summaryrefslogtreecommitdiff
path: root/share/man/man4/gre.4
blob: 0f740a0124a7e4992f45d4a0a141ecf982d7417f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
.\" $OpenBSD: gre.4,v 1.59 2018/02/22 07:27:26 dlg Exp $
.\" $NetBSD: gre.4,v 1.10 1999/12/22 14:55:49 kleink Exp $
.\"
.\" Copyright 1998 (c) The NetBSD Foundation, Inc.
.\" All rights reserved.
.\"
.\" This code is derived from software contributed to The NetBSD Foundation
.\" by Heiko W. Rupp <hwr@pilhuhn.de>
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
.\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
.\" TO, THE  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
.\" PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
.\" CONTRACT, STRICT  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY  OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
.\" POSSIBILITY OF SUCH DAMAGE.
.\"
.Dd $Mdocdate: February 22 2018 $
.Dt GRE 4
.Os
.Sh NAME
.Nm gre ,
.\" .Nm mgre ,
.Nm egre ,
.Nm nvgre
.Nd Generic Routing Encapsulation network device
.Sh SYNOPSIS
.Cd "pseudo-device gre"
.Sh DESCRIPTION
The
.Nm gre
pseudo-device provides interfaces for tunnelling protocols across
IPv4 and IPv6 networks using the Generic Routing Encapsulation (GRE)
encapsulation protocol.
.Pp
GRE datagrams (IP protocol number 47) consist of a GRE header
and an outer IP header for encapsulating another protocol's datagram.
The GRE header specifies the type of the encapsulated datagram,
allowing for the tunnelling of multiple protocols.
.Pp
Different tunnels between the same endpoints may be distinguised
by an optional Key field in the GRE header.
The Key field may be partitioned to carry flow information about the
encapsulated traffic to allow better use of multipath links.
.Pp
This pseudo driver provides the clonable network interfaces:
.Bl -tag -width nvgreX
.It Nm gre
Point-to-point Layer 3 tunnel interfaces.
.\" .It Nm mgre
.\" Point-to-multipoint Layer 3 tunnel interfaces.
.It Nm egre
Point-to-point Ethernet tunnel interfaces.
.It Nm nvgre
Network Virtualization Using Generic Routing Encapsulation
(NVGRE) overlay Ethernet network interfaces.
.El
.Pp
All GRE packet processing in the system is allowed or denied by setting the
.Va net.inet.gre.allow
.Xr sysctl 8
variable.
To allow GRE packet processing, set
.Va net.inet.gre.allow
to 1.
.Pp
.Nm gre ,
.\" .Nm mgre ,
.Nm egre ,
and
.Nm nvgre
interfaces can be created at runtime using the
.Ic ifconfig iface Ns Ar N Ic create
command or by setting up a
.Xr hostname.if 5
configuration file for
.Xr netstart 8 .
.Pp
For correct operation, encapsulated traffic must not be routed
over the interface itself.
This can be implemented by adding a distinct or a more specific
route to the tunnel destination than the hosts or networks routed
via the tunnel interface.
Alternatively, the tunnel traffic may be configured in a separate
routing table to the encapsulated traffic.
.Ss Point-to-Point Layer 3 GRE tunnel interfaces (gre)
A
.Nm gre
tunnel can encapsulate IPv4, IPv6, and MPLS packets.
The MTU is set to 1476 by default to match the value used by Cisco
routers.
.Pp
.Nm gre
supports sending keepalive packets to the remote endpoint, which
allows tunnel failure to be detected.
.\" talk about keepalive packet construction?
To return keepalives, the remote host must be configured to forward
IP packets received from inside the tunnel back to the address of
the local tunnel endpoint.
For example, an
.Ox
remote host with a GRE tunnel over IPv4 would need the following
to ensure packets received inside the tunnel can be forwarded back
to the local tunnel.
.Bd -literal -offset indent
# sysctl net.inet.ip.forwarding=1
# ifconfig greN rdomain X
# ifconfig greN tunneldomain X
.Ed
.\" talk about caveats with rdomains
.Pp
.Nm gre
interfaces may be confugred to receive IPv4 packets in
Web Cache Communication Protocol (WCCP)
encapsulation by setting the
.Cm link0
flag on the interface.
WCCP reception may be enabled globally by setting the
.Va net.inet.gre.wccp
sysctl value to 1.
Some magic with the packet filter configuration
and a caching proxy like squid are needed
to do anything useful with these packets.
This sysctl requires
.Va net.inet.gre.allow
to also be set.
.\" .Ss Point-to-Multipoint Layer 3 GRE tunnel interfaces (mgre)
.Ss Point-to-Point Ethernet over GRE tunnel interfaces (egre)
A
.Nm egre
tunnel interface carries Ethernet over GRE (EoGRE).
Ethernet traffic is encapsulated using Transparent Ethernet (0x6558)
as the protocol identifier in the GRE header, as per RFC 1701.
The MTU is set to 1500 by default.
.Ss Network Virtualization Using GRE interfaces (nvgre)
.Nm nvgre
interfaces allow construction of virtual overlay Ethernet networks
on top of an IPv4 or IPv6 underlay network as per RFC 7367.
Ethernet traffic is encapsulated using Transparent Ethernet (0x6558)
as the protocol identifier in the GRE header, a 24-bit Virtual
Subnet ID (VSID), and an 8-bit FlowID.
A
.Nm nvgre
interface represents a Network Virtualization Edge (NVE), and
transports traffic in the overlay network by encapsulating it
in the underlay.
.Pp
.Nm nvgre
interfaces are configured with a unicast tunnel source address,
a multicast tunnel destination address,
and a parent interface to use for sending and receiving multicast
traffic on the underlay network.
The unicast source address is used as the NVE Provider Address (PA)
on the underlay network.
The multicast group address in the underlay is used to transport
broadcast and multicast traffic from the overlay to other participating
NVGRE endpoints.
It is also used to flood unicast traffic to Ethernet addresses in
the overlay with an unknown association to a NVGRE endpoint.
Traffic received from other NVGRE endpoints, either to the unicast
PA address or multicast group address, is used to learn associations
between Ethernet addresses in the overlay network and the Provider
Addresses of NVGRE endpoints.
.Pp
The MTU is set to 1500 by default.
.\" talk about DF and MTU of underlay network.
.Ss Programming Interface
.Nm gre ,
.Nm egre ,
and
.Nm nvgre
interfaces support the following
.Xr ioctl 2
calls for configuring tunnel options:
.Bl -tag -width indent -offset 3n
.It Dv SIOCSLIFPHYADDR Fa "struct if_laddrreq *"
Set the IPv4 or IPv6 addresses for the encapsulating IP packets.
The addresses may only be configured while the interface is down.
.Pp
.Nm gre
and
.Nm egre
interfaces support configuration of unicast IP addresses as the
tunnel endpoints.
.Pp
.Nm nvgre
interfaces supports configuration of a unicast IP address as the
local endpoint and a multicast group address as the destination
address.
.It Dv SIOCGLIFPHYADDR Fa "struct if_laddrreq *"
Get the addresses used for the encapsulating IP packets.
.It Dv SIOCDIFPHYADDR Fa "struct ifreq *"
Clear the addresses used for the encapsulating IP packets.
The addresses may only be cleared while the interface is down.
.It Dv SIOCSVNETID Fa "struct ifreq *"
Configure a virtual network identifier for use in the GRE Key header.
The virtual network identifier may only be configured while the
interface is down.
.Pp
.Nm gre
and
.Nm egre
interfaces configured with a virtual network identifier will enable
the use of the GRE Key header.
The Key is a 32-bit value by default, or a 24-bit value when the
virtual network flow identifier is enabled.
.Pp
.Nm nvgre
interfaces use the virtual network identifier in the 24-bit
Virtual Subnet Identifer (VSID)
aka
Tenant Network Identifier (TNI)
field in of the GRE Key header.
.It Dv SIOCGVNETID Fa "struct ifreq *"
Get the virtual network identifer used in the GRE Key header.
.It Dv SIOCDVNETID Fa "struct ifreq *"
Disable the use of the a virtual network identifier.
The virtual network identifer may only be disabled while the interface
is down.
.Pp
When the virtual network identifier is disabled on
.Nm gre
and
.Nm egre
interfaces, it disables the use of the GRE Key header.
.Pp
.Nm nvgre
interfaces do not support this ioctl as a
Virtual Subnet Identifier
is required by the protocol.
.It Dv SIOCSLIFPHYRTABLE Fa "struct ifreq *"
Set the routing table the tunnel traffic operates in.
The routing table may only be configured while the interface is down.
.It Dv SIOCGLIFPHYRTABLE Fa "struct ifreq *"
Get the routing table the tunnel traffic operates in.
.It Dv SIOCSLIFPHYTTL Fa "struct ifreq *"
Set the Time-To-Live field in IPv4 encapsulation headers, or the
Hop Limit field in IPv6 encapsulation headers.
.Pp
.Nm gre
interfaces configured with a ttl of -1 will copy the TTL in and out
of the encapsulated protocol headers.
.It Dv SIOCGLIFPHYTTL Fa "struct ifreq *"
Get the value used in Time-To-Live field in a IPv4 encapsulation
header or the Hop Limit field in a IPv6 encapsulation header.
.It Dv SIOCSLIFPHYDF Fa "struct ifreq *"
Configure whether the tunnel traffic sent by the interface can be
fragmented or not.
This set's the Don't Fragment (DF) bit on IPv4 packets,
and disables fragmentation of IPv6 packets.
.It Dv SIOCGLIFPHYDF Fa "struct ifreq *"
Get whether the tunnel traffic sent by the interface can be fragmented
or not.
.El
.Pp
.Nm gre
and
.Nm egre
interfaces support the following
.Xr ioctl 2
calls:
.Bl -tag -width indent -offset 3n
.It Dv SIOCSVNEFLOWID Fa "struct ifreq *"
Enable or disable the partitioning of the optional GRE Key header
into a 24-bit virtual network identifier and an 8-bit flow
identifier.
.Pp
.Nm gre
and
.Nm egre
must already be configured with a virtual network identifer before
enabling flow identifiers in the GRE Key header.
The configured virtual network identify must also fit into 24-bits.
.It Dv SIOCDVNETFLOWID Fa "struct ifreq *"
Get the status of the partitioning of the GRE key.
.El
.Pp
.Nm gre
interfaces support the following
.Xr ioctl 2
calls:
.Bl -tag -width indent -offset 3n
.It Dv SIOCSETKALIVE Fa "struct ifkalivereq *"
Enable the transmission of keepalive packets to detect tunnel failure.
.\" Keepalives may only be configured while the interace is down.
.Pp
Setting the keepalive period or count to 0 disables keepalives on
the tunnel.
.It Dv SIOCGETKALIVE Fa "struct ifkalivereq *"
Get the configuration of keepalive packets.
.El
.Pp
.Nm nvgre
interfaces support the following
.Xr ioctl 2
calls:
.Bl -tag -width indent -offset 3n
.It Dv SIOCSIFPARENT Fa "struct if_parent *"
Configure which interface will be joined to the multicast group
specified by the tunnel destination address.
The parent interface may only be configured while the interface is
down.
.It Dv SIOCGIFPARENT Fa "struct if_parent *"
Get the name of the interface used for multicast communication.
.It Dv SIOCGIFPARENT Fa "struct ireq *"
Remove the configuration of the interface used for multicast
communication.
.\" bridge(4) ioctls should go here too.
.El
.Sh EXAMPLES
.Nm gre
Configuration example:
.Bd -literal
Host X ---- Host A ------------ tunnel ------------ Cisco D ---- Host E
               \e                                      /
                \e                                    /
                 +------ Host B ------ Host C ------+
.Ed
.Pp
On Host A
.Pq Ox :
.Bd -literal -offset indent
# route add default B
# ifconfig greN create
# ifconfig greN A D netmask 0xffffffff up
# ifconfig greN tunnel A D
# route add E D
.Ed
.Pp
On Host D (Cisco):
.Bd -literal -offset indent
Interface TunnelX
 ip unnumbered D   ! e.g. address from Ethernet interface
 tunnel source D   ! e.g. address from Ethernet interface
 tunnel destination A
ip route C <some interface and mask>
ip route A mask C
ip route X mask tunnelX
.Ed
.Pp
OR
.Pp
On Host D
.Pq Ox :
.Bd -literal -offset indent
# route add default C
# ifconfig greN create
# ifconfig greN D A
# ifconfig greN tunnel D A
.Ed
.Pp
To reach Host A over the tunnel (from Host D), there has to be an
alias on Host A for the Ethernet interface:
.Pp
.Dl # ifconfig <etherif> alias Y
.Pp
and on the Cisco:
.Pp
.Dl ip route Y mask tunnelX
.Pp
Keepalive packets may be enabled like this:
.Bd -literal -offset indent
# ifconfig greN keepalive period count
.Ed
.Pp
This will send a keepalive packet every
.Ar period
seconds.
If no response is received in
.Ar count
*
.Ar period
seconds, the link is considered down.
To return keepalives, the remote host must be configured to forward packets:
.Bd -literal -offset indent
# sysctl net.inet.ip.forwarding=1
.Ed
.Pp
If
.Xr pf 4
is enabled then it is necessary to add a pass rule specific for the keepalive
packets.
The rule must use
.Cm no state
because the keepalive packet is entering the network stack multiple times.
In most cases the following should work:
.Bd -literal -offset indent
pass quick on gre proto gre no state
.Ed
.Sh SEE ALSO
.Xr inet 4 ,
.Xr ip 4 ,
.Xr netintro 4 ,
.Xr options 4 ,
.Xr hostname.if 5 ,
.Xr protocols 5 ,
.Xr ifconfig 8 ,
.Xr netstart 8 ,
.Xr sysctl 8
.Sh STANDARDS
.Rs
.%A S. Hanks
.%A "T. Li"
.%A D. Farinacci
.%A P. Traina
.%D October 1994
.%R RFC 1701
.%T Generic Routing Encapsulation (GRE)
.Re
.Pp
.Rs
.%A S. Hanks
.%A "T. Li"
.%A D. Farinacci
.%A P. Traina
.%D October 1994
.%R RFC 1702
.%T Generic Routing Encapsulation over IPv4 networks
.Re
.Pp
.Rs
.%A D. Farinacci
.%A "T. Li"
.%A S. Hanks
.%A D. Meyer
.%A P. Traina
.%D March 2000
.%R RFC 2784
.%T Generic Routing Encapsulation (GRE)
.Re
.Pp
.Rs
.%A G. Dommety
.%D September 2000
.%R RFC 2890
.%T Key and Sequence Number Extensions to GRE
.Re
.Pp
.Rs
.%A P. Garg
.%A Y. Wang
.%D September 2015
.%R RFC 7647
.%T NVGRE: Network Virtualization Using Generic Routing Encapsulation
.Re
.Pp
.Rs
.%U https://tools.ietf.org/html/draft-ietf-wrec-web-pro-00.txt
.%T Web Cache Coordination Protocol V1.0
.Re
.Pp
.Rs
.%U https://tools.ietf.org/html/draft-wilson-wrec-wccp-v2-00.txt
.%T Web Cache Coordination Protocol V2.0
.Re
.Sh AUTHORS
.An Heiko W. Rupp Aq Mt hwr@pilhuhn.de
.Sh CAVEATS
RFC 1701 and RFC 2890 describe a variety of optional GRE header
fields in the protocol that are not implemented in the
.Nm gre
and
.Nm egre
interface drivers.
The only optional field the drivers implement support for is the
Key header.
.Pp
.Nm gre
interfaces skip the redirect header in WCCPv2 GRE encapsulated packets.
.Pp
The NVGRE RFC specifies VSIDs 0 (0x0) to 4095 (0xfff) as reserved
for future use, and VSID 16777215 (0xffffff) for use for vendor-specific
endpoint communication.
The NVGRE RFC also explicitly states encapsulated Ethernet packets
must not contain IEEE 802.1Q (VLAN) tags.
The
.Nm nvgre
driver not restrict the use of these VSIDs, and does not prevent
the configuration of child
.Xr vlan 4
interfaces or the bridging of VLAN tagged traffic across the tunnel.
These non-restrictions allow non-compliant tunnels to be configured
which may not interoperate with other vendors.