1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
* $OpenBSD: srem_mod.sa,v 1.2 1996/05/29 21:05:41 niklas Exp $
* $NetBSD: srem_mod.sa,v 1.3 1994/10/26 07:49:58 cgd Exp $
* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
* M68000 Hi-Performance Microprocessor Division
* M68040 Software Package
*
* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
* All rights reserved.
*
* THE SOFTWARE is provided on an "AS IS" basis and without warranty.
* To the maximum extent permitted by applicable law,
* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
* PARTICULAR PURPOSE and any warranty against infringement with
* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
* and any accompanying written materials.
*
* To the maximum extent permitted by applicable law,
* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
* SOFTWARE. Motorola assumes no responsibility for the maintenance
* and support of the SOFTWARE.
*
* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE so long as this entire notice is retained
* without alteration in any modified and/or redistributed versions,
* and that such modified versions are clearly identified as such.
* No licenses are granted by implication, estoppel or otherwise
* under any patents or trademarks of Motorola, Inc.
*
* srem_mod.sa 3.1 12/10/90
*
* The entry point sMOD computes the floating point MOD of the
* input values X and Y. The entry point sREM computes the floating
* point (IEEE) REM of the input values X and Y.
*
* INPUT
* -----
* Double-extended value Y is pointed to by address in register
* A0. Double-extended value X is located in -12(A0). The values
* of X and Y are both nonzero and finite; although either or both
* of them can be denormalized. The special cases of zeros, NaNs,
* and infinities are handled elsewhere.
*
* OUTPUT
* ------
* FREM(X,Y) or FMOD(X,Y), depending on entry point.
*
* ALGORITHM
* ---------
*
* Step 1. Save and strip signs of X and Y: signX := sign(X),
* signY := sign(Y), X := |X|, Y := |Y|,
* signQ := signX EOR signY. Record whether MOD or REM
* is requested.
*
* Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0.
* If (L < 0) then
* R := X, go to Step 4.
* else
* R := 2^(-L)X, j := L.
* endif
*
* Step 3. Perform MOD(X,Y)
* 3.1 If R = Y, go to Step 9.
* 3.2 If R > Y, then { R := R - Y, Q := Q + 1}
* 3.3 If j = 0, go to Step 4.
* 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to
* Step 3.1.
*
* Step 4. At this point, R = X - QY = MOD(X,Y). Set
* Last_Subtract := false (used in Step 7 below). If
* MOD is requested, go to Step 6.
*
* Step 5. R = MOD(X,Y), but REM(X,Y) is requested.
* 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to
* Step 6.
* 5.2 If R > Y/2, then { set Last_Subtract := true,
* Q := Q + 1, Y := signY*Y }. Go to Step 6.
* 5.3 This is the tricky case of R = Y/2. If Q is odd,
* then { Q := Q + 1, signX := -signX }.
*
* Step 6. R := signX*R.
*
* Step 7. If Last_Subtract = true, R := R - Y.
*
* Step 8. Return signQ, last 7 bits of Q, and R as required.
*
* Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus,
* X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1),
* R := 0. Return signQ, last 7 bits of Q, and R.
*
SREM_MOD IDNT 2,1 Motorola 040 Floating Point Software Package
section 8
include fpsp.h
Mod_Flag equ L_SCR3
SignY equ FP_SCR3+4
SignX equ FP_SCR3+8
SignQ equ FP_SCR3+12
Sc_Flag equ FP_SCR4
Y equ FP_SCR1
Y_Hi equ Y+4
Y_Lo equ Y+8
R equ FP_SCR2
R_Hi equ R+4
R_Lo equ R+8
Scale DC.L $00010000,$80000000,$00000000,$00000000
xref t_avoid_unsupp
xdef smod
smod:
Clr.L Mod_Flag(a6)
BRA.B Mod_Rem
xdef srem
srem:
Move.L #1,Mod_Flag(a6)
Mod_Rem:
*..Save sign of X and Y
MoveM.L D2-D7,-(A7) ...save data registers
Move.W (A0),D3
Move.W D3,SignY(a6)
AndI.L #$00007FFF,D3 ...Y := |Y|
*
Move.L 4(A0),D4
Move.L 8(A0),D5 ...(D3,D4,D5) is |Y|
Tst.L D3
BNE.B Y_Normal
Move.L #$00003FFE,D3 ...$3FFD + 1
Tst.L D4
BNE.B HiY_not0
HiY_0:
Move.L D5,D4
CLR.L D5
SubI.L #32,D3
CLR.L D6
BFFFO D4{0:32},D6
LSL.L D6,D4
Sub.L D6,D3 ...(D3,D4,D5) is normalized
* ...with bias $7FFD
BRA.B Chk_X
HiY_not0:
CLR.L D6
BFFFO D4{0:32},D6
Sub.L D6,D3
LSL.L D6,D4
Move.L D5,D7 ...a copy of D5
LSL.L D6,D5
Neg.L D6
AddI.L #32,D6
LSR.L D6,D7
Or.L D7,D4 ...(D3,D4,D5) normalized
* ...with bias $7FFD
BRA.B Chk_X
Y_Normal:
AddI.L #$00003FFE,D3 ...(D3,D4,D5) normalized
* ...with bias $7FFD
Chk_X:
Move.W -12(A0),D0
Move.W D0,SignX(a6)
Move.W SignY(a6),D1
EOr.L D0,D1
AndI.L #$00008000,D1
Move.W D1,SignQ(a6) ...sign(Q) obtained
AndI.L #$00007FFF,D0
Move.L -8(A0),D1
Move.L -4(A0),D2 ...(D0,D1,D2) is |X|
Tst.L D0
BNE.B X_Normal
Move.L #$00003FFE,D0
Tst.L D1
BNE.B HiX_not0
HiX_0:
Move.L D2,D1
CLR.L D2
SubI.L #32,D0
CLR.L D6
BFFFO D1{0:32},D6
LSL.L D6,D1
Sub.L D6,D0 ...(D0,D1,D2) is normalized
* ...with bias $7FFD
BRA.B Init
HiX_not0:
CLR.L D6
BFFFO D1{0:32},D6
Sub.L D6,D0
LSL.L D6,D1
Move.L D2,D7 ...a copy of D2
LSL.L D6,D2
Neg.L D6
AddI.L #32,D6
LSR.L D6,D7
Or.L D7,D1 ...(D0,D1,D2) normalized
* ...with bias $7FFD
BRA.B Init
X_Normal:
AddI.L #$00003FFE,D0 ...(D0,D1,D2) normalized
* ...with bias $7FFD
Init:
*
Move.L D3,L_SCR1(a6) ...save biased expo(Y)
move.l d0,L_SCR2(a6) ;save d0
Sub.L D3,D0 ...L := expo(X)-expo(Y)
* Move.L D0,L ...D0 is j
CLR.L D6 ...D6 := carry <- 0
CLR.L D3 ...D3 is Q
MoveA.L #0,A1 ...A1 is k; j+k=L, Q=0
*..(Carry,D1,D2) is R
Tst.L D0
BGE.B Mod_Loop
*..expo(X) < expo(Y). Thus X = mod(X,Y)
*
move.l L_SCR2(a6),d0 ;restore d0
BRA.W Get_Mod
*..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
Mod_Loop:
Tst.L D6 ...test carry bit
BGT.B R_GT_Y
*..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
Cmp.L D4,D1 ...compare hi(R) and hi(Y)
BNE.B R_NE_Y
Cmp.L D5,D2 ...compare lo(R) and lo(Y)
BNE.B R_NE_Y
*..At this point, R = Y
BRA.W Rem_is_0
R_NE_Y:
*..use the borrow of the previous compare
BCS.B R_LT_Y ...borrow is set iff R < Y
R_GT_Y:
*..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0
*..and Y < (D1,D2) < 2Y. Either way, perform R - Y
Sub.L D5,D2 ...lo(R) - lo(Y)
SubX.L D4,D1 ...hi(R) - hi(Y)
CLR.L D6 ...clear carry
AddQ.L #1,D3 ...Q := Q + 1
R_LT_Y:
*..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
Tst.L D0 ...see if j = 0.
BEQ.B PostLoop
Add.L D3,D3 ...Q := 2Q
Add.L D2,D2 ...lo(R) = 2lo(R)
AddX.L D1,D1 ...hi(R) = 2hi(R) + carry
SCS D6 ...set Carry if 2(R) overflows
AddQ.L #1,A1 ...k := k+1
SubQ.L #1,D0 ...j := j - 1
*..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
BRA.B Mod_Loop
PostLoop:
*..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.
*..normalize R.
Move.L L_SCR1(a6),D0 ...new biased expo of R
Tst.L D1
BNE.B HiR_not0
HiR_0:
Move.L D2,D1
CLR.L D2
SubI.L #32,D0
CLR.L D6
BFFFO D1{0:32},D6
LSL.L D6,D1
Sub.L D6,D0 ...(D0,D1,D2) is normalized
* ...with bias $7FFD
BRA.B Get_Mod
HiR_not0:
CLR.L D6
BFFFO D1{0:32},D6
BMI.B Get_Mod ...already normalized
Sub.L D6,D0
LSL.L D6,D1
Move.L D2,D7 ...a copy of D2
LSL.L D6,D2
Neg.L D6
AddI.L #32,D6
LSR.L D6,D7
Or.L D7,D1 ...(D0,D1,D2) normalized
*
Get_Mod:
CmpI.L #$000041FE,D0
BGE.B No_Scale
Do_Scale:
Move.W D0,R(a6)
clr.w R+2(a6)
Move.L D1,R_Hi(a6)
Move.L D2,R_Lo(a6)
Move.L L_SCR1(a6),D6
Move.W D6,Y(a6)
clr.w Y+2(a6)
Move.L D4,Y_Hi(a6)
Move.L D5,Y_Lo(a6)
FMove.X R(a6),fp0 ...no exception
Move.L #1,Sc_Flag(a6)
BRA.B ModOrRem
No_Scale:
Move.L D1,R_Hi(a6)
Move.L D2,R_Lo(a6)
SubI.L #$3FFE,D0
Move.W D0,R(a6)
clr.w R+2(a6)
Move.L L_SCR1(a6),D6
SubI.L #$3FFE,D6
Move.L D6,L_SCR1(a6)
FMove.X R(a6),fp0
Move.W D6,Y(a6)
Move.L D4,Y_Hi(a6)
Move.L D5,Y_Lo(a6)
Clr.L Sc_Flag(a6)
*
ModOrRem:
Move.L Mod_Flag(a6),D6
BEQ.B Fix_Sign
Move.L L_SCR1(a6),D6 ...new biased expo(Y)
SubQ.L #1,D6 ...biased expo(Y/2)
Cmp.L D6,D0
BLT.B Fix_Sign
BGT.B Last_Sub
Cmp.L D4,D1
BNE.B Not_EQ
Cmp.L D5,D2
BNE.B Not_EQ
BRA.W Tie_Case
Not_EQ:
BCS.B Fix_Sign
Last_Sub:
*
FSub.X Y(a6),fp0 ...no exceptions
AddQ.L #1,D3 ...Q := Q + 1
*
Fix_Sign:
*..Get sign of X
Move.W SignX(a6),D6
BGE.B Get_Q
FNeg.X fp0
*..Get Q
*
Get_Q:
clr.l d6
Move.W SignQ(a6),D6 ...D6 is sign(Q)
Move.L #8,D7
LSR.L D7,D6
AndI.L #$0000007F,D3 ...7 bits of Q
Or.L D6,D3 ...sign and bits of Q
Swap D3
FMove.L fpsr,D6
AndI.L #$FF00FFFF,D6
Or.L D3,D6
FMove.L D6,fpsr ...put Q in fpsr
*
Restore:
MoveM.L (A7)+,D2-D7
FMove.L USER_FPCR(a6),fpcr
Move.L Sc_Flag(a6),D0
BEQ.B Finish
FMul.X Scale(pc),fp0 ...may cause underflow
bra t_avoid_unsupp ;check for denorm as a
* ;result of the scaling
Finish:
fmove.x fp0,fp0 ;capture exceptions & round
rts
Rem_is_0:
*..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
AddQ.L #1,D3
CmpI.L #8,D0 ...D0 is j
BGE.B Q_Big
LSL.L D0,D3
BRA.B Set_R_0
Q_Big:
CLR.L D3
Set_R_0:
FMove.S #:00000000,fp0
Clr.L Sc_Flag(a6)
BRA.W Fix_Sign
Tie_Case:
*..Check parity of Q
Move.L D3,D6
AndI.L #$00000001,D6
Tst.L D6
BEq.W Fix_Sign ...Q is even
*..Q is odd, Q := Q + 1, signX := -signX
AddQ.L #1,D3
Move.W SignX(a6),D6
EOrI.L #$00008000,D6
Move.W D6,SignX(a6)
BRA.W Fix_Sign
End
|