summaryrefslogtreecommitdiff
path: root/sys/arch/hppa/spmath/impys.S
blob: 6b6584b565faed7fd5577de19b79384d6b40175a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*
 * Copyright 1996 1995 by Open Software Foundation, Inc.   
 *              All Rights Reserved 
 *  
 * Permission to use, copy, modify, and distribute this software and 
 * its documentation for any purpose and without fee is hereby granted, 
 * provided that the above copyright notice appears in all copies and 
 * that both the copyright notice and this permission notice appear in 
 * supporting documentation. 
 *  
 * OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE 
 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
 * FOR A PARTICULAR PURPOSE. 
 *  
 * IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR 
 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM 
 * LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT, 
 * NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION 
 * WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 
 * 
 */
/*
 * pmk1.1
 */
/*
 * (c) Copyright 1986 HEWLETT-PACKARD COMPANY
 *
 * To anyone who acknowledges that this file is provided "AS IS" 
 * without any express or implied warranty:
 *     permission to use, copy, modify, and distribute this file 
 * for any purpose is hereby granted without fee, provided that 
 * the above copyright notice and this notice appears in all 
 * copies, and that the name of Hewlett-Packard Company not be 
 * used in advertising or publicity pertaining to distribution 
 * of the software without specific, written prior permission.  
 * Hewlett-Packard Company makes no representations about the 
 * suitability of this software for any purpose.
 */

#include <machine/asm.h>

/****************************************************************************
 *
 * Implement an integer multiply routine for 32-bit operands and 64-bit product 
 * with operand values of zero (multiplicand only) and -2**31 treated specially.
 * The algorithm uses the absolute value of the multiplier, four bits at a time,
 * from right to left, to generate partial product.  Execution speed is more
 * important than program size in this implementation. 
 *
 ***************************************************************************/
#
# Definitions - General registers
#
gr0	.equ		0		# General register zero
pu	.equ		3		# upper part of product
pl	.equ		4		# lower part of product
op2	.equ		4		# multiplier
op1	.equ		5		# multiplicand
cnt	.equ		6		# count in multiply
brindex	.equ		7		# index into the br. table
sign	.equ		8		# sign of product
pc	.equ		9		# carry bit of product, = 00...01
pm	.equ	       10		# value of -1 used in shifting

#*****************************************************************************
	.export impys,entry
	.space $TEXT$
	.subspa $CODE$
	.align 4
	.proc
	.callinfo
#
#****************************************************************************
impys	stws,ma		pu,4(sp)		# save registers on stack
	stws,ma		pl,4(sp)		# save registers on stack
	stws,ma		op1,4(sp)		# save registers on stack
	stws,ma		cnt,4(sp)		# save registers on stack
	stws,ma		brindex,4(sp)		# save registers on stack
	stws,ma		sign,4(sp)		# save registers on stack
	stws,ma		pc,4(sp)		# save registers on stack
	stws,ma		pm,4(sp)		# save registers on stack
#
#   Start multiply process
#
	ldws		0(arg1),op2		# get multiplier
	ldws		0(arg0),op1		# get multiplicand
	addi		-1,gr0,pm		# initialize pm to 111...1
	comb,<		op2,gr0,mpyb		# br. if multiplier < 0
	xor		op2,op1,sign		# sign(0) = sign of product
mpy1	comb,<		op1,gr0,mpya		# br. if multiplicand < 0
	addi		0,gr0,pu		# clear product
	addib,=		0,op1,fini0		# op1 = 0, product = 0
mpy2	addi		1,gr0,pc		# initialize pc to 00...01
	movib,tr	8,cnt,mloop		# set count for mpy loop
	extru		op2,31,4,brindex	# 4 bits as index into table 
#
	.align		8
#
	b		sh4c			# br. if sign overflow
sh4n	shd		pu,pl,4,pl		# shift product right 4 bits
	addib,<=	-1,cnt,mulend		# reduce count by 1, exit if
	extru  		pu,27,28,pu		#   <= zero
#
mloop	blr		brindex,gr0		# br. into table
						#   entries of 2 words
	extru		op2,27,4,brindex	# next 4 bits into index
#
#
#	branch table for the multiplication process with four multiplier bits
#
mtable						# two words per entry
#
# ----	bits = 0000 ---- shift product 4 bits -------------------------------
#
	b		sh4n+4			# just shift partial
	shd		pu,pl,4,pl		#   product right 4 bits
#
#  ----	bits = 0001 ---- add op1, then shift 4 bits
#
	addb,tr		op1,pu,sh4n+4		# add op1 to product, to shift
	shd		pu,pl,4,pl		#   product right 4 bits
#
#  ----	bits = 0010 ---- add op1, add op1, then shift 4 bits
#
	addb,tr		op1,pu,sh4n		# add 2*op1, to shift 
	addb,uv 	op1,pu,sh4c		#   product right 4 bits
#
#  ---- bits = 0011 ---- add op1, add 2*op1, shift 4 bits
#
	addb,tr		op1,pu,sh4n-4		# add op1 & 2*op1, shift 
	sh1add,nsv 	op1,pu,pu			#   product right 4 bits
#
#  ----	bits = 0100 ---- shift 2, add op1, shift 2
#
	b		sh2sa
	shd		pu,pl,2,pl		# shift product 2 bits
#
#  ----	bits = 0101 ---- add op1, shift 2, add op1, and shift 2 again
#
	addb,tr		op1,pu,sh2us		# add op1 to product
	shd		pu,pl,2,pl		# shift 2 bits
#
#  ----	bits = 0110 ---- add op1, add op1, shift 2, add op1, and shift 2 again
#
	addb,tr		op1,pu,sh2c		# add 2*op1, to shift 2 bits
	addb,nuv	op1,pu,sh2us		# br. if not overflow
#
#  ----	bits = 0111 ---- subtract op1, shift 3, add op1, and shift 1
#
	b		sh3s
	sub		pu,op1,pu		# subtract op1, br. to sh3s

#
#  ----	bits = 1000 ---- shift 3, add op1, shift 1
#
	b		sh3sa
	shd		pu,pl,3,pl		# shift product right 3 bits
#
#  ----	bits = 1001 ---- add op1, shift 3, add op1, shift 1
#
	addb,tr		op1,pu,sh3us		# add op1, to shift 3, add op1,
	shd		pu,pl,3,pl		#   and shift 1
#
#  ----	bits = 1010 ---- add op1, add op1, shift 3, add op1, shift 1
#
	addb,tr		op1,pu,sh3c		# add 2*op1, to shift 3 bits
	addb,nuv	op1,pu,sh3us		#   br. if no overflow
#
#  ----	bits = 1011 ---- add -op1, shift 2, add -op1, shift 2, inc. next index
#
	addib,tr	1,brindex,sh2s		# add 1 to index, subtract op1,
	sub		pu,op1,pu		#   shift 2 with minus sign
#
#  ----	bits = 1100 ---- shift 2, subtract op1, shift 2, increment next index
#
	addib,tr	1,brindex,sh2sb		# add 1 to index, to shift
	shd		pu,pl,2,pl		# shift right 2 bits signed
#
#  ----	bits = 1101 ---- add op1, shift 2, add -op1, shift 2
#
	addb,tr		op1,pu,sh2ns		# add op1, to shift 2
	shd		pu,pl,2,pl		#   right 2 unsigned, etc.
#
#  ----	bits = 1110 ---- shift 1 signed, add -op1, shift 3 signed
#
	addib,tr	1,brindex,sh1sa		# add 1 to index, to shift
	shd		pu,pl,1,pl		# shift 1 bit
#
#  ----	bits = 1111 ---- add -op1, shift 4 signed
#
	addib,tr	1,brindex,sh4s		# add 1 to index, subtract op1,
	sub		pu,op1,pu		#   to shift 4 signed

#
#  ----	bits = 10000 ---- shift 4 signed
#
	addib,tr	1,brindex,sh4s+4	# add 1 to index
	shd		pu,pl,4,pl		# shift 4 signed
#
#  ---- end of table ---------------------------------------------------------
#
sh4s	shd		pu,pl,4,pl
	addib,tr	-1,cnt,mloop		# loop (count > 0 always here)
	shd		pm,pu,4,pu		# shift 4, minus signed
#
sh4c	addib,>		-1,cnt,mloop		# decrement count, loop if > 0
	shd		pc,pu,4,pu		# shift 4 with overflow
	b		signs			# end of multiply
	bb,>=,n		sign,0,fini		# test sign of procduct
#
mpyb	add,=		op2,op2,gr0		# if <> 0, back to main sect.
	b		mpy1
	sub		0,op2,op2		# op2 = |multiplier|
	add,>=		op1,gr0,gr0		# if op1 < 0, invert sign, 
	xor		pm,sign,sign		#   for correct result
#
#	special case for multiplier = -2**31, op1 = signed multiplicand
#		or multiplicand = -2**31, op1 = signed multiplier
#
	shd		op1,0,1,pl		# shift op1 left 31 bits
mmax	extrs		op1,30,31,pu	
	b		signs			# negate product (if needed)
	bb,>=,n		sign,0,fini		# test sign of product
#
mpya	add,=		op1,op1,gr0		# op1 = -2**31, special case
	b		mpy2
	sub		0,op1,op1		# op1 = |multiplicand|
	add,>=		op2,gr0,gr0		# if op2 < 0, invert sign, 
	xor		pm,sign,sign		#   for correct result
	movb,tr		op2,op1,mmax		# use op2 as multiplicand
	shd		op1,0,1,pl		# shift it left 31 bits
#
sh3c	shd		pu,pl,3,pl		# shift product 3 bits
	shd		pc,pu,3,pu		# shift 3 signed
	addb,tr		op1,pu,sh1		# add op1, to shift 1 bit
	shd		pu,pl,1,pl
#
sh3us	extru		pu,28,29,pu		# shift 3 unsigned
	addb,tr		op1,pu,sh1		# add op1, to shift 1 bit
	shd		pu,pl,1,pl
#
sh3sa	extrs		pu,28,29,pu		# shift 3 signed
	addb,tr		op1,pu,sh1		# add op1, to shift 1 bit
	shd		pu,pl,1,pl
#
sh3s	shd		pu,pl,3,pl		# shift 3 minus signed
	shd		pm,pu,3,pu
	addb,tr		op1,pu,sh1		# add op1, to shift 1 bit
	shd		pu,pl,1,pl
#
sh1	addib,>		-1,cnt,mloop		# loop if count > 0
	extru		pu,30,31,pu
	b		signs			# end of multiply
	bb,>=,n		sign,0,fini		# test sign of product
#
sh2ns	addib,tr	1,brindex,sh2sb+4	# increment index
	extru		pu,29,30,pu		# shift unsigned
#
sh2s	shd		pu,pl,2,pl		# shift with minus sign 
	shd		pm,pu,2,pu		# 
	sub		pu,op1,pu		# subtract op1
	shd		pu,pl,2,pl		# shift with minus sign
	addib,tr	-1,cnt,mloop		# decrement count, loop
	shd		pm,pu,2,pu		# shift with minus sign
						# count never reaches 0 here
#
sh2sb	extrs		pu,29,30,pu		# shift 2 signed
	sub		pu,op1,pu		# subtract op1 from product
	shd		pu,pl,2,pl		# shift with minus sign
	addib,tr	-1,cnt,mloop		# decrement count, loop
	shd		pm,pu,2,pu		# shift with minus sign
						# count never reaches 0 here
#
sh1sa	extrs		pu,30,31,pu		#   signed
	sub		pu,op1,pu		# subtract op1 from product
	shd		pu,pl,3,pl		# shift 3 with minus sign
	addib,tr	-1,cnt,mloop		# dec. count, to loop
	shd		pm,pu,3,pu		# count never reaches 0 here
#
fini0	movib,tr,n	0,pl,fini		# product = 0 as op1 = 0
#
sh2us	extru		pu,29,30,pu		# shift 2 unsigned
	addb,tr		op1,pu,sh2a		# add op1
	shd		pu,pl,2,pl		# shift 2 bits
#
sh2c	shd		pu,pl,2,pl	
	shd		pc,pu,2,pu		# shift with carry
	addb,tr		op1,pu,sh2a		# add op1 to product
	shd		pu,pl,2,pl		# br. to sh2 to shift pu
#
sh2sa	extrs		pu,29,30,pu		# shift with sign
	addb,tr		op1,pu,sh2a		# add op1 to product
	shd		pu,pl,2,pl		# br. to sh2 to shift pu
#
sh2a	addib,>		-1,cnt,mloop		# loop if count > 0
	extru		pu,29,30,pu
#
mulend	bb,>=,n		sign,0,fini		# test sign of product
signs	sub		0,pl,pl			# negate product if sign
	subb		0,pu,pu			#   is negative
#
#	finish
#
fini	stws		pu,0(arg2)		# save high part of result
	stws		pl,4(arg2)		# save low part of result

	ldws,mb		-4(sp),pm		# restore registers
	ldws,mb		-4(sp),pc		# restore registers
	ldws,mb		-4(sp),sign		# restore registers
	ldws,mb		-4(sp),brindex		# restore registers
	ldws,mb		-4(sp),cnt		# restore registers
	ldws,mb		-4(sp),op1		# restore registers
	ldws,mb		-4(sp),pl		# restore registers
	bv		0(rp)			# return
	ldws,mb		-4(sp),pu		# restore registers

	.procend
	.end