1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
|
/* $OpenBSD: zs.c,v 1.9 2012/05/12 16:47:44 miod Exp $ */
/* $NetBSD: zs.c,v 1.37 2011/02/20 07:59:50 matt Exp $ */
/*-
* Copyright (c) 1996, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross and Wayne Knowles
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Zilog Z8530 Dual UART driver (machine-dependent part)
*
* Runs two serial lines per chip using slave drivers.
* Plain tty/async lines use the zs_async slave.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/syslog.h>
#include <mips64/archtype.h>
#include <mips64/arcbios.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/z8530var.h>
#include <dev/cons.h>
#include <dev/ic/z8530reg.h>
#include <sgi/hpc/hpcvar.h>
#include <sgi/hpc/hpcreg.h>
/*
* Some warts needed by z8530tty.c -
* The default parity REALLY needs to be the same as the PROM uses,
* or you can not see messages done with printf during boot-up...
*/
int zs_def_cflag = (CREAD | CS8 | HUPCL);
int zs_major = 19;
#define PCLK 3672000 /* PCLK pin input clock rate */
#ifndef ZS_DEFSPEED
#define ZS_DEFSPEED 9600
#endif
/*
* Define interrupt levels.
*/
#define ZSHARD_PRI 64
/* SGI shouldn't need ZS_DELAY() as recovery time is done in hardware? */
#define ZS_DELAY() delay(2)
/* The layout of this is hardware-dependent (padding, order). */
struct zschan {
uint8_t pad1[3];
volatile uint8_t zc_csr; /* ctrl,status, and indirect access */
uint8_t pad2[3];
volatile uint8_t zc_data; /* data */
};
struct zsdevice {
struct zschan zs_chan_b;
struct zschan zs_chan_a;
};
/* Return the byte offset of element within a structure */
#define OFFSET(struct_def, el) ((size_t)&((struct_def *)0)->el)
#define ZS_CHAN_A OFFSET(struct zsdevice, zs_chan_a)
#define ZS_CHAN_B OFFSET(struct zsdevice, zs_chan_b)
#define ZS_REG_CSR 3
#define ZS_REG_DATA 7
static int zs_chan_offset[] = {ZS_CHAN_A, ZS_CHAN_B};
cons_decl(zs);
struct consdev zs_cn = {
zscnprobe,
zscninit,
zscngetc,
zscnputc,
zscnpollc,
NULL
};
/* Flags from cninit() */
static int zs_consunit = -1;
static int zs_conschan = -1;
/* Default speed for all channels */
static int zs_defspeed = ZS_DEFSPEED;
static uint8_t zs_init_reg[17] = {
0, /* 0: CMD (reset, etc.) */
0, /* 1: No interrupts yet. */
ZSHARD_PRI, /* 2: IVECT */
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0, /* 6: TXSYNC/SYNCLO */
0, /* 7: RXSYNC/SYNCHI */
0, /* 8: alias for data port */
ZSWR9_MASTER_IE,
0, /*10: Misc. TX/RX control bits */
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD | ZSWR11_TRXC_OUT_ENA,
BPS_TO_TCONST(PCLK/16, ZS_DEFSPEED), /*12: BAUDLO (default=9600) */
0, /*13: BAUDHI (default=9600) */
ZSWR14_BAUD_ENA,
ZSWR15_BREAK_IE,
ZSWR7P_TX_FIFO /* 7': TX FIFO interrupt level */
};
/****************************************************************
* Autoconfig
****************************************************************/
/* Definition of the driver for autoconfig. */
int zs_hpc_match(struct device *, void *, void *);
void zs_hpc_attach(struct device *, struct device *, void *);
int zs_print(void *, const char *name);
struct cfdriver zs_cd = {
NULL, "zs", DV_TTY
};
struct cfattach zs_hpc_ca = {
sizeof(struct zsc_softc), zs_hpc_match, zs_hpc_attach
};
int zshard(void *);
void zssoft(void *);
struct zschan *zs_get_chan_addr(int, int);
int zs_getc(void *);
void zs_putc(void *, int);
/*
* Is the zs chip present?
*/
int
zs_hpc_match(struct device *parent, void *vcf, void *aux)
{
struct cfdata *cf = vcf;
struct hpc_attach_args *ha = aux;
if (strcmp(ha->ha_name, cf->cf_driver->cd_name) == 0)
return (1);
return (0);
}
/*
* Attach a found zs.
*
* Match slave number to zs unit number, so that misconfiguration will
* not set up the keyboard as ttya, etc.
*/
void
zs_hpc_attach(struct device *parent, struct device *self, void *aux)
{
struct zsc_softc *zsc = (void *)self;
struct cfdata *cf = self->dv_cfdata;
struct hpc_attach_args *haa = aux;
struct zsc_attach_args zsc_args;
struct zs_chanstate *cs;
struct zs_channel *ch;
int zs_unit, channel, err, s;
int has_fifo;
zsc->zsc_bustag = haa->ha_st;
if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
haa->ha_devoff, 0x10,
&zsc->zsc_base)) != 0) {
printf(": unable to map 85c30 registers, error = %d\n",
err);
return;
}
zs_unit = zsc->zsc_dev.dv_unit;
/*
* Initialize software state for each channel.
*
* Done in reverse order of channels since the first serial port
* is actually attached to the *second* channel, and vice versa.
* Doing it this way should force a 'zstty*' to attach zstty0 to
* channel 1 and zstty1 to channel 0. They couldn't have wired
* it up in a more sensible fashion, could they?
*/
for (channel = 1; channel >= 0; channel--) {
zsc_args.channel = channel;
ch = &zsc->zsc_cs_store[channel];
cs = zsc->zsc_cs[channel] = (struct zs_chanstate *)ch;
/*
* According to IRIX <sys/z8530.h>, on Indigo, the CTR, DCD,
* DTR and RTS bits are inverted.
*
* That is, inverted when compared to the Indy and Indigo 2
* designs. However, it turns out that the Indigo wiring is
* the `natural' one, with these pins being inverted from
* what one would naively expect, on the other designs.
*
* Choose wiring logic according to the hardware we run on,
* and the device flags.
*/
if (sys_config.system_type != SGI_IP20)
ch->cs_flags |= ZSCFL_INVERT_WIRING;
if (cf->cf_flags & ZSCFL_INVERT_WIRING)
ch->cs_flags ^= ZSCFL_INVERT_WIRING;
cs->cs_reg_csr = NULL;
cs->cs_reg_data = NULL;
cs->cs_channel = channel;
cs->cs_private = NULL;
cs->cs_ops = &zsops_null;
cs->cs_brg_clk = PCLK / 16;
if (bus_space_subregion(zsc->zsc_bustag, zsc->zsc_base,
zs_chan_offset[channel],
sizeof(struct zschan),
&ch->cs_regs) != 0) {
printf(": cannot map regs\n", self->dv_xname);
return;
}
ch->cs_bustag = zsc->zsc_bustag;
/*
* Figure out whether this chip is a 8530 or a 85230.
*/
if (channel == 1) {
zs_write_reg(cs, 15, ZSWR15_ENABLE_ENHANCED);
has_fifo = zs_read_reg(cs, 15) & ZSWR15_ENABLE_ENHANCED;
if (has_fifo) {
zs_write_reg(cs, 15, 0);
printf(": 85230\n");
} else
printf(": 8530\n");
}
if (has_fifo)
zs_init_reg[15] |= ZSWR15_ENABLE_ENHANCED;
else
zs_init_reg[15] &= ~ZSWR15_ENABLE_ENHANCED;
memcpy(cs->cs_creg, zs_init_reg, 17);
memcpy(cs->cs_preg, zs_init_reg, 17);
/* If console, don't stomp speed, let zstty know */
if (zs_unit == zs_consunit && channel == zs_conschan) {
zsc_args.consdev = &zs_cn;
zsc_args.hwflags = ZS_HWFLAG_CONSOLE;
cs->cs_defspeed = bios_consrate;
} else {
zsc_args.consdev = NULL;
zsc_args.hwflags = 0;
cs->cs_defspeed = zs_defspeed;
}
cs->cs_defcflag = zs_def_cflag;
/* Make these correspond to cs_defcflag (-crtscts) */
cs->cs_rr0_dcd = ZSRR0_DCD;
cs->cs_rr0_cts = 0;
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
/*
* Clear the master interrupt enable.
* The INTENA is common to both channels,
* so just do it on the A channel.
*/
if (channel == 0) {
zs_write_reg(cs, 9, 0);
}
/*
* Look for a child driver for this channel.
* The child attach will setup the hardware.
*/
if (!config_found(self, (void *)&zsc_args, zs_print)) {
/* No sub-driver. Just reset it. */
uint8_t reset = (channel == 0) ?
ZSWR9_A_RESET : ZSWR9_B_RESET;
s = splhigh();
zs_write_reg(cs, 9, reset);
splx(s);
}
}
zsc->sc_si = softintr_establish(IPL_SOFTTTY, zssoft, zsc);
hpc_intr_establish(haa->ha_irq, IPL_TTY, zshard, zsc, self->dv_xname);
/*
* Set the master interrupt enable and interrupt vector.
* (common to both channels, do it on A)
*/
cs = zsc->zsc_cs[0];
s = splhigh();
/* interrupt vector */
zs_write_reg(cs, 2, zs_init_reg[2]);
/* master interrupt control (enable) */
zs_write_reg(cs, 9, zs_init_reg[9]);
splx(s);
}
int
zs_print(void *aux, const char *name)
{
struct zsc_attach_args *args = aux;
if (name != NULL)
printf("%s: ", name);
if (args->channel != -1)
printf(" channel %d", args->channel);
return UNCONF;
}
/*
* Our ZS chips all share a common, autovectored interrupt,
* so we have to look at all of them on each interrupt.
*/
int
zshard(void *arg)
{
struct zsc_softc *zsc = arg;
int rval;
rval = zsc_intr_hard(zsc);
if (rval != 0) {
if (zsc->zsc_cs[0]->cs_softreq ||
zsc->zsc_cs[1]->cs_softreq)
softintr_schedule(zsc->sc_si);
}
return rval;
}
/*
* Similar scheme as for zshard (look at all of them)
*/
void
zssoft(void *arg)
{
struct zsc_softc *zsc = arg;
int s;
/* Make sure we call the tty layer at spltty. */
s = spltty();
(void)zsc_intr_soft(zsc);
splx(s);
}
/*
* MD functions for setting the baud rate and control modes.
*/
int
zs_set_speed(struct zs_chanstate *cs, int bps)
{
int tconst, real_bps;
if (bps == 0)
return (0);
#ifdef DIAGNOSTIC
if (cs->cs_brg_clk == 0)
panic("zs_set_speed");
#endif
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
if (tconst < 0)
return (EINVAL);
/* Convert back to make sure we can do it. */
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
#if 0 /* PCLK is too small, 9600bps really yields 9562 */
/* XXX - Allow some tolerance here? */
if (real_bps != bps)
return (EINVAL);
#endif
cs->cs_preg[12] = tconst;
cs->cs_preg[13] = tconst >> 8;
/* Caller will stuff the pending registers. */
return (0);
}
int
zs_set_modes(struct zs_chanstate *cs, int cflag)
{
int s;
/*
* Output hardware flow control on the chip is horrendous:
* if carrier detect drops, the receiver is disabled, and if
* CTS drops, the transmitter is stoped IN MID CHARACTER!
* Therefore, NEVER set the HFC bit, and instead use the
* status interrupt to detect CTS changes.
*/
s = splzs();
cs->cs_rr0_pps = 0;
if ((cflag & (CLOCAL | MDMBUF)) != 0) {
cs->cs_rr0_dcd = 0;
if ((cflag & MDMBUF) == 0)
cs->cs_rr0_pps = ZSRR0_DCD;
} else
cs->cs_rr0_dcd = ZSRR0_DCD;
if ((cflag & CRTSCTS) != 0) {
cs->cs_wr5_dtr = ZSWR5_DTR;
cs->cs_wr5_rts = ZSWR5_RTS;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & MDMBUF) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_DCD;
} else {
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
cs->cs_rr0_cts = 0;
}
splx(s);
/* Caller will stuff the pending registers. */
return (0);
}
/*
* Read or write the chip with suitable delays.
*/
uint8_t
zs_read_reg(struct zs_chanstate *cs, uint8_t reg)
{
uint8_t val;
struct zs_channel *zsc = (struct zs_channel *)cs;
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ZS_DELAY();
val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
ZS_DELAY();
if ((zsc->cs_flags & ZSCFL_INVERT_WIRING) && reg == 0)
val ^= ZSRR0_CTS | ZSRR0_DCD;
return val;
}
void
zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val)
{
struct zs_channel *zsc = (struct zs_channel *)cs;
if ((zsc->cs_flags & ZSCFL_INVERT_WIRING) && reg == 5)
val ^= ZSWR5_DTR | ZSWR5_RTS;
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ZS_DELAY();
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ZS_DELAY();
}
uint8_t
zs_read_csr(struct zs_chanstate *cs)
{
struct zs_channel *zsc = (struct zs_channel *)cs;
uint8_t val;
val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
ZS_DELAY();
if (zsc->cs_flags & ZSCFL_INVERT_WIRING)
val ^= ZSRR0_CTS | ZSRR0_DCD;
return val;
}
void
zs_write_csr(struct zs_chanstate *cs, uint8_t val)
{
struct zs_channel *zsc = (struct zs_channel *)cs;
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ZS_DELAY();
}
uint8_t
zs_read_data(struct zs_chanstate *cs)
{
struct zs_channel *zsc = (struct zs_channel *)cs;
uint8_t val;
val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA);
ZS_DELAY();
return val;
}
void
zs_write_data(struct zs_chanstate *cs, uint8_t val)
{
struct zs_channel *zsc = (struct zs_channel *)cs;
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, val);
bus_space_barrier(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ZS_DELAY();
}
void
zs_abort(struct zs_chanstate *cs)
{
#if defined(KGDB)
zskgdb(cs);
#elif defined(DDB)
Debugger();
#endif
}
/*********************************************************/
/* Polled character I/O functions for console and KGDB */
/*********************************************************/
struct zschan *
zs_get_chan_addr(int zs_unit, int channel)
{
#if 0
static int dumped_addr = 0;
#endif
struct zsdevice *addr = NULL;
struct zschan *zc;
switch (sys_config.system_type) {
case SGI_IP20:
switch (zs_unit) {
case 0:
addr = (struct zsdevice *)
PHYS_TO_XKPHYS(0x1fb80d00, CCA_NC);
break;
case 1:
addr = (struct zsdevice *)
PHYS_TO_XKPHYS(0x1fb80d10, CCA_NC);
break;
}
break;
case SGI_IP22:
case SGI_IP26:
case SGI_IP28:
if (zs_unit == 0)
addr = (struct zsdevice *)
PHYS_TO_XKPHYS(0x1fbd9830, CCA_NC);
break;
}
if (addr == NULL)
panic("zs_get_chan_addr: bad zs_unit %d\n", zs_unit);
/*
* We need to swap serial ports to match reality on
* non-keyboard channels.
*/
if (sys_config.system_type != SGI_IP20) {
if (channel == 0)
zc = &addr->zs_chan_b;
else
zc = &addr->zs_chan_a;
} else {
if (zs_unit == 0) {
if (channel == 0)
zc = &addr->zs_chan_a;
else
zc = &addr->zs_chan_b;
} else {
if (channel == 0)
zc = &addr->zs_chan_b;
else
zc = &addr->zs_chan_a;
}
}
#if 0
if (dumped_addr == 0) {
dumped_addr++;
printf("zs unit %d, channel %d had address %p\n",
zs_unit, channel, zc);
}
#endif
return (zc);
}
int
zs_getc(void *arg)
{
register volatile struct zschan *zc = arg;
register int s, c, rr0;
s = splzs();
/* Wait for a character to arrive. */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_RX_READY) == 0);
c = zc->zc_data;
ZS_DELAY();
splx(s);
return (c);
}
/*
* Polled output char.
*/
void
zs_putc(void *arg, int c)
{
register volatile struct zschan *zc = arg;
register int s, rr0;
s = splzs();
/* Wait for transmitter to become ready. */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_TX_READY) == 0);
zc->zc_data = c;
/* inline bus_space_barrier() */
__asm__ __volatile__ ("sync" ::: "memory");
if (sys_config.system_type != SGI_IP20) {
(void)*(volatile uint32_t *)PHYS_TO_XKPHYS(HPC_BASE_ADDRESS_0 +
HPC3_INTRSTAT_40, CCA_NC);
}
ZS_DELAY();
splx(s);
}
/***************************************************************/
static int cons_port;
void
zscnprobe(struct consdev *cp)
{
cp->cn_dev = makedev(zs_major, 0);
cp->cn_pri = CN_DEAD;
switch (sys_config.system_type) {
case SGI_IP20:
case SGI_IP22:
case SGI_IP26:
case SGI_IP28:
if (strlen(bios_console) == 9 &&
strncmp(bios_console, "serial", 6) == 0)
cp->cn_pri = CN_FORCED;
else
cp->cn_pri = CN_MIDPRI;
break;
}
}
void
zscninit(struct consdev *cn)
{
if (strlen(bios_console) == 9 &&
strncmp(bios_console, "serial", 6) != 0)
cons_port = bios_console[7] - '0';
/* Mark this unit as the console */
zs_consunit = 0;
/* SGI hardware wires serial port 1 to channel B, port 2 to A */
if (cons_port == 0)
zs_conschan = 1;
else
zs_conschan = 0;
}
int
zscngetc(dev_t dev)
{
struct zschan *zs;
switch (sys_config.system_type) {
case SGI_IP20:
zs = zs_get_chan_addr(1, cons_port);
break;
case SGI_IP22:
case SGI_IP26:
case SGI_IP28:
default:
zs = zs_get_chan_addr(0, cons_port);
break;
}
return zs_getc(zs);
}
void
zscnputc(dev_t dev, int c)
{
struct zschan *zs;
switch (sys_config.system_type) {
case SGI_IP20:
zs = zs_get_chan_addr(1, cons_port);
break;
case SGI_IP22:
case SGI_IP26:
case SGI_IP28:
default:
zs = zs_get_chan_addr(0, cons_port);
break;
}
zs_putc(zs, c);
}
void
zscnpollc(dev_t dev, int on)
{
}
|