.Ft "struct TYPE *"
.Fn CIRCLEQ_FIRST "CIRCLEQ_HEAD *head"
.Ft "struct TYPE *"
.Fn CIRCLEQ_LAST "CIRCLEQ_HEAD *head"
.Ft "struct TYPE *"
.Fn CIRCLEQ_END "CIRCLEQ_HEAD *head"
.Ft "struct TYPE *"
.Fn CIRCLEQ_NEXT "struct TYPE *listelm" "CIRCLEQ_ENTRY NAME"
.Ft "struct TYPE *"
.Fn CIRCLEQ_PREV "struct TYPE *listelm" "CIRCLEQ_ENTRY NAME"
.Ft "bool"
.Fn CIRCLEQ_EMPTY "CIRCLEQ_HEAD *head"
.Fn CIRCLEQ_FOREACH "VARNAME" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME"
.Fn CIRCLEQ_FOREACH_REVERSE "VARNAME" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME"
.Ft void
.Fn CIRCLEQ_INIT "CIRCLEQ_HEAD *head"
.Ft void
.Fn CIRCLEQ_INSERT_AFTER "CIRCLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME"
.Ft void
.Fn CIRCLEQ_INSERT_BEFORE "CIRCLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME"
.Ft void
.Fn CIRCLEQ_INSERT_HEAD "CIRCLEQ_HEAD *head" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME"
.Ft void
.Fn CIRCLEQ_INSERT_TAIL "CIRCLEQ_HEAD *head" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME"
.Ft void
.Fn CIRCLEQ_REMOVE "CIRCLEQ_HEAD *head" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME"
.Sh DESCRIPTION
These macros define and operate on five types of data structures:
singly-linked lists, simple queues, lists, tail queues, and circular queues.
All five structures support the following functionality:
.Pp
.Bl -enum -compact -offset indent
.It
Insertion of a new entry at the head of the list.
.It
Insertion of a new entry after any element in the list.
.It
Removal of an entry from the head of the list.
.It
Forward traversal through the list.
.El
.Pp
Singly-linked lists are the simplest of the five data structures
and support only the above functionality.
Singly-linked lists are ideal for applications with large datasets
and few or no removals, or for implementing a LIFO queue.
.Pp
Simple queues add the following functionality:
.Pp
.Bl -enum -compact -offset indent
.It
Entries can be added at the end of a list.
.El
.Pp
However:
.Pp
.Bl -enum -compact -offset indent
.It
All list insertions must specify the head of the list.
.It
Each head entry requires two pointers rather than one.
.It
Code size is about 15% greater and operations run about 20% slower
than singly-linked lists.
.El
.Pp
Simple queues are ideal for applications with large datasets and
few or no removals, or for implementing a FIFO queue.
.Pp
All doubly linked types of data structures (lists, tail queues, and circle
queues) additionally allow:
.Pp
.Bl -enum -compact -offset indent
.It
Insertion of a new entry before any element in the list.
.It
Removal of any entry in the list.
.El
.Pp
However:
.Pp
.Bl -enum -compact -offset indent
.It
Each element requires two pointers rather than one.
.It
Code size and execution time of operations (except for removal) is about
twice that of the singly-linked data-structures.
.El
.Pp
Lists are the simplest of the doubly linked data structures and support
only the above functionality over singly-linked lists.
.Pp
Tail queues add the following functionality:
.Pp
.Bl -enum -compact -offset indent
.It
Entries can be added at the end of a list.
.It
They may be traversed backwards, at a cost.
.El
.Pp
However:
.Pp
.Bl -enum -compact -offset indent
.It
All list insertions and removals must specify the head of the list.
.It
Each head entry requires two pointers rather than one.
.It
Code size is about 15% greater and operations run about 20% slower
than singly-linked lists.
.El
.Pp
Circular queues add the following functionality:
.Pp
.Bl -enum -compact -offset indent
.It
Entries can be added at the end of a list.
.It
They may be traversed backwards, from tail to head.
.El
.Pp
However:
.Pp
.Bl -enum -compact -offset indent
.It
All list insertions and removals must specify the head of the list.
.It
Each head entry requires two pointers rather than one.
.It
The termination condition for traversal is more complex.
.It
Code size is about 40% greater and operations run about 45% slower than lists.
.El
.Pp
In the macro definitions,
.Fa TYPE
is the name tag of a user defined structure that must contain a field of type
.Li SLIST_ENTRY ,
.Li LIST_ENTRY ,
.Li SIMPLEQ_ENTRY ,
.Li TAILQ_ENTRY ,
or
.Li CIRCLEQ_ENTRY ,
named
.Fa NAME .
The argument
.Fa HEADNAME
is the name tag of a user defined structure that must be declared
using the macros
.Fn SLIST_HEAD ,
.Fn LIST_HEAD ,
.Fn SIMPLEQ_HEAD ,
.Fn TAILQ_HEAD ,
or
.Fn CIRCLEQ_HEAD .
See the examples below for further explanation of how these macros are used.
.Sh SINGLY-LINKED LISTS
A singly-linked list is headed by a structure defined by the
.Fn SLIST_HEAD
macro.
This structure contains a single pointer to the first element on the list.
The elements are singly linked for minimum space and pointer manipulation
overhead at the expense of O(n) removal for arbitrary elements.
New elements can be added to the list after an existing element or
at the head of the list.
A
.Fa SLIST_HEAD
structure is declared as follows:
.Bd -literal -offset indent
SLIST_HEAD(HEADNAME, TYPE) head;
.Ed
.Pp
where
.Fa HEADNAME
is the name of the structure to be defined, and struct
.Fa TYPE
is the type of the elements to be linked into the list.
A pointer to the head of the list can later be declared as:
.Bd -literal -offset indent
struct HEADNAME *headp;
.Ed
.Pp
(The names
.Li head
and
.Li headp
are user selectable.)
.Pp
The
.Fa HEADNAME
facility is often not used, leading to the following bizarre code:
.Bd -literal -offset indent
SLIST_HEAD(, TYPE) head, *headp;
.Ed
.Pp
The
.Fn SLIST_ENTRY
macro declares a structure that connects the elements in the list.
.Pp
The
.Fn SLIST_INIT
macro initializes the list referenced by
.Fa head .
.Pp
The list can also be initialized statically by using the
.Fn SLIST_HEAD_INITIALIZER
macro like this:
.Bd -literal -offset indent
SLIST_HEAD(HEADNAME, TYPE) head = SLIST_HEAD_INITIALIZER(head);
.Ed
.Pp
The
.Fn SLIST_INSERT_HEAD
macro inserts the new element
.Fa elm
at the head of the list.
.Pp
The
.Fn SLIST_INSERT_AFTER
macro inserts the new element
.Fa elm
after the element
.Fa listelm .
.Pp
The
.Fn SLIST_REMOVE_HEAD
macro removes the first element of the list pointed by
.Fa head .
.Pp
The
.Fn SLIST_REMOVE_NEXT
macro removes the list element immediately following
.Fa elm .
.Pp
The
.Fn SLIST_REMOVE
macro removes the element
.Fa elm
of the list pointed by
.Fa head .
.Pp
The
.Fn SLIST_FIRST
and
.Fn SLIST_NEXT
macros can be used to traverse the list:
.Bd -literal -offset indent
for (np = SLIST_FIRST(&head); np != NULL; np = SLIST_NEXT(np, NAME))
.Ed
.Pp
Or, for simplicity, one can use the
.Fn SLIST_FOREACH
macro:
.Bd -literal -offset indent
SLIST_FOREACH(np, head, NAME)
.Ed
.Pp
The
.Fn SLIST_FOREACH_PREVPTR
macro is similar to
.Fn SLIST_FOREACH
except that it stores a pointer to the previous element in
.Fa VARNAMEP .
This provides access to the previous element while traversing the list,
as one would have with a doubly-linked list.
.Pp
The
.Fn SLIST_EMPTY
macro should be used to check whether a simple list is empty.
.Sh SINGLY-LINKED LIST EXAMPLE
.Bd -literal
SLIST_HEAD(listhead, entry) head;
struct entry {
...
SLIST_ENTRY(entry) entries; /* Simple list. */
...
} *n1, *n2, *np;
SLIST_INIT(&head); /* Initialize simple list. */
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
SLIST_INSERT_HEAD(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
SLIST_INSERT_AFTER(n1, n2, entries);
SLIST_FOREACH(np, &head, entries) /* Forward traversal. */
np-> ...
while (!SLIST_EMPTY(&head)) /* Delete. */
SLIST_REMOVE_HEAD(&head, entries);
.Ed
.Sh LISTS
A list is headed by a structure defined by the
.Fn LIST_HEAD
macro.
This structure contains a single pointer to the first element on the list.
The elements are doubly linked so that an arbitrary element can be
removed without traversing the list.
New elements can be added to the list after an existing element,
before an existing element, or at the head of the list.
A
.Fa LIST_HEAD
structure is declared as follows:
.Bd -literal -offset indent
LIST_HEAD(HEADNAME, TYPE) head;
.Ed
.Pp
where
.Fa HEADNAME
is the name of the structure to be defined, and struct
.Fa TYPE
is the type of the elements to be linked into the list.
A pointer to the head of the list can later be declared as:
.Bd -literal -offset indent
struct HEADNAME *headp;
.Ed
.Pp
(The names
.Li head
and
.Li headp
are user selectable.)
.Pp
The
.Fa HEADNAME
facility is often not used, leading to the following bizarre code:
.Bd -literal -offset indent
LIST_HEAD(, TYPE) head, *headp;
.Ed
.Pp
The
.Fn LIST_ENTRY
macro declares a structure that connects the elements in the list.
.Pp
The
.Fn LIST_INIT
macro initializes the list referenced by
.Fa head .
.Pp
The list can also be initialized statically by using the
.Fn LIST_HEAD_INITIALIZER
macro like this:
.Bd -literal -offset indent
LIST_HEAD(HEADNAME, TYPE) head = LIST_HEAD_INITIALIZER(head);
.Ed
.Pp
The
.Fn LIST_INSERT_HEAD
macro inserts the new element
.Fa elm
at the head of the list.
.Pp
The
.Fn LIST_INSERT_AFTER
macro inserts the new element
.Fa elm
after the element
.Fa listelm .
.Pp
The
.Fn LIST_INSERT_BEFORE
macro inserts the new element
.Fa elm
before the element
.Fa listelm .
.Pp
The
.Fn LIST_REMOVE
macro removes the element
.Fa elm
from the list.
.Pp
The
.Fn LIST_REPLACE
macro replaces the list element
.Fa elm
with the new element
.Fa elm2 .
.Pp
The
.Fn LIST_FIRST
and
.Fn LIST_NEXT
macros can be used to traverse the list:
.Bd -literal -offset indent
for (np = LIST_FIRST(&head); np != NULL; np = LIST_NEXT(np, NAME))
.Ed
.Pp
Or, for simplicity, one can use the
.Fn LIST_FOREACH
macro:
.Bd -literal -offset indent
LIST_FOREACH(np, head, NAME)
.Ed
.Pp
The
.Fn LIST_EMPTY
macro should be used to check whether a list is empty.
.Sh LIST EXAMPLE
.Bd -literal
LIST_HEAD(listhead, entry) head;
struct entry {
...
LIST_ENTRY(entry) entries; /* List. */
...
} *n1, *n2, *np;
LIST_INIT(&head); /* Initialize list. */
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
LIST_INSERT_HEAD(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
LIST_INSERT_AFTER(n1, n2, entries);
n2 = malloc(sizeof(struct entry)); /* Insert before. */
LIST_INSERT_BEFORE(n1, n2, entries);
/* Forward traversal. */
LIST_FOREACH(np, &head, entries)
np-> ...
while (!LIST_EMPTY(&head)) /* Delete. */
LIST_REMOVE(LIST_FIRST(&head), entries);
.Ed
.Sh SIMPLE QUEUES
A simple queue is headed by a structure defined by the
.Fn SIMPLEQ_HEAD
macro.
This structure contains a pair of pointers, one to the first element in the
simple queue and the other to the last element in the simple queue.
The elements are singly linked.
New elements can be added to the queue after an existing element,
at the head of the queue or at the tail of the queue.
A
.Fa SIMPLEQ_HEAD
structure is declared as follows:
.Bd -literal -offset indent
SIMPLEQ_HEAD(HEADNAME, TYPE) head;
.Ed
.Pp
where
.Fa HEADNAME
is the name of the structure to be defined, and struct
.Fa TYPE
is the type of the elements to be linked into the queue.
A pointer to the head of the queue can later be declared as:
.Bd -literal -offset indent
struct HEADNAME *headp;
.Ed
.Pp
(The names
.Li head
and
.Li headp
are user selectable.)
.Pp
The
.Fn SIMPLEQ_ENTRY
macro declares a structure that connects the elements in
the queue.
.Pp
The
.Fn SIMPLEQ_INIT
macro initializes the queue referenced by
.Fa head .
.Pp
The queue can also be initialized statically by using the
.Fn SIMPLEQ_HEAD_INITIALIZER
macro like this:
.Bd -literal -offset indent
SIMPLEQ_HEAD(HEADNAME, TYPE) head = SIMPLEQ_HEAD_INITIALIZER(head);
.Ed
.Pp
The
.Fn SIMPLEQ_INSERT_HEAD
macro inserts the new element
.Fa elm
at the head of the queue.
.Pp
The
.Fn SIMPLEQ_INSERT_TAIL
macro inserts the new element
.Fa elm
at the end of the queue.
.Pp
The
.Fn SIMPLEQ_INSERT_AFTER
macro inserts the new element
.Fa elm
after the element
.Fa listelm .
.Pp
The
.Fn SIMPLEQ_REMOVE_HEAD
macro removes the first element
from the queue.
.Pp
The
.Fn SIMPLEQ_FIRST
and
.Fn SIMPLEQ_NEXT
macros can be used to traverse the queue.
The
.Fn SIMPLEQ_FOREACH
is used for queue traversal:
.Bd -literal -offset indent
SIMPLEQ_FOREACH(np, head, NAME)
.Ed
.Pp
The
.Fn SIMPLEQ_EMPTY
macro should be used to check whether a list is empty.
.Sh SIMPLE QUEUE EXAMPLE
.Bd -literal
SIMPLEQ_HEAD(listhead, entry) head = SIMPLEQ_HEAD_INITIALIZER(head);
struct entry {
...
SIMPLEQ_ENTRY(entry) entries; /* Simple queue. */
...
} *n1, *n2, *np;
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
SIMPLEQ_INSERT_HEAD(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
SIMPLEQ_INSERT_AFTER(&head, n1, n2, entries);
n2 = malloc(sizeof(struct entry)); /* Insert at the tail. */
SIMPLEQ_INSERT_TAIL(&head, n2, entries);
/* Forward traversal. */
SIMPLEQ_FOREACH(np, &head, entries)
np-> ...
/* Delete. */
while (!SIMPLEQ_EMPTY(&head))
SIMPLEQ_REMOVE_HEAD(&head, entries);
.Ed
.Sh TAIL QUEUES
A tail queue is headed by a structure defined by the
.Fn TAILQ_HEAD
macro.
This structure contains a pair of pointers,
one to the first element in the tail queue and the other to
the last element in the tail queue.
The elements are doubly linked so that an arbitrary element can be
removed without traversing the tail queue.
New elements can be added to the queue after an existing element,
before an existing element, at the head of the queue, or at the end
of the queue.
A
.Fa TAILQ_HEAD
structure is declared as follows:
.Bd -literal -offset indent
TAILQ_HEAD(HEADNAME, TYPE) head;
.Ed
.Pp
where
.Fa HEADNAME
is the name of the structure to be defined, and struct
.Fa TYPE
is the type of the elements to be linked into the tail queue.
A pointer to the head of the tail queue can later be declared as:
.Bd -literal -offset indent
struct HEADNAME *headp;
.Ed
.Pp
(The names
.Li head
and
.Li headp
are user selectable.)
.Pp
The
.Fn TAILQ_ENTRY
macro declares a structure that connects the elements in
the tail queue.
.Pp
The
.Fn TAILQ_INIT
macro initializes the tail queue referenced by
.Fa head .
.Pp
The tail queue can also be initialized statically by using the
.Fn TAILQ_HEAD_INITIALIZER
macro.
.Pp
The
.Fn TAILQ_INSERT_HEAD
macro inserts the new element
.Fa elm
at the head of the tail queue.
.Pp
The
.Fn TAILQ_INSERT_TAIL
macro inserts the new element
.Fa elm
at the end of the tail queue.
.Pp
The
.Fn TAILQ_INSERT_AFTER
macro inserts the new element
.Fa elm
after the element
.Fa listelm .
.Pp
The
.Fn TAILQ_INSERT_BEFORE
macro inserts the new element
.Fa elm
before the element
.Fa listelm .
.Pp
The
.Fn TAILQ_REMOVE
macro removes the element
.Fa elm
from the tail queue.
.Pp
.Fn TAILQ_FOREACH
and
.Fn TAILQ_FOREACH_REVERSE
are used for traversing a tail queue.
.Fn TAILQ_FOREACH
starts at the first element and proceeds towards the last.
.Fn TAILQ_FOREACH_REVERSE
starts at the last element and proceeds towards the first.
.Bd -literal -offset indent
TAILQ_FOREACH(np, &head, NAME)
TAILQ_FOREACH_REVERSE(np, &head, HEADNAME, NAME)
.Ed
.Pp
The
.Fn TAILQ_FIRST ,
.Fn TAILQ_NEXT ,
.Fn TAILQ_LAST
and
.Fn TAILQ_PREV
macros can be used to manually traverse a tail queue or an arbitrary part of
one.
.Pp
The
.Fn TAILQ_EMPTY
macro should be used to check whether a tail queue is empty.
.Sh TAIL QUEUE EXAMPLE
.Bd -literal
TAILQ_HEAD(tailhead, entry) head;
struct entry {
...
TAILQ_ENTRY(entry) entries; /* Tail queue. */
...
} *n1, *n2, *np;
TAILQ_INIT(&head); /* Initialize queue. */
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
TAILQ_INSERT_HEAD(&head, n1, entries);
n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
TAILQ_INSERT_TAIL(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
TAILQ_INSERT_AFTER(&head, n1, n2, entries);
n2 = malloc(sizeof(struct entry)); /* Insert before. */
TAILQ_INSERT_BEFORE(n1, n2, entries);
/* Forward traversal. */
TAILQ_FOREACH(np, &head, entries)
np-> ...
/* Manual forward traversal. */
for (np = n2; np != NULL; np = TAILQ_NEXT(np, entries))
np-> ...
/* Delete. */
while (np = TAILQ_FIRST(&head))
TAILQ_REMOVE(&head, np, entries);
.Ed
.Sh CIRCULAR QUEUES
A circular queue is headed by a structure defined by the
.Fn CIRCLEQ_HEAD
macro.
This structure contains a pair of pointers,
one to the first element in the circular queue and the other to the
last element in the circular queue.
The elements are doubly linked so that an arbitrary element can be
removed without traversing the queue.
New elements can be added to the queue after an existing element,
before an existing element, at the head of the queue, or at the end
of the queue.
A
.Fa CIRCLEQ_HEAD
structure is declared as follows:
.Bd -literal -offset indent
CIRCLEQ_HEAD(HEADNAME, TYPE) head;
.Ed
.Pp
where
.Fa HEADNAME
is the name of the structure to be defined, and struct
.Fa TYPE
is the type of the elements to be linked into the circular queue.
A pointer to the head of the circular queue can later be declared as:
.Bd -literal -offset indent
struct HEADNAME *headp;
.Ed
.Pp
(The names
.Li head
and
.Li headp
are user selectable.)
.Pp
The
.Fn CIRCLEQ_ENTRY
macro declares a structure that connects the elements in the circular queue.
.Pp
The
.Fn CIRCLEQ_INIT
macro initializes the circular queue referenced by
.Fa head .
.Pp
The circular queue can also be initialized statically by using the
.Fn CIRCLEQ_HEAD_INITIALIZER
macro.
.Pp
The
.Fn CIRCLEQ_INSERT_HEAD
macro inserts the new element
.Fa elm
at the head of the circular queue.
.Pp
The
.Fn CIRCLEQ_INSERT_TAIL
macro inserts the new element
.Fa elm
at the end of the circular queue.
.Pp
The
.Fn CIRCLEQ_INSERT_AFTER
macro inserts the new element
.Fa elm
after the element
.Fa listelm .
.Pp
The
.Fn CIRCLEQ_INSERT_BEFORE
macro inserts the new element
.Fa elm
before the element
.Fa listelm .
.Pp
The
.Fn CIRCLEQ_REMOVE
macro removes the element
.Fa elm
from the circular queue.
.Pp
The
.Fn CIRCLEQ_FIRST ,
.Fn CIRCLEQ_LAST ,
.Fn CIRCLEQ_END ,
.Fn CIRCLEQ_NEXT
and
.Fn CIRCLEQ_PREV
macros can be used to traverse a circular queue.
The
.Fn CIRCLEQ_FOREACH
is used for circular queue forward traversal:
.Bd -literal -offset indent
CIRCLEQ_FOREACH(np, head, NAME)
.Ed
.Pp
The
.Fn CIRCLEQ_FOREACH_REVERSE
macro acts like
.Fn CIRCLEQ_FOREACH
but traverses the circular queue backwards.
.Pp
The
.Fn CIRCLEQ_EMPTY
macro should be used to check whether a circular queue is empty.
.Sh CIRCULAR QUEUE EXAMPLE
.Bd -literal
CIRCLEQ_HEAD(circleq, entry) head;
struct entry {
...
CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */
...
} *n1, *n2, *np;
CIRCLEQ_INIT(&head); /* Initialize circular queue. */
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
CIRCLEQ_INSERT_HEAD(&head, n1, entries);
n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
CIRCLEQ_INSERT_TAIL(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);
n2 = malloc(sizeof(struct entry)); /* Insert before. */
CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries);
/* Forward traversal. */
CIRCLEQ_FOREACH(np, &head, entries)
np-> ...
/* Reverse traversal. */
CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
np-> ...
/* Delete. */
while (!CIRCLEQ_EMPTY(&head))
CIRCLEQ_REMOVE(&head, CIRCLEQ_FIRST(&head), entries);
.Ed
.Sh NOTES
It is an error to assume the next and previous fields are preserved
after an element has been removed from a list or queue.
Using any macro (except the various forms of insertion) on an element
removed from a list or queue is incorrect.
An example of erroneous usage is removing the same element twice.
.Pp
The
.Fn SLIST_END ,
.Fn LIST_END ,
.Fn SIMPLEQ_END
and
.Fn TAILQ_END
macros are provided for symmetry with
.Fn CIRCLEQ_END .
They expand to
.Dv NULL
and don't serve any useful purpose.
.Pp
Trying to free a list in the following way is a common error:
.Bd -literal -offset indent
LIST_FOREACH(var, head, entry)
free(var);
free(head);
.Ed
.Pp
Since
.Va var
is free'd, the
.Fn FOREACH
macro refers to a pointer that may have been reallocated already.
Proper code needs a second variable.
.Bd -literal -offset indent
for (var = LIST_FIRST(head); var != LIST_END(head); var = nxt) {
nxt = LIST_NEXT(var, entry);
free(var);
}
LIST_INIT(head); /* to put the list back in order */
.Ed
.Pp
A similar situation occurs when the current element is deleted
from the list.
Correct code saves a pointer to the next element in the list before
removing the element:
.Bd -literal -offset indent
for (var = LIST_FIRST(head); var != LIST_END(head); var = nxt) {
nxt = LIST_NEXT(var, entry);
if (some_condition) {
LIST_REMOVE(var, entry);
some_function(var);
}
}
.Ed
.Sh HISTORY
The
.Nm queue
functions first appeared in
.Bx 4.4 .
|