1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
/* $OpenBSD: gptimer.c,v 1.11 2021/01/19 18:04:43 kettenis Exp $ */
/*
* Copyright (c) 2007,2009 Dale Rahn <drahn@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* WARNING - this timer initializion has not been checked
* to see if it will do _ANYTHING_ sane if the omap enters
* low power mode.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/evcount.h>
#include <sys/device.h>
#include <sys/timetc.h>
#include <dev/clock_subr.h>
#include <machine/bus.h>
#include <armv7/armv7/armv7var.h>
#include <armv7/omap/prcmvar.h>
#include <machine/intr.h>
#include <arm/cpufunc.h>
/* registers */
#define GP_TIDR 0x000
#define GP_TIDR_REV 0xff
#define GP_TIOCP_CFG 0x010
#define GP_TIOCP_CFG_CLKA 0x000000300
#define GP_TIOCP_CFG_EMUFREE 0x000000020
#define GP_TIOCP_CFG_IDLEMODE 0x000000018
#define GP_TIOCP_CFG_ENAPWAKEUP 0x000000004
#define GP_TIOCP_CFG_SOFTRESET 0x000000002
#define GP_TIOCP_CFG_AUTOIDLE 0x000000001
#define GP_TISTAT 0x014
#define GP_TISTAT_RESETDONE 0x000000001
#define GP_TISR 0x018
#define GP_TISTAT_TCAR 0x00000004
#define GP_TISTAT_OVF 0x00000002
#define GP_TISTAT_MATCH 0x00000001
#define GP_TIER 0x1c
#define GP_TIER_TCAR_EN 0x4
#define GP_TIER_OVF_EN 0x2
#define GP_TIER_MAT_EN 0x1
#define GP_TWER 0x020
#define GP_TWER_TCAR_EN 0x00000004
#define GP_TWER_OVF_EN 0x00000002
#define GP_TWER_MAT_EN 0x00000001
#define GP_TCLR 0x024
#define GP_TCLR_GPO (1<<14)
#define GP_TCLR_CAPT (1<<13)
#define GP_TCLR_PT (1<<12)
#define GP_TCLR_TRG (3<<10)
#define GP_TCLR_TRG_O (1<<10)
#define GP_TCLR_TRG_OM (2<<10)
#define GP_TCLR_TCM (3<<8)
#define GP_TCLR_TCM_RISE (1<<8)
#define GP_TCLR_TCM_FALL (2<<8)
#define GP_TCLR_TCM_BOTH (3<<8)
#define GP_TCLR_SCPWM (1<<7)
#define GP_TCLR_CE (1<<6)
#define GP_TCLR_PRE (1<<5)
#define GP_TCLR_PTV (7<<2)
#define GP_TCLR_AR (1<<1)
#define GP_TCLR_ST (1<<0)
#define GP_TCRR 0x028 /* counter */
#define GP_TLDR 0x02c /* reload */
#define GP_TTGR 0x030
#define GP_TWPS 0x034
#define GP_TWPS_TCLR 0x01
#define GP_TWPS_TCRR 0x02
#define GP_TWPS_TLDR 0x04
#define GP_TWPS_TTGR 0x08
#define GP_TWPS_TMAR 0x10
#define GP_TWPS_ALL 0x1f
#define GP_TMAR 0x038
#define GP_TCAR 0x03C
#define GP_TSICR 0x040
#define GP_TSICR_POSTED 0x00000002
#define GP_TSICR_SFT 0x00000001
#define GP_TCAR2 0x044
#define TIMER_FREQUENCY 32768 /* 32kHz is used, selectable */
static struct evcount clk_count;
static struct evcount stat_count;
void gptimer_attach(struct device *parent, struct device *self, void *args);
int gptimer_intr(void *frame);
void gptimer_wait(int reg);
void gptimer_cpu_initclocks(void);
void gptimer_delay(u_int);
void gptimer_setstatclockrate(int newhz);
bus_space_tag_t gptimer_iot;
bus_space_handle_t gptimer_ioh0, gptimer_ioh1;
int gptimer_irq = 0;
u_int gptimer_get_timecount(struct timecounter *);
static struct timecounter gptimer_timecounter = {
gptimer_get_timecount, NULL, 0xffffffff, 0, "gptimer", 0, NULL, 0
};
volatile u_int32_t nexttickevent;
volatile u_int32_t nextstatevent;
u_int32_t ticks_per_second;
u_int32_t ticks_per_intr;
u_int32_t ticks_err_cnt;
u_int32_t ticks_err_sum;
u_int32_t statvar, statmin;
struct cfattach gptimer_ca = {
sizeof (struct device), NULL, gptimer_attach
};
struct cfdriver gptimer_cd = {
NULL, "gptimer", DV_DULL
};
void
gptimer_attach(struct device *parent, struct device *self, void *args)
{
struct armv7_attach_args *aa = args;
bus_space_handle_t ioh;
u_int32_t rev;
gptimer_iot = aa->aa_iot;
if (bus_space_map(gptimer_iot, aa->aa_dev->mem[0].addr,
aa->aa_dev->mem[0].size, 0, &ioh))
panic("gptimer_attach: bus_space_map failed!");
rev = bus_space_read_4(gptimer_iot, ioh, GP_TIDR);
printf(" rev %d.%d\n", rev >> 4 & 0xf, rev & 0xf);
if (self->dv_unit == 0) {
gptimer_ioh0 = ioh;
gptimer_irq = aa->aa_dev->irq[0];
bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR, 0);
} else if (self->dv_unit == 1) {
/* start timer because it is used in delay */
gptimer_ioh1 = ioh;
bus_space_write_4(gptimer_iot, gptimer_ioh1, GP_TCRR, 0);
gptimer_wait(GP_TWPS_ALL);
bus_space_write_4(gptimer_iot, gptimer_ioh1, GP_TLDR, 0);
gptimer_wait(GP_TWPS_ALL);
bus_space_write_4(gptimer_iot, gptimer_ioh1, GP_TCLR,
GP_TCLR_AR | GP_TCLR_ST);
gptimer_wait(GP_TWPS_ALL);
gptimer_timecounter.tc_frequency = TIMER_FREQUENCY;
tc_init(&gptimer_timecounter);
}
else
panic("attaching too many gptimers at 0x%lx",
aa->aa_dev->mem[0].addr);
arm_clock_register(gptimer_cpu_initclocks, gptimer_delay,
gptimer_setstatclockrate, NULL);
}
/*
* See comment in arm/xscale/i80321_clock.c
*
* counter is count up, but with autoreload timers it is not possible
* to detect how many interrupts passed while interrupts were blocked.
* also it is not possible to atomically add to the register
* get get it to precisely fire at a non-fixed interval.
*
* To work around this two timers are used, GPT1 is used as a reference
* clock without reload , however we just ignore the interrupt it
* would (may?) generate.
*
* Internally this keeps track of when the next timer should fire
* and based on that time and the current value of the reference
* clock a number is written into the timer count register to schedule
* the next event.
*/
int
gptimer_intr(void *frame)
{
u_int32_t now, r;
u_int32_t nextevent, duration;
/* clear interrupt */
now = bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR);
while ((int32_t) (nexttickevent - now) < 0) {
nexttickevent += ticks_per_intr;
ticks_err_sum += ticks_err_cnt;
#if 0
if (ticks_err_sum > hz) {
u_int32_t match_error;
match_error = ticks_err_sum / hz
ticks_err_sum -= (match_error * hz);
}
#else
/* looping a few times is faster than divide */
while (ticks_err_sum > hz) {
nexttickevent += 1;
ticks_err_sum -= hz;
}
#endif
clk_count.ec_count++;
hardclock(frame);
}
while ((int32_t) (nextstatevent - now) < 0) {
do {
r = random() & (statvar -1);
} while (r == 0); /* random == 0 not allowed */
nextstatevent += statmin + r;
/* XXX - correct nextstatevent? */
stat_count.ec_count++;
statclock(frame);
}
if ((nexttickevent - now) < (nextstatevent - now))
nextevent = nexttickevent;
else
nextevent = nextstatevent;
/* XXX */
duration = nextevent -
bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR);
#if 0
printf("duration 0x%x %x %x\n", nextevent -
bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR),
bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TCRR),
bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR));
#endif
if (duration <= 0)
duration = 1; /* trigger immediately. */
if (duration > ticks_per_intr) {
/*
* If interrupts are blocked too long, like during
* the root prompt or ddb, the timer can roll over,
* this will allow the system to continue to run
* even if time is lost.
*/
duration = ticks_per_intr;
nexttickevent = now;
nextstatevent = now;
}
gptimer_wait(GP_TWPS_ALL);
bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TISR,
bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TISR));
gptimer_wait(GP_TWPS_ALL);
bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR, -duration);
return 1;
}
/*
* would be interesting to play with trigger mode while having one timer
* in 32kHz mode, and the other timer running in sysclk mode and use
* the high resolution speeds (matters more for delay than tick timer
*/
void
gptimer_cpu_initclocks()
{
stathz = 128;
profhz = 1024;
ticks_per_second = TIMER_FREQUENCY;
setstatclockrate(stathz);
ticks_per_intr = ticks_per_second / hz;
ticks_err_cnt = ticks_per_second % hz;
ticks_err_sum = 0;
prcm_setclock(1, PRCM_CLK_SPEED_32);
prcm_setclock(2, PRCM_CLK_SPEED_32);
/* establish interrupts */
arm_intr_establish(gptimer_irq, IPL_CLOCK, gptimer_intr,
NULL, "tick");
/* setup timer 0 (hardware timer 2) */
/* reset? - XXX */
bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TLDR, 0);
nexttickevent = nextstatevent = bus_space_read_4(gptimer_iot,
gptimer_ioh1, GP_TCRR) + ticks_per_intr;
gptimer_wait(GP_TWPS_ALL);
bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TIER, GP_TIER_OVF_EN);
gptimer_wait(GP_TWPS_ALL);
bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TWER, GP_TWER_OVF_EN);
gptimer_wait(GP_TWPS_ALL);
bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR,
GP_TCLR_AR | GP_TCLR_ST);
gptimer_wait(GP_TWPS_ALL);
bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TISR,
bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TISR));
gptimer_wait(GP_TWPS_ALL);
bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR, -ticks_per_intr);
gptimer_wait(GP_TWPS_ALL);
}
void
gptimer_wait(int reg)
{
while (bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TWPS) & reg)
;
}
#if 0
void
microtime(struct timeval *tvp)
{
int s;
int deltacnt;
u_int32_t counter, expected;
s = splhigh();
if (1) { /* not inited */
tvp->tv_sec = 0;
tvp->tv_usec = 0;
return;
}
s = splhigh();
counter = bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR);
expected = nexttickevent;
*tvp = time;
splx(s);
deltacnt = counter - expected + ticks_per_intr;
#if 1
/* low frequency timer algorithm */
tvp->tv_usec += deltacnt * 1000000ULL / TIMER_FREQUENCY;
#else
/* high frequency timer algorithm - XXX */
tvp->tv_usec += deltacnt / (TIMER_FREQUENCY / 1000000ULL);
#endif
while (tvp->tv_usec >= 1000000) {
tvp->tv_sec++;
tvp->tv_usec -= 1000000;
}
}
#endif
void
gptimer_delay(u_int usecs)
{
u_int32_t clock, oclock, delta, delaycnt;
volatile int j;
int csec, usec;
if (usecs > (0x80000000 / (TIMER_FREQUENCY))) {
csec = usecs / 10000;
usec = usecs % 10000;
delaycnt = (TIMER_FREQUENCY / 100) * csec +
(TIMER_FREQUENCY / 100) * usec / 10000;
} else {
delaycnt = TIMER_FREQUENCY * usecs / 1000000;
}
if (delaycnt <= 1)
for (j = 100; j > 0; j--)
;
if (gptimer_ioh1 == 0) {
/* BAH */
for (; usecs > 0; usecs--)
for (j = 100; j > 0; j--)
;
return;
}
oclock = bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR);
while (1) {
for (j = 100; j > 0; j--)
;
clock = bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR);
delta = clock - oclock;
if (delta > delaycnt)
break;
}
}
void
gptimer_setstatclockrate(int newhz)
{
int minint, statint;
int s;
s = splclock();
statint = ticks_per_second / newhz;
/* calculate largest 2^n which is smaller that just over half statint */
statvar = 0x40000000; /* really big power of two */
minint = statint / 2 + 100;
while (statvar > minint)
statvar >>= 1;
statmin = statint - (statvar >> 1);
splx(s);
/*
* XXX this allows the next stat timer to occur then it switches
* to the new frequency. Rather than switching instantly.
*/
}
u_int
gptimer_get_timecount(struct timecounter *tc)
{
return bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR);
}
|