1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
|
* $OpenBSD: ssin.sa,v 1.4 2007/11/25 16:40:04 jmc Exp $
* $NetBSD: ssin.sa,v 1.3 1994/10/26 07:50:01 cgd Exp $
* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
* M68000 Hi-Performance Microprocessor Division
* M68040 Software Package
*
* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
* All rights reserved.
*
* THE SOFTWARE is provided on an "AS IS" basis and without warranty.
* To the maximum extent permitted by applicable law,
* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
* PARTICULAR PURPOSE and any warranty against infringement with
* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
* and any accompanying written materials.
*
* To the maximum extent permitted by applicable law,
* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
* SOFTWARE. Motorola assumes no responsibility for the maintenance
* and support of the SOFTWARE.
*
* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE so long as this entire notice is retained
* without alteration in any modified and/or redistributed versions,
* and that such modified versions are clearly identified as such.
* No licenses are granted by implication, estoppel or otherwise
* under any patents or trademarks of Motorola, Inc.
*
* ssin.sa 3.3 7/29/91
*
* The entry point sSIN computes the sine of an input argument
* sCOS computes the cosine, and sSINCOS computes both. The
* corresponding entry points with a "d" computes the same
* corresponding function values for denormalized inputs.
*
* Input: Double-extended number X in location pointed to
* by address register a0.
*
* Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
* COS is requested. Otherwise, for SINCOS, sin(X) is returned
* in Fp0, and cos(X) is returned in Fp1.
*
* Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
*
* Accuracy and Monotonicity: The returned result is within 1 ulp in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The programs sSIN and sCOS take approximately 150 cycles for
* input argument X such that |X| < 15Pi, which is the usual
* situation. The speed for sSINCOS is approximately 190 cycles.
*
* Algorithm:
*
* SIN and COS:
* 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
*
* 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
*
* 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
* k = N mod 4, so in particular, k = 0,1,2,or 3. Overwirte
* k by k := k + AdjN.
*
* 4. If k is even, go to 6.
*
* 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
* where cos(r) is approximated by an even polynomial in r,
* 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r.
* Exit.
*
* 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
* where sin(r) is approximated by an odd polynomial in r
* r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r.
* Exit.
*
* 7. If |X| > 1, go to 9.
*
* 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
*
* 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
*
* SINCOS:
* 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
*
* 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
* k = N mod 4, so in particular, k = 0,1,2,or 3.
*
* 3. If k is even, go to 5.
*
* 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
* j1 exclusive or with the l.s.b. of k.
* sgn1 := (-1)**j1, sgn2 := (-1)**j2.
* SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
* sin(r) and cos(r) are computed as odd and even polynomials
* in r, respectively. Exit
*
* 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
* SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
* sin(r) and cos(r) are computed as odd and even polynomials
* in r, respectively. Exit
*
* 6. If |X| > 1, go to 8.
*
* 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
*
* 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
*
SSIN IDNT 2,1 Motorola 040 Floating Point Software Package
section 8
include fpsp.h
BOUNDS1 DC.L $3FD78000,$4004BC7E
TWOBYPI DC.L $3FE45F30,$6DC9C883
SINA7 DC.L $BD6AAA77,$CCC994F5
SINA6 DC.L $3DE61209,$7AAE8DA1
SINA5 DC.L $BE5AE645,$2A118AE4
SINA4 DC.L $3EC71DE3,$A5341531
SINA3 DC.L $BF2A01A0,$1A018B59,$00000000,$00000000
SINA2 DC.L $3FF80000,$88888888,$888859AF,$00000000
SINA1 DC.L $BFFC0000,$AAAAAAAA,$AAAAAA99,$00000000
COSB8 DC.L $3D2AC4D0,$D6011EE3
COSB7 DC.L $BDA9396F,$9F45AC19
COSB6 DC.L $3E21EED9,$0612C972
COSB5 DC.L $BE927E4F,$B79D9FCF
COSB4 DC.L $3EFA01A0,$1A01D423,$00000000,$00000000
COSB3 DC.L $BFF50000,$B60B60B6,$0B61D438,$00000000
COSB2 DC.L $3FFA0000,$AAAAAAAA,$AAAAAB5E
COSB1 DC.L $BF000000
INVTWOPI DC.L $3FFC0000,$A2F9836E,$4E44152A
TWOPI1 DC.L $40010000,$C90FDAA2,$00000000,$00000000
TWOPI2 DC.L $3FDF0000,$85A308D4,$00000000,$00000000
xref PITBL
INARG equ FP_SCR4
X equ FP_SCR5
XDCARE equ X+2
XFRAC equ X+4
RPRIME equ FP_SCR1
SPRIME equ FP_SCR2
POSNEG1 equ L_SCR1
TWOTO63 equ L_SCR1
ENDFLAG equ L_SCR2
N equ L_SCR2
ADJN equ L_SCR3
xref t_frcinx
xref t_extdnrm
xref sto_cos
xdef ssind
ssind:
*--SIN(X) = X FOR DENORMALIZED X
bra t_extdnrm
xdef scosd
scosd:
*--COS(X) = 1 FOR DENORMALIZED X
FMOVE.S #:3F800000,FP0
*
* 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
*
fmove.l #0,fpsr
*
bra t_frcinx
xdef ssin
ssin:
*--SET ADJN TO 0
CLR.L ADJN(a6)
BRA.B SINBGN
xdef scos
scos:
*--SET ADJN TO 1
MOVE.L #1,ADJN(a6)
SINBGN:
*--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
FMOVE.X (a0),FP0 ...LOAD INPUT
MOVE.L (A0),D0
MOVE.W 4(A0),D0
FMOVE.X FP0,X(a6)
ANDI.L #$7FFFFFFF,D0 ...COMPACTIFY X
CMPI.L #$3FD78000,D0 ...|X| >= 2**(-40)?
BGE.B SOK1
BRA.W SINSM
SOK1:
CMPI.L #$4004BC7E,D0 ...|X| < 15 PI?
BLT.B SINMAIN
BRA.W REDUCEX
SINMAIN:
*--THIS IS THE USUAL CASE, |X| <= 15 PI.
*--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
FMOVE.X FP0,FP1
FMUL.D TWOBYPI,FP1 ...X*2/PI
*--HIDE THE NEXT THREE INSTRUCTIONS
LEA PITBL+$200,A1 ...TABLE OF N*PI/2, N = -32,...,32
*--FP1 IS NOW READY
FMOVE.L FP1,N(a6) ...CONVERT TO INTEGER
MOVE.L N(a6),D0
ASL.L #4,D0
ADDA.L D0,A1 ...A1 IS THE ADDRESS OF N*PIBY2
* ...WHICH IS IN TWO PIECES Y1 & Y2
FSUB.X (A1)+,FP0 ...X-Y1
*--HIDE THE NEXT ONE
FSUB.S (A1),FP0 ...FP0 IS R = (X-Y1)-Y2
SINCONT:
*--continuation from REDUCEX
*--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
MOVE.L N(a6),D0
ADD.L ADJN(a6),D0 ...SEE IF D0 IS ODD OR EVEN
ROR.L #1,D0 ...D0 WAS ODD IFF D0 IS NEGATIVE
TST.L D0
BLT.W COSPOLY
SINPOLY:
*--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
*--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
*--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
*--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
*--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
*--WHERE T=S*S.
*--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
*--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
FMOVE.X FP0,X(a6) ...X IS R
FMUL.X FP0,FP0 ...FP0 IS S
*---HIDE THE NEXT TWO WHILE WAITING FOR FP0
FMOVE.D SINA7,FP3
FMOVE.D SINA6,FP2
*--FP0 IS NOW READY
FMOVE.X FP0,FP1
FMUL.X FP1,FP1 ...FP1 IS T
*--HIDE THE NEXT TWO WHILE WAITING FOR FP1
ROR.L #1,D0
ANDI.L #$80000000,D0
* ...LEAST SIG. BIT OF D0 IN SIGN POSITION
EOR.L D0,X(a6) ...X IS NOW R'= SGN*R
FMUL.X FP1,FP3 ...TA7
FMUL.X FP1,FP2 ...TA6
FADD.D SINA5,FP3 ...A5+TA7
FADD.D SINA4,FP2 ...A4+TA6
FMUL.X FP1,FP3 ...T(A5+TA7)
FMUL.X FP1,FP2 ...T(A4+TA6)
FADD.D SINA3,FP3 ...A3+T(A5+TA7)
FADD.X SINA2,FP2 ...A2+T(A4+TA6)
FMUL.X FP3,FP1 ...T(A3+T(A5+TA7))
FMUL.X FP0,FP2 ...S(A2+T(A4+TA6))
FADD.X SINA1,FP1 ...A1+T(A3+T(A5+TA7))
FMUL.X X(a6),FP0 ...R'*S
FADD.X FP2,FP1 ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
*--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
*--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
FMUL.X FP1,FP0 ...SIN(R')-R'
*--FP1 RELEASED.
FMOVE.L d1,FPCR ;restore users exceptions
FADD.X X(a6),FP0 ;last inst - possible exception set
bra t_frcinx
COSPOLY:
*--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
*--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
*--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
*--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
*--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
*--WHERE T=S*S.
*--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
*--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
*--AND IS THEREFORE STORED AS SINGLE PRECISION.
FMUL.X FP0,FP0 ...FP0 IS S
*---HIDE THE NEXT TWO WHILE WAITING FOR FP0
FMOVE.D COSB8,FP2
FMOVE.D COSB7,FP3
*--FP0 IS NOW READY
FMOVE.X FP0,FP1
FMUL.X FP1,FP1 ...FP1 IS T
*--HIDE THE NEXT TWO WHILE WAITING FOR FP1
FMOVE.X FP0,X(a6) ...X IS S
ROR.L #1,D0
ANDI.L #$80000000,D0
* ...LEAST SIG. BIT OF D0 IN SIGN POSITION
FMUL.X FP1,FP2 ...TB8
*--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
EOR.L D0,X(a6) ...X IS NOW S'= SGN*S
ANDI.L #$80000000,D0
FMUL.X FP1,FP3 ...TB7
*--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
ORI.L #$3F800000,D0 ...D0 IS SGN IN SINGLE
MOVE.L D0,POSNEG1(a6)
FADD.D COSB6,FP2 ...B6+TB8
FADD.D COSB5,FP3 ...B5+TB7
FMUL.X FP1,FP2 ...T(B6+TB8)
FMUL.X FP1,FP3 ...T(B5+TB7)
FADD.D COSB4,FP2 ...B4+T(B6+TB8)
FADD.X COSB3,FP3 ...B3+T(B5+TB7)
FMUL.X FP1,FP2 ...T(B4+T(B6+TB8))
FMUL.X FP3,FP1 ...T(B3+T(B5+TB7))
FADD.X COSB2,FP2 ...B2+T(B4+T(B6+TB8))
FADD.S COSB1,FP1 ...B1+T(B3+T(B5+TB7))
FMUL.X FP2,FP0 ...S(B2+T(B4+T(B6+TB8)))
*--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
*--FP2 RELEASED.
FADD.X FP1,FP0
*--FP1 RELEASED
FMUL.X X(a6),FP0
FMOVE.L d1,FPCR ;restore users exceptions
FADD.S POSNEG1(a6),FP0 ;last inst - possible exception set
bra t_frcinx
SINBORS:
*--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
*--IF |X| < 2**(-40), RETURN X OR 1.
CMPI.L #$3FFF8000,D0
BGT.B REDUCEX
SINSM:
MOVE.L ADJN(a6),D0
TST.L D0
BGT.B COSTINY
SINTINY:
CLR.W XDCARE(a6) ...JUST IN CASE
FMOVE.L d1,FPCR ;restore users exceptions
FMOVE.X X(a6),FP0 ;last inst - possible exception set
bra t_frcinx
COSTINY:
FMOVE.S #:3F800000,FP0
FMOVE.L d1,FPCR ;restore users exceptions
FSUB.S #:00800000,FP0 ;last inst - possible exception set
bra t_frcinx
REDUCEX:
*--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
*--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
*--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
FMOVEM.X FP2-FP5,-(A7) ...save FP2 through FP5
MOVE.L D2,-(A7)
FMOVE.S #:00000000,FP1
*--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
*--there is a danger of unwanted overflow in first LOOP iteration. In this
*--case, reduce argument by one remainder step to make subsequent reduction
*--safe.
cmpi.l #$7ffeffff,d0 ;is argument dangerously large?
bne.b LOOP
move.l #$7ffe0000,FP_SCR2(a6) ;yes
* ;create 2**16383*PI/2
move.l #$c90fdaa2,FP_SCR2+4(a6)
clr.l FP_SCR2+8(a6)
ftst.x fp0 ;test sign of argument
move.l #$7fdc0000,FP_SCR3(a6) ;create low half of 2**16383*
* ;PI/2 at FP_SCR3
move.l #$85a308d3,FP_SCR3+4(a6)
clr.l FP_SCR3+8(a6)
fblt.w red_neg
or.w #$8000,FP_SCR2(a6) ;positive arg
or.w #$8000,FP_SCR3(a6)
red_neg:
fadd.x FP_SCR2(a6),fp0 ;high part of reduction is exact
fmove.x fp0,fp1 ;save high result in fp1
fadd.x FP_SCR3(a6),fp0 ;low part of reduction
fsub.x fp0,fp1 ;determine low component of result
fadd.x FP_SCR3(a6),fp1 ;fp0/fp1 are reduced argument.
*--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
*--integer quotient will be stored in N
*--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
LOOP:
FMOVE.X FP0,INARG(a6) ...+-2**K * F, 1 <= F < 2
MOVE.W INARG(a6),D0
MOVE.L D0,A1 ...save a copy of D0
ANDI.L #$00007FFF,D0
SUBI.L #$00003FFF,D0 ...D0 IS K
CMPI.L #28,D0
BLE.B LASTLOOP
CONTLOOP:
SUBI.L #27,D0 ...D0 IS L := K-27
CLR.L ENDFLAG(a6)
BRA.B WORK
LASTLOOP:
CLR.L D0 ...D0 IS L := 0
MOVE.L #1,ENDFLAG(a6)
WORK:
*--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
*--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
*--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
*--2**L * (PIby2_1), 2**L * (PIby2_2)
MOVE.L #$00003FFE,D2 ...BIASED EXPO OF 2/PI
SUB.L D0,D2 ...BIASED EXPO OF 2**(-L)*(2/PI)
MOVE.L #$A2F9836E,FP_SCR1+4(a6)
MOVE.L #$4E44152A,FP_SCR1+8(a6)
MOVE.W D2,FP_SCR1(a6) ...FP_SCR1 is 2**(-L)*(2/PI)
FMOVE.X FP0,FP2
FMUL.X FP_SCR1(a6),FP2
*--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
*--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
*--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
*--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
*--US THE DESIRED VALUE IN FLOATING POINT.
*--HIDE SIX CYCLES OF INSTRUCTION
MOVE.L A1,D2
SWAP D2
ANDI.L #$80000000,D2
ORI.L #$5F000000,D2 ...D2 IS SIGN(INARG)*2**63 IN SGL
MOVE.L D2,TWOTO63(a6)
MOVE.L D0,D2
ADDI.L #$00003FFF,D2 ...BIASED EXPO OF 2**L * (PI/2)
*--FP2 IS READY
FADD.S TWOTO63(a6),FP2 ...THE FRACTIONAL PART OF FP1 IS ROUNDED
*--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
MOVE.W D2,FP_SCR2(a6)
CLR.W FP_SCR2+2(a6)
MOVE.L #$C90FDAA2,FP_SCR2+4(a6)
CLR.L FP_SCR2+8(a6) ...FP_SCR2 is 2**(L) * Piby2_1
*--FP2 IS READY
FSUB.S TWOTO63(a6),FP2 ...FP2 is N
ADDI.L #$00003FDD,D0
MOVE.W D0,FP_SCR3(a6)
CLR.W FP_SCR3+2(a6)
MOVE.L #$85A308D3,FP_SCR3+4(a6)
CLR.L FP_SCR3+8(a6) ...FP_SCR3 is 2**(L) * Piby2_2
MOVE.L ENDFLAG(a6),D0
*--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
*--P2 = 2**(L) * Piby2_2
FMOVE.X FP2,FP4
FMul.X FP_SCR2(a6),FP4 ...W = N*P1
FMove.X FP2,FP5
FMul.X FP_SCR3(a6),FP5 ...w = N*P2
FMove.X FP4,FP3
*--we want P+p = W+w but |p| <= half ulp of P
*--Then, we need to compute A := R-P and a := r-p
FAdd.X FP5,FP3 ...FP3 is P
FSub.X FP3,FP4 ...W-P
FSub.X FP3,FP0 ...FP0 is A := R - P
FAdd.X FP5,FP4 ...FP4 is p = (W-P)+w
FMove.X FP0,FP3 ...FP3 A
FSub.X FP4,FP1 ...FP1 is a := r - p
*--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
*--|r| <= half ulp of R.
FAdd.X FP1,FP0 ...FP0 is R := A+a
*--No need to calculate r if this is the last loop
TST.L D0
BGT.W RESTORE
*--Need to calculate r
FSub.X FP0,FP3 ...A-R
FAdd.X FP3,FP1 ...FP1 is r := (A-R)+a
BRA.W LOOP
RESTORE:
FMOVE.L FP2,N(a6)
MOVE.L (A7)+,D2
FMOVEM.X (A7)+,FP2-FP5
MOVE.L ADJN(a6),D0
CMPI.L #4,D0
BLT.W SINCONT
BRA.B SCCONT
xdef ssincosd
ssincosd:
*--SIN AND COS OF X FOR DENORMALIZED X
FMOVE.S #:3F800000,FP1
bsr sto_cos ;store cosine result
bra t_extdnrm
xdef ssincos
ssincos:
*--SET ADJN TO 4
MOVE.L #4,ADJN(a6)
FMOVE.X (a0),FP0 ...LOAD INPUT
MOVE.L (A0),D0
MOVE.W 4(A0),D0
FMOVE.X FP0,X(a6)
ANDI.L #$7FFFFFFF,D0 ...COMPACTIFY X
CMPI.L #$3FD78000,D0 ...|X| >= 2**(-40)?
BGE.B SCOK1
BRA.W SCSM
SCOK1:
CMPI.L #$4004BC7E,D0 ...|X| < 15 PI?
BLT.B SCMAIN
BRA.W REDUCEX
SCMAIN:
*--THIS IS THE USUAL CASE, |X| <= 15 PI.
*--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
FMOVE.X FP0,FP1
FMUL.D TWOBYPI,FP1 ...X*2/PI
*--HIDE THE NEXT THREE INSTRUCTIONS
LEA PITBL+$200,A1 ...TABLE OF N*PI/2, N = -32,...,32
*--FP1 IS NOW READY
FMOVE.L FP1,N(a6) ...CONVERT TO INTEGER
MOVE.L N(a6),D0
ASL.L #4,D0
ADDA.L D0,A1 ...ADDRESS OF N*PIBY2, IN Y1, Y2
FSUB.X (A1)+,FP0 ...X-Y1
FSUB.S (A1),FP0 ...FP0 IS R = (X-Y1)-Y2
SCCONT:
*--continuation point from REDUCEX
*--HIDE THE NEXT TWO
MOVE.L N(a6),D0
ROR.L #1,D0
TST.L D0 ...D0 < 0 IFF N IS ODD
BGE.W NEVEN
NODD:
*--REGISTERS SAVED SO FAR: D0, A0, FP2.
FMOVE.X FP0,RPRIME(a6)
FMUL.X FP0,FP0 ...FP0 IS S = R*R
FMOVE.D SINA7,FP1 ...A7
FMOVE.D COSB8,FP2 ...B8
FMUL.X FP0,FP1 ...SA7
MOVE.L d2,-(A7)
MOVE.L D0,d2
FMUL.X FP0,FP2 ...SB8
ROR.L #1,d2
ANDI.L #$80000000,d2
FADD.D SINA6,FP1 ...A6+SA7
EOR.L D0,d2
ANDI.L #$80000000,d2
FADD.D COSB7,FP2 ...B7+SB8
FMUL.X FP0,FP1 ...S(A6+SA7)
EOR.L d2,RPRIME(a6)
MOVE.L (A7)+,d2
FMUL.X FP0,FP2 ...S(B7+SB8)
ROR.L #1,D0
ANDI.L #$80000000,D0
FADD.D SINA5,FP1 ...A5+S(A6+SA7)
MOVE.L #$3F800000,POSNEG1(a6)
EOR.L D0,POSNEG1(a6)
FADD.D COSB6,FP2 ...B6+S(B7+SB8)
FMUL.X FP0,FP1 ...S(A5+S(A6+SA7))
FMUL.X FP0,FP2 ...S(B6+S(B7+SB8))
FMOVE.X FP0,SPRIME(a6)
FADD.D SINA4,FP1 ...A4+S(A5+S(A6+SA7))
EOR.L D0,SPRIME(a6)
FADD.D COSB5,FP2 ...B5+S(B6+S(B7+SB8))
FMUL.X FP0,FP1 ...S(A4+...)
FMUL.X FP0,FP2 ...S(B5+...)
FADD.D SINA3,FP1 ...A3+S(A4+...)
FADD.D COSB4,FP2 ...B4+S(B5+...)
FMUL.X FP0,FP1 ...S(A3+...)
FMUL.X FP0,FP2 ...S(B4+...)
FADD.X SINA2,FP1 ...A2+S(A3+...)
FADD.X COSB3,FP2 ...B3+S(B4+...)
FMUL.X FP0,FP1 ...S(A2+...)
FMUL.X FP0,FP2 ...S(B3+...)
FADD.X SINA1,FP1 ...A1+S(A2+...)
FADD.X COSB2,FP2 ...B2+S(B3+...)
FMUL.X FP0,FP1 ...S(A1+...)
FMUL.X FP2,FP0 ...S(B2+...)
FMUL.X RPRIME(a6),FP1 ...R'S(A1+...)
FADD.S COSB1,FP0 ...B1+S(B2...)
FMUL.X SPRIME(a6),FP0 ...S'(B1+S(B2+...))
move.l d1,-(sp) ;restore users mode & precision
andi.l #$ff,d1 ;mask off all exceptions
fmove.l d1,FPCR
FADD.X RPRIME(a6),FP1 ...COS(X)
bsr sto_cos ;store cosine result
FMOVE.L (sp)+,FPCR ;restore users exceptions
FADD.S POSNEG1(a6),FP0 ...SIN(X)
bra t_frcinx
NEVEN:
*--REGISTERS SAVED SO FAR: FP2.
FMOVE.X FP0,RPRIME(a6)
FMUL.X FP0,FP0 ...FP0 IS S = R*R
FMOVE.D COSB8,FP1 ...B8
FMOVE.D SINA7,FP2 ...A7
FMUL.X FP0,FP1 ...SB8
FMOVE.X FP0,SPRIME(a6)
FMUL.X FP0,FP2 ...SA7
ROR.L #1,D0
ANDI.L #$80000000,D0
FADD.D COSB7,FP1 ...B7+SB8
FADD.D SINA6,FP2 ...A6+SA7
EOR.L D0,RPRIME(a6)
EOR.L D0,SPRIME(a6)
FMUL.X FP0,FP1 ...S(B7+SB8)
ORI.L #$3F800000,D0
MOVE.L D0,POSNEG1(a6)
FMUL.X FP0,FP2 ...S(A6+SA7)
FADD.D COSB6,FP1 ...B6+S(B7+SB8)
FADD.D SINA5,FP2 ...A5+S(A6+SA7)
FMUL.X FP0,FP1 ...S(B6+S(B7+SB8))
FMUL.X FP0,FP2 ...S(A5+S(A6+SA7))
FADD.D COSB5,FP1 ...B5+S(B6+S(B7+SB8))
FADD.D SINA4,FP2 ...A4+S(A5+S(A6+SA7))
FMUL.X FP0,FP1 ...S(B5+...)
FMUL.X FP0,FP2 ...S(A4+...)
FADD.D COSB4,FP1 ...B4+S(B5+...)
FADD.D SINA3,FP2 ...A3+S(A4+...)
FMUL.X FP0,FP1 ...S(B4+...)
FMUL.X FP0,FP2 ...S(A3+...)
FADD.X COSB3,FP1 ...B3+S(B4+...)
FADD.X SINA2,FP2 ...A2+S(A3+...)
FMUL.X FP0,FP1 ...S(B3+...)
FMUL.X FP0,FP2 ...S(A2+...)
FADD.X COSB2,FP1 ...B2+S(B3+...)
FADD.X SINA1,FP2 ...A1+S(A2+...)
FMUL.X FP0,FP1 ...S(B2+...)
fmul.x fp2,fp0 ...s(a1+...)
FADD.S COSB1,FP1 ...B1+S(B2...)
FMUL.X RPRIME(a6),FP0 ...R'S(A1+...)
FMUL.X SPRIME(a6),FP1 ...S'(B1+S(B2+...))
move.l d1,-(sp) ;save users mode & precision
andi.l #$ff,d1 ;mask off all exceptions
fmove.l d1,FPCR
FADD.S POSNEG1(a6),FP1 ...COS(X)
bsr sto_cos ;store cosine result
FMOVE.L (sp)+,FPCR ;restore users exceptions
FADD.X RPRIME(a6),FP0 ...SIN(X)
bra t_frcinx
SCBORS:
CMPI.L #$3FFF8000,D0
BGT.W REDUCEX
SCSM:
CLR.W XDCARE(a6)
FMOVE.S #:3F800000,FP1
move.l d1,-(sp) ;save users mode & precision
andi.l #$ff,d1 ;mask off all exceptions
fmove.l d1,FPCR
FSUB.S #:00800000,FP1
bsr sto_cos ;store cosine result
FMOVE.L (sp)+,FPCR ;restore users exceptions
FMOVE.X X(a6),FP0
bra t_frcinx
end
|