summaryrefslogtreecommitdiff
path: root/sys/arch/alpha/alpha/trap.c
blob: 87e3cf2209685d39f229953ed802815aff456b2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
/* $OpenBSD: trap.c,v 1.66 2014/01/26 17:40:09 miod Exp $ */
/* $NetBSD: trap.c,v 1.52 2000/05/24 16:48:33 thorpej Exp $ */

/*-
 * Copyright (c) 2000 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
 * NASA Ames Research Center.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Copyright (c) 1999 Christopher G. Demetriou.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *      This product includes software developed by Christopher G. Demetriou
 *	for the NetBSD Project.
 * 4. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: Chris G. Demetriou
 * 
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 * 
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 * 
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/user.h>
#include <sys/syscall.h>
#include <sys/syscall_mi.h>
#include <sys/buf.h>
#ifndef NO_IEEE
#include <sys/device.h>
#endif
#include <sys/ptrace.h>

#include <uvm/uvm_extern.h>

#include <machine/cpu.h>
#include <machine/reg.h>
#ifdef DDB
#include <machine/db_machdep.h>
#endif
#include <alpha/alpha/db_instruction.h>

#ifndef SMALL_KERNEL

unsigned long	Sfloat_to_reg(unsigned int);
unsigned int	reg_to_Sfloat(unsigned long);
unsigned long	Tfloat_reg_cvt(unsigned long);
#ifdef FIX_UNALIGNED_VAX_FP
unsigned long	Ffloat_to_reg(unsigned int);
unsigned int	reg_to_Ffloat(unsigned long);
unsigned long	Gfloat_reg_cvt(unsigned long);
#endif

int		unaligned_fixup(unsigned long, unsigned long,
		    unsigned long, struct proc *);
#endif	/* SMALL_KERNEL */

int		handle_opdec(struct proc *p, u_int64_t *ucodep);

#ifndef NO_IEEE
struct device fpevent_use;
struct device fpevent_reuse;
#endif

#ifdef DEBUG
static void printtrap(const unsigned long, const unsigned long,
      const unsigned long, const unsigned long, struct trapframe *, int, int);
#endif /* DEBUG */
/*
 * Initialize the trap vectors for the current processor.
 */
void
trap_init()
{

	/*
	 * Point interrupt/exception vectors to our own.
	 */
	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT); 
	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA); 
	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);

	/*
	 * Clear pending machine checks and error reports, and enable
	 * system- and processor-correctable error reporting.
	 */
	alpha_pal_wrmces(alpha_pal_rdmces() & 
	    ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
}

#ifdef DEBUG
static void
printtrap(a0, a1, a2, entry, framep, isfatal, user)
	const unsigned long a0, a1, a2, entry;
	struct trapframe *framep;
	int isfatal, user;
{
	char ubuf[64];
	const char *entryname;

	switch (entry) {
	case ALPHA_KENTRY_INT:
		entryname = "interrupt";
		break;
	case ALPHA_KENTRY_ARITH:
		entryname = "arithmetic trap";
		break;
	case ALPHA_KENTRY_MM:
		entryname = "memory management fault";
		break;
	case ALPHA_KENTRY_IF:
		entryname = "instruction fault";
		break;
	case ALPHA_KENTRY_UNA:
		entryname = "unaligned access fault";
		break;
	case ALPHA_KENTRY_SYS:
		entryname = "system call";
		break;
	default:
		snprintf(ubuf, sizeof ubuf, "type %lx", entry);
		entryname = (const char *) ubuf;
		break;
	}

	printf("\n");
	printf("%s %s trap:\n", isfatal? "fatal" : "handled",
	       user ? "user" : "kernel");
	printf("\n");
	printf("    trap entry = 0x%lx (%s)\n", entry, entryname);
	printf("    a0         = 0x%lx\n", a0);
	printf("    a1         = 0x%lx\n", a1);
	printf("    a2         = 0x%lx\n", a2);
	printf("    pc         = 0x%lx\n", framep->tf_regs[FRAME_PC]);
	printf("    ra         = 0x%lx\n", framep->tf_regs[FRAME_RA]);
	printf("    curproc    = %p\n", curproc);
	if (curproc != NULL)
		printf("        pid = %d, comm = %s\n", curproc->p_pid,
		       curproc->p_comm);
	printf("\n");
}
#endif /* DEBUG */

/*
 * Trap is called from locore to handle most types of processor traps.
 * System calls are broken out for efficiency and ASTs are broken out
 * to make the code a bit cleaner and more representative of the
 * Alpha architecture.
 */
/*ARGSUSED*/
void
trap(a0, a1, a2, entry, framep)
	const unsigned long a0, a1, a2, entry;
	struct trapframe *framep;
{
	struct proc *p;
	int i;
	u_int64_t ucode;
	int user;
#if defined(DDB)
	int call_debugger = 1;
#endif
	caddr_t v;
	int typ;
	union sigval sv;
	vm_prot_t ftype;
	unsigned long onfault;

	atomic_add_int(&uvmexp.traps, 1);
	p = curproc;
	ucode = 0;
	v = 0;
	user = (framep->tf_regs[FRAME_PS] & ALPHA_PSL_USERMODE) != 0;
	if (user)
		p->p_md.md_tf = framep;

	switch (entry) {
	case ALPHA_KENTRY_UNA:
		/*
		 * If user-land, do whatever fixups, printing, and
		 * signalling is appropriate (based on system-wide
		 * and per-process unaligned-access-handling flags).
		 */
		if (user) {
#ifndef SMALL_KERNEL
			KERNEL_LOCK();
			i = unaligned_fixup(a0, a1, a2, p);
			KERNEL_UNLOCK();
			if (i == 0)
				goto out;
#endif

			ucode = ILL_ILLADR;
			v = (caddr_t)a0;
			break;
		}

		/*
		 * Unaligned access from kernel mode is always an error,
		 * EVEN IF A COPY FAULT HANDLER IS SET!
		 *
		 * It's an error if a copy fault handler is set because
		 * the various routines which do user-initiated copies
		 * do so in a bcopy-like manner.  In other words, the
		 * kernel never assumes that pointers provided by the
		 * user are properly aligned, and so if the kernel
		 * does cause an unaligned access it's a kernel bug.
		 */
		goto dopanic;

	case ALPHA_KENTRY_ARITH:
		/*
		 * Resolve trap shadows, interpret FP ops requiring infinities,
		 * NaNs, or denorms, and maintain FPCR corrections.
		 */
		if (user) {
#ifndef NO_IEEE
			i = alpha_fp_complete(a0, a1, p, &ucode);
			if (i == 0)
				goto out;
#else
			i = SIGFPE;
			ucode = FPE_FLTINV;
#endif
			v = (caddr_t)framep->tf_regs[FRAME_PC];
			break;
		}

		/* Always fatal in kernel.  Should never happen. */
		goto dopanic;

	case ALPHA_KENTRY_IF:
		/*
		 * These are always fatal in kernel, and should never
		 * happen.  (Debugger entry is handled in XentIF.)
		 */
		if (!user) {
#if defined(DDB)
			/*
			 * ...unless a debugger is configured.  It will
			 * inform us if the trap was handled.
			 */
			if (alpha_debug(a0, a1, a2, entry, framep))
				goto out;

			/*
			 * Debugger did NOT handle the trap, don't
			 * call the debugger again!
			 */
			call_debugger = 0;
#endif
			goto dopanic;
		}
		i = 0;
		switch (a0) {
		case ALPHA_IF_CODE_GENTRAP:
			if (framep->tf_regs[FRAME_A0] == -2) { /* weird! */
				i = SIGFPE;
				ucode =  a0;	/* exception summary */
				break;
			}
			/* FALLTHROUGH */
		case ALPHA_IF_CODE_BPT:
		case ALPHA_IF_CODE_BUGCHK:
#ifdef PTRACE
			if (p->p_md.md_flags & (MDP_STEP1|MDP_STEP2)) {
				process_sstep(p, 0);
				p->p_md.md_tf->tf_regs[FRAME_PC] -= 4;
			}
#endif
			ucode = a0;		/* trap type */
			i = SIGTRAP;
			break;

		case ALPHA_IF_CODE_OPDEC:
			KERNEL_LOCK();
			i = handle_opdec(p, &ucode);
			KERNEL_UNLOCK();
			if (i == 0)
				goto out;
			break;

		case ALPHA_IF_CODE_FEN:
			alpha_enable_fp(p, 0);
			alpha_pal_wrfen(0);
			goto out;

		default:
			printf("trap: unknown IF type 0x%lx\n", a0);
			goto dopanic;
		}
		v = (caddr_t)framep->tf_regs[FRAME_PC];
		break;

	case ALPHA_KENTRY_MM:
		switch (a1) {
		case ALPHA_MMCSR_FOR:
		case ALPHA_MMCSR_FOE:
		case ALPHA_MMCSR_FOW:
			KERNEL_LOCK();
			if (pmap_emulate_reference(p, a0, user, a1)) {
				ftype = VM_PROT_EXECUTE;
				goto do_fault;
			}
			KERNEL_UNLOCK();
			goto out;

		case ALPHA_MMCSR_INVALTRANS:
		case ALPHA_MMCSR_ACCESS:
	    	    {
			vaddr_t va;
			struct vmspace *vm = NULL;
			struct vm_map *map;
			int rv;
			extern struct vm_map *kernel_map;

			switch (a2) {
			case -1:		/* instruction fetch fault */
				ftype = VM_PROT_EXECUTE;
				break;
			case 0:			/* load instruction */
				ftype = VM_PROT_READ;
				break;
			case 1:			/* store instruction */
				ftype = VM_PROT_READ|VM_PROT_WRITE;
				break;
			}
	
			KERNEL_LOCK();
do_fault:
			/*
			 * It is only a kernel address space fault iff:
			 *	1. !user and
			 *	2. pcb_onfault not set or
			 *	3. pcb_onfault set but kernel space data fault
			 * The last can occur during an exec() copyin where the
			 * argument space is lazy-allocated.
			 */
			if (!user && (a0 >= VM_MIN_KERNEL_ADDRESS ||
			    p == NULL || p->p_addr->u_pcb.pcb_onfault == 0)) {
				vm = NULL;
				map = kernel_map;
			} else {
				vm = p->p_vmspace;
				map = &vm->vm_map;
			}
	
			va = trunc_page((vaddr_t)a0);
			if (p != NULL) {
				onfault = p->p_addr->u_pcb.pcb_onfault;
				p->p_addr->u_pcb.pcb_onfault = 0;
			}
			rv = uvm_fault(map, va, 0, ftype);
			if (p != NULL)
				p->p_addr->u_pcb.pcb_onfault = onfault;
			/*
			 * If this was a stack access we keep track of the
			 * maximum accessed stack size.  Also, if vm_fault
			 * gets a protection failure it is due to accessing
			 * the stack region outside the current limit and
			 * we need to reflect that as an access error.
			 */
			if (map != kernel_map &&
			    (caddr_t)va >= vm->vm_maxsaddr) {
				if (rv == 0) {
					if (p != NULL)
					    uvm_grow(p, va);
				} else if (rv == EACCES)
					rv = EFAULT;
			}
			if (rv == 0) {
				KERNEL_UNLOCK();
				goto out;
			}

			if (!user) {
				/* Check for copyin/copyout fault */
				if (p != NULL &&
				    p->p_addr->u_pcb.pcb_onfault != 0) {
					framep->tf_regs[FRAME_PC] =
					    p->p_addr->u_pcb.pcb_onfault;
					p->p_addr->u_pcb.pcb_onfault = 0;
					KERNEL_UNLOCK();
					goto out;
				}
				KERNEL_UNLOCK();
				goto dopanic;
			}
			KERNEL_UNLOCK();
			ucode = ftype;
			v = (caddr_t)a0;
			typ = SEGV_MAPERR;
			if (rv == ENOMEM) {
				printf("UVM: pid %u (%s), uid %u killed: "
				       "out of swap\n", p->p_pid, p->p_comm,
				       p->p_cred && p->p_ucred ?
				       p->p_ucred->cr_uid : -1);
				i = SIGKILL;
			} else {
				i = SIGSEGV;
			}
			break;
		    }

		default:
			printf("trap: unknown MMCSR value 0x%lx\n", a1);
			goto dopanic;
		}
		break;

	default:
		goto dopanic;
	}

#ifdef DEBUG
	printtrap(a0, a1, a2, entry, framep, 1, user);
#endif
	sv.sival_ptr = v;
	KERNEL_LOCK();
	trapsignal(p, i, ucode, typ, sv);
	KERNEL_UNLOCK();
out:
	if (user) {
		/* Do any deferred user pmap operations. */
		PMAP_USERRET(vm_map_pmap(&p->p_vmspace->vm_map));

		userret(p);
	}
	return;

dopanic:
#ifdef DEBUG
	printtrap(a0, a1, a2, entry, framep, 1, user);
#endif
	/* XXX dump registers */

#if defined(DDB)
	if (call_debugger && alpha_debug(a0, a1, a2, entry, framep)) {
		/*
		 * The debugger has handled the trap; just return.
		 */
		goto out;
	}
#endif

	panic("trap");
}

/*
 * Process a system call.
 *
 * System calls are strange beasts.  They are passed the syscall number
 * in v0, and the arguments in the registers (as normal).  They return
 * an error flag in a3 (if a3 != 0 on return, the syscall had an error),
 * and the return value (if any) in v0.
 *
 * The assembly stub takes care of moving the call number into a register
 * we can get to, and moves all of the argument registers into their places
 * in the trap frame.  On return, it restores the callee-saved registers,
 * a3, and v0 from the frame before returning to the user process.
 */
void
syscall(code, framep)
	u_int64_t code;
	struct trapframe *framep;
{
	struct sysent *callp;
	struct proc *p;
	int error, numsys;
	u_int64_t opc;
	u_long rval[2];
	u_long args[10];					/* XXX */
	u_int hidden, nargs;

	atomic_add_int(&uvmexp.syscalls, 1);
	p = curproc;
	p->p_md.md_tf = framep;
	opc = framep->tf_regs[FRAME_PC] - 4;

	callp = p->p_emul->e_sysent;
	numsys = p->p_emul->e_nsysent;

	switch(code) {
	case SYS_syscall:
	case SYS___syscall:
		/*
		 * syscall() and __syscall() are handled the same on
		 * the alpha, as everything is 64-bit aligned, anyway.
		 */
		code = framep->tf_regs[FRAME_A0];
		hidden = 1;
		break;
	default:
		hidden = 0;
	}

	error = 0;
	if (code < numsys)
		callp += code;
	else
		callp += p->p_emul->e_nosys;

	nargs = callp->sy_narg + hidden;
	switch (nargs) {
	default:
		if (nargs > 10)		/* XXX */
			panic("syscall: too many args (%d)", nargs);
		if ((error = copyin((caddr_t)(alpha_pal_rdusp()), &args[6],
		    (nargs - 6) * sizeof(u_long))))
			goto bad;
	case 6:	
		args[5] = framep->tf_regs[FRAME_A5];
	case 5:	
		args[4] = framep->tf_regs[FRAME_A4];
	case 4:	
		args[3] = framep->tf_regs[FRAME_A3];
	case 3:	
		args[2] = framep->tf_regs[FRAME_A2];
	case 2:	
		args[1] = framep->tf_regs[FRAME_A1];
	case 1:	
		args[0] = framep->tf_regs[FRAME_A0];
	case 0:
		break;
	}

	rval[0] = 0;
	rval[1] = 0;

	error = mi_syscall(p, code, callp, args + hidden, rval);

	switch (error) {
	case 0:
		framep->tf_regs[FRAME_V0] = rval[0];
		framep->tf_regs[FRAME_A4] = rval[1];
		framep->tf_regs[FRAME_A3] = 0;
		break;
	case ERESTART:
		framep->tf_regs[FRAME_PC] = opc;
		break;
	case EJUSTRETURN:
		break;
	default:
	bad:
		framep->tf_regs[FRAME_V0] = error;
		framep->tf_regs[FRAME_A3] = 1;
		break;
	}

	/* Do any deferred user pmap operations. */
	PMAP_USERRET(vm_map_pmap(&p->p_vmspace->vm_map));

	mi_syscall_return(p, code, error, rval);
}

/*
 * Process the tail end of a fork() for the child.
 */
void
child_return(arg)
	void *arg;
{
	struct proc *p = arg;
	struct trapframe *framep = p->p_md.md_tf;

	/*
	 * Return values in the frame set by cpu_fork().
	 */
	framep->tf_regs[FRAME_V0] = 0;
	framep->tf_regs[FRAME_A4] = 0;
	framep->tf_regs[FRAME_A3] = 0;

	KERNEL_UNLOCK();

	/* Do any deferred user pmap operations. */
	PMAP_USERRET(vm_map_pmap(&p->p_vmspace->vm_map));

	mi_child_return(p);
}

/*
 * Set the float-point enable for the current process, and return
 * the FPU context to the named process. If check == 0, it is an
 * error for the named process to already be fpcurproc.
 */
void
alpha_enable_fp(struct proc *p, int check)
{
	struct cpu_info *ci = curcpu();
#if defined(MULTIPROCESSOR)
	int s;
#endif

	if (check && ci->ci_fpcurproc == p) {
		alpha_pal_wrfen(1);
		return;
	}
	if (ci->ci_fpcurproc == p)
		panic("trap: fp disabled for fpcurproc == %p", p);

	if (ci->ci_fpcurproc != NULL)
		fpusave_cpu(ci, 1);

	KDASSERT(ci->ci_fpcurproc == NULL);

#if defined(MULTIPROCESSOR)
	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
		fpusave_proc(p, 1);
#else
	KDASSERT(p->p_addr->u_pcb.pcb_fpcpu == NULL);
#endif

#if defined(MULTIPROCESSOR)
	/* Need to block IPIs */
	s = splhigh();
#endif
	p->p_addr->u_pcb.pcb_fpcpu = ci;
	ci->ci_fpcurproc = p;
#if defined(MULTIPROCESSOR)
	splx(s);
#endif
	atomic_add_int(&uvmexp.fpswtch, 1);

	p->p_md.md_flags |= MDP_FPUSED;
	alpha_pal_wrfen(1);
	restorefpstate(&p->p_addr->u_pcb.pcb_fp);
}

/*
 * Process an asynchronous software trap.
 * This is relatively easy.
 */
void
ast(framep)
	struct trapframe *framep;
{
	struct cpu_info *ci = curcpu();
	struct proc *p = ci->ci_curproc;

	p->p_md.md_tf = framep;
	p->p_md.md_astpending = 0;

#ifdef DIAGNOSTIC
	if ((framep->tf_regs[FRAME_PS] & ALPHA_PSL_USERMODE) == 0)
		panic("ast and not user");
#endif

	atomic_add_int(&uvmexp.softs, 1);

	if (p->p_flag & P_OWEUPC) {
		KERNEL_LOCK();
		ADDUPROF(p);
		KERNEL_UNLOCK();
	}

	if (ci->ci_want_resched)
		preempt(NULL);

	/* Do any deferred user pmap operations. */
	PMAP_USERRET(vm_map_pmap(&p->p_vmspace->vm_map));

	userret(p);
}

/*
 * Unaligned access handler.  It's not clear that this can get much slower...
 *
 */

const static int reg_to_framereg[32] = {
	FRAME_V0,	FRAME_T0,	FRAME_T1,	FRAME_T2,
	FRAME_T3,	FRAME_T4,	FRAME_T5,	FRAME_T6,
	FRAME_T7,	FRAME_S0,	FRAME_S1,	FRAME_S2,
	FRAME_S3,	FRAME_S4,	FRAME_S5,	FRAME_S6,
	FRAME_A0,	FRAME_A1,	FRAME_A2,	FRAME_A3,
	FRAME_A4,	FRAME_A5,	FRAME_T8,	FRAME_T9,
	FRAME_T10,	FRAME_T11,	FRAME_RA,	FRAME_T12,
	FRAME_AT,	FRAME_GP,	FRAME_SP,	-1,
};

#define	irp(p, reg)							\
	((reg_to_framereg[(reg)] == -1) ? NULL :			\
	    &(p)->p_md.md_tf->tf_regs[reg_to_framereg[(reg)]])

#ifndef SMALL_KERNEL

#define	frp(p, reg)							\
	(&(p)->p_addr->u_pcb.pcb_fp.fpr_regs[(reg)])

#define	dump_fp_regs()							\
	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)				\
		fpusave_proc(p, 1);

#define	unaligned_load(storage, ptrf, mod)				\
	if (copyin((caddr_t)va, &(storage), sizeof (storage)) != 0) {	\
		p->p_md.md_tf->tf_regs[FRAME_PC] -= 4;			\
		signal = SIGSEGV;					\
		goto out;						\
	}								\
	signal = 0;							\
	if ((regptr = ptrf(p, reg)) != NULL)				\
		*regptr = mod (storage);

#define	unaligned_store(storage, ptrf, mod)				\
	if ((regptr = ptrf(p, reg)) != NULL)				\
		(storage) = mod (*regptr);				\
	else								\
		(storage) = 0;						\
	if (copyout(&(storage), (caddr_t)va, sizeof (storage)) != 0) {	\
		p->p_md.md_tf->tf_regs[FRAME_PC] -= 4;			\
		signal = SIGSEGV;					\
		goto out;						\
	}								\
	signal = 0;

#define	unaligned_load_integer(storage)					\
	unaligned_load(storage, irp, )

#define	unaligned_store_integer(storage)				\
	unaligned_store(storage, irp, )

#define	unaligned_load_floating(storage, mod)				\
	dump_fp_regs();							\
	unaligned_load(storage, frp, mod)

#define	unaligned_store_floating(storage, mod)				\
	dump_fp_regs();							\
	unaligned_store(storage, frp, mod)

unsigned long
Sfloat_to_reg(s)
	unsigned int s;
{
	unsigned long sign, expn, frac;
	unsigned long result;

	sign = (s & 0x80000000) >> 31;
	expn = (s & 0x7f800000) >> 23;
	frac = (s & 0x007fffff) >>  0;

	/* map exponent part, as appropriate. */
	if (expn == 0xff)
		expn = 0x7ff;
	else if ((expn & 0x80) != 0)
		expn = (0x400 | (expn & ~0x80));
	else if ((expn & 0x80) == 0 && expn != 0)
		expn = (0x380 | (expn & ~0x80));

	result = (sign << 63) | (expn << 52) | (frac << 29);
	return (result);
}

unsigned int
reg_to_Sfloat(r)
	unsigned long r;
{
	unsigned long sign, expn, frac;
	unsigned int result;

	sign = (r & 0x8000000000000000) >> 63;
	expn = (r & 0x7ff0000000000000) >> 52;
	frac = (r & 0x000fffffe0000000) >> 29;

	/* map exponent part, as appropriate. */
	expn = (expn & 0x7f) | ((expn & 0x400) != 0 ? 0x80 : 0x00);

	result = (sign << 31) | (expn << 23) | (frac << 0);
	return (result);
}

/*
 * Conversion of T floating datums to and from register format
 * requires no bit reordering whatsoever.
 */
unsigned long
Tfloat_reg_cvt(input)
	unsigned long input;
{

	return (input);
}

#ifdef FIX_UNALIGNED_VAX_FP
unsigned long
Ffloat_to_reg(f)
	unsigned int f;
{
	unsigned long sign, expn, frlo, frhi;
	unsigned long result;

	sign = (f & 0x00008000) >> 15;
	expn = (f & 0x00007f80) >>  7;
	frhi = (f & 0x0000007f) >>  0;
	frlo = (f & 0xffff0000) >> 16;

	/* map exponent part, as appropriate. */
	if ((expn & 0x80) != 0)
		expn = (0x400 | (expn & ~0x80));
	else if ((expn & 0x80) == 0 && expn != 0)
		expn = (0x380 | (expn & ~0x80));

	result = (sign << 63) | (expn << 52) | (frhi << 45) | (frlo << 29);
	return (result);
}

unsigned int
reg_to_Ffloat(r)
	unsigned long r;
{
	unsigned long sign, expn, frhi, frlo;
	unsigned int result;

	sign = (r & 0x8000000000000000) >> 63;
	expn = (r & 0x7ff0000000000000) >> 52;
	frhi = (r & 0x000fe00000000000) >> 45;
	frlo = (r & 0x00001fffe0000000) >> 29;

	/* map exponent part, as appropriate. */
	expn = (expn & 0x7f) | ((expn & 0x400) != 0 ? 0x80 : 0x00);

	result = (sign << 15) | (expn << 7) | (frhi << 0) | (frlo << 16);
	return (result);
}

/*
 * Conversion of G floating datums to and from register format is
 * symmetrical.  Just swap shorts in the quad...
 */
unsigned long
Gfloat_reg_cvt(input)
	unsigned long input;
{
	unsigned long a, b, c, d;
	unsigned long result;

	a = (input & 0x000000000000ffff) >> 0;
	b = (input & 0x00000000ffff0000) >> 16;
	c = (input & 0x0000ffff00000000) >> 32;
	d = (input & 0xffff000000000000) >> 48;

	result = (a << 48) | (b << 32) | (c << 16) | (d << 0);
	return (result);
}
#endif /* FIX_UNALIGNED_VAX_FP */

struct unaligned_fixup_data {
	const char *type;	/* opcode name */
	int fixable;		/* fixable, 0 if fixup not supported */
	int size;		/* size, 0 if unknown */
};

#define	UNKNOWN()	{ "0x%lx", 0, 0 }
#define	FIX_LD(n,s)	{ n, 1, s }
#define	FIX_ST(n,s)	{ n, 1, s }
#define	NOFIX_LD(n,s)	{ n, 0, s }
#define	NOFIX_ST(n,s)	{ n, 0, s }

int
unaligned_fixup(va, opcode, reg, p)
	unsigned long va, opcode, reg;
	struct proc *p;
{
	const struct unaligned_fixup_data tab_unknown[1] = {
		UNKNOWN(),
	};
	const struct unaligned_fixup_data tab_0c[0x02] = {
		FIX_LD("ldwu", 2),	FIX_ST("stw", 2),
	};
	const struct unaligned_fixup_data tab_20[0x10] = {
#ifdef FIX_UNALIGNED_VAX_FP
		FIX_LD("ldf", 4),	FIX_LD("ldg", 8),
#else
		NOFIX_LD("ldf", 4),	NOFIX_LD("ldg", 8),
#endif
		FIX_LD("lds", 4),	FIX_LD("ldt", 8),
#ifdef FIX_UNALIGNED_VAX_FP
		FIX_ST("stf", 4),	FIX_ST("stg", 8),
#else
		NOFIX_ST("stf", 4),	NOFIX_ST("stg", 8),
#endif
		FIX_ST("sts", 4),	FIX_ST("stt", 8),
		FIX_LD("ldl", 4),	FIX_LD("ldq", 8),
		NOFIX_LD("ldl_c", 4),	NOFIX_LD("ldq_c", 8),
		FIX_ST("stl", 4),	FIX_ST("stq", 8),
		NOFIX_ST("stl_c", 4),	NOFIX_ST("stq_c", 8),
	};
	const struct unaligned_fixup_data *selected_tab;
	int doprint, dofix, dosigbus, signal;
	unsigned long *regptr, longdata;
	int intdata;		/* signed to get extension when storing */
	u_int16_t worddata;	/* unsigned to _avoid_ extension */

	/*
	 * Read USP into frame in case it's the register to be modified.
	 * This keeps us from having to check for it in lots of places
	 * later.
	 */
	p->p_md.md_tf->tf_regs[FRAME_SP] = alpha_pal_rdusp();

	/*
	 * Figure out what actions to take.
	 *
	 * XXX In the future, this should have a per-process component
	 * as well.
	 */
	doprint = alpha_unaligned_print;
	dofix = alpha_unaligned_fix;
	dosigbus = alpha_unaligned_sigbus;

	/*
	 * Find out which opcode it is.  Arrange to have the opcode
	 * printed if it's an unknown opcode.
	 */
	if (opcode >= 0x0c && opcode <= 0x0d)
		selected_tab = &tab_0c[opcode - 0x0c];
	else if (opcode >= 0x20 && opcode <= 0x2f)
		selected_tab = &tab_20[opcode - 0x20];
	else
		selected_tab = tab_unknown;

	/*
	 * If we're supposed to be noisy, squawk now.
	 */
	if (doprint) {
		uprintf(
		"pid %u (%s): unaligned access: va=0x%lx pc=0x%lx ra=0x%lx op=",
		    p->p_pid, p->p_comm, va,
		    p->p_md.md_tf->tf_regs[FRAME_PC] - 4,
		    p->p_md.md_tf->tf_regs[FRAME_RA]);
		uprintf(selected_tab->type,opcode);
		uprintf("\n");
	}

	/*
	 * If we should try to fix it and know how, give it a shot.
	 *
	 * We never allow bad data to be unknowingly used by the
	 * user process.  That is, if we decide not to fix up an
	 * access we cause a SIGBUS rather than letting the user
	 * process go on without warning.
	 *
	 * If we're trying to do a fixup, we assume that things
	 * will be botched.  If everything works out OK, 
	 * unaligned_{load,store}_* clears the signal flag.
	 */
	signal = SIGBUS;
	if (dofix && selected_tab->fixable) {
		switch (opcode) {
		case 0x0c:			/* ldwu */
			/* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */
			unaligned_load_integer(worddata);
			break;

		case 0x0d:			/* stw */
			/* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */
			unaligned_store_integer(worddata);
			break;

#ifdef FIX_UNALIGNED_VAX_FP
		case 0x20:			/* ldf */
			unaligned_load_floating(intdata, Ffloat_to_reg);
			break;

		case 0x21:			/* ldg */
			unaligned_load_floating(longdata, Gfloat_reg_cvt);
			break;
#endif

		case 0x22:			/* lds */
			unaligned_load_floating(intdata, Sfloat_to_reg);
			break;

		case 0x23:			/* ldt */
			unaligned_load_floating(longdata, Tfloat_reg_cvt);
			break;

#ifdef FIX_UNALIGNED_VAX_FP
		case 0x24:			/* stf */
			unaligned_store_floating(intdata, reg_to_Ffloat);
			break;

		case 0x25:			/* stg */
			unaligned_store_floating(longdata, Gfloat_reg_cvt);
			break;
#endif

		case 0x26:			/* sts */
			unaligned_store_floating(intdata, reg_to_Sfloat);
			break;

		case 0x27:			/* stt */
			unaligned_store_floating(longdata, Tfloat_reg_cvt);
			break;

		case 0x28:			/* ldl */
			unaligned_load_integer(intdata);
			break;

		case 0x29:			/* ldq */
			unaligned_load_integer(longdata);
			break;

		case 0x2c:			/* stl */
			unaligned_store_integer(intdata);
			break;

		case 0x2d:			/* stq */
			unaligned_store_integer(longdata);
			break;

#ifdef DIAGNOSTIC
		default:
			panic("unaligned_fixup: can't get here");
#endif
		}
	} 

	/*
	 * Force SIGBUS if requested.
	 */
	if (dosigbus)
		signal = SIGBUS;

out:
	/*
	 * Write back USP.
	 */
	alpha_pal_wrusp(p->p_md.md_tf->tf_regs[FRAME_SP]);

	return (signal);
}

#endif	/* SMALL_KERNEL */

/*
 * Reserved/unimplemented instruction (opDec fault) handler
 *
 * Argument is the process that caused it.  No useful information
 * is passed to the trap handler other than the fault type.  The
 * address of the instruction that caused the fault is 4 less than
 * the PC stored in the trap frame.
 *
 * If the instruction is emulated successfully, this function returns 0.
 * Otherwise, this function returns the signal to deliver to the process,
 * and fills in *ucodep with the code to be delivered.
 */
int
handle_opdec(p, ucodep)
	struct proc *p;
	u_int64_t *ucodep;
{
	alpha_instruction inst;
	register_t *regptr, memaddr;
	u_int64_t inst_pc;
	int sig;

	/*
	 * Read USP into frame in case it's going to be used or modified.
	 * This keeps us from having to check for it in lots of places
	 * later.
	 */
	p->p_md.md_tf->tf_regs[FRAME_SP] = alpha_pal_rdusp();

	inst_pc = memaddr = p->p_md.md_tf->tf_regs[FRAME_PC] - 4;
	if (copyin((caddr_t)inst_pc, &inst, sizeof (inst)) != 0) {
		/*
		 * really, this should never happen, but in case it
		 * does we handle it.
		 */
		printf("WARNING: handle_opdec() couldn't fetch instruction\n");
		goto sigsegv;
	}

	switch (inst.generic_format.opcode) {
	case op_ldbu:
	case op_ldwu:
	case op_stw:
	case op_stb:
		regptr = irp(p, inst.mem_format.rb);
		if (regptr != NULL)
			memaddr = *regptr;
		else
			memaddr = 0;
		memaddr += inst.mem_format.displacement;

		regptr = irp(p, inst.mem_format.ra);

		if (inst.mem_format.opcode == op_ldwu ||
		    inst.mem_format.opcode == op_stw) {
			if (memaddr & 0x01) {
#ifndef SMALL_KERNEL
				sig = unaligned_fixup(memaddr,
				    inst.mem_format.opcode,
				    inst.mem_format.ra, p);
				if (sig)
					goto unaligned_fixup_sig;
#else
				goto sigill;
#endif
				break;
			}
		}

		if (inst.mem_format.opcode == op_ldbu) {
			u_int8_t b;

			/* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */
			if (copyin((caddr_t)memaddr, &b, sizeof (b)) != 0)
				goto sigsegv;
			if (regptr != NULL)
				*regptr = b;
		} else if (inst.mem_format.opcode == op_ldwu) {
			u_int16_t w;

			/* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */
			if (copyin((caddr_t)memaddr, &w, sizeof (w)) != 0)
				goto sigsegv;
			if (regptr != NULL)
				*regptr = w;
		} else if (inst.mem_format.opcode == op_stw) {
			u_int16_t w;

			/* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */
			w = (regptr != NULL) ? *regptr : 0;
			if (copyout(&w, (caddr_t)memaddr, sizeof (w)) != 0)
				goto sigsegv;
		} else if (inst.mem_format.opcode == op_stb) {
			u_int8_t b;

			/* XXX ONLY WORKS ON LITTLE-ENDIAN ALPHA */
			b = (regptr != NULL) ? *regptr : 0;
			if (copyout(&b, (caddr_t)memaddr, sizeof (b)) != 0)
				goto sigsegv;
		}
		break;

	case op_intmisc:
		if (inst.operate_generic_format.function == op_sextb &&
		    inst.operate_generic_format.ra == 31) {
			int8_t b;

			if (inst.operate_generic_format.is_lit) {
				b = inst.operate_lit_format.literal;
			} else {
				if (inst.operate_reg_format.sbz != 0)
					goto sigill;
				regptr = irp(p, inst.operate_reg_format.rb);
				b = (regptr != NULL) ? *regptr : 0;
			}

			regptr = irp(p, inst.operate_generic_format.rc);
			if (regptr != NULL)
				*regptr = b;
			break;
		}
		if (inst.operate_generic_format.function == op_sextw &&
		    inst.operate_generic_format.ra == 31) {
			int16_t w;

			if (inst.operate_generic_format.is_lit) {
				w = inst.operate_lit_format.literal;
			} else {
				if (inst.operate_reg_format.sbz != 0)
					goto sigill;
				regptr = irp(p, inst.operate_reg_format.rb);
				w = (regptr != NULL) ? *regptr : 0;
			}

			regptr = irp(p, inst.operate_generic_format.rc);
			if (regptr != NULL)
				*regptr = w;
			break;
		}
		goto sigill;

	default:
		goto sigill;
	}

	/*
	 * Write back USP.  Note that in the error cases below,
	 * nothing will have been successfully modified so we don't
	 * have to write it out.
	 */
	alpha_pal_wrusp(p->p_md.md_tf->tf_regs[FRAME_SP]);

	return (0);

sigill:
	*ucodep = ALPHA_IF_CODE_OPDEC;			/* trap type */
	return (SIGILL);

sigsegv:
	sig = SIGSEGV;
	p->p_md.md_tf->tf_regs[FRAME_PC] = inst_pc;	/* re-run instr. */
#ifndef SMALL_KERNEL
unaligned_fixup_sig:
#endif
	*ucodep = memaddr;				/* faulting address */
	return (sig);
}