1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
/* $OpenBSD: tod.c,v 1.1 2005/04/20 01:00:16 miod Exp $ */
/*
* Copyright (c) 2005, Miodrag Vallat
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* TODclock driver. We only use it to know the current time during boot,
* as we do not get interrupts from it.
*
* The clock in the IDT machines is the Oki MSM62X42BRS.
*
* A datasheet for this chip is available from:
* http://www.datasheetarchive.com/datasheet/pdf/19/196099.html
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <solbourne/dev/todreg.h>
#include <dev/clock_subr.h>
#include <machine/idt.h>
#include <machine/kap.h>
int todmatch(struct device *, void *, void *);
void todattach(struct device *, struct device *, void *);
struct cfattach tod_ca = {
sizeof(struct device), todmatch, todattach
};
struct cfdriver tod_cd = {
NULL, "tod", DV_DULL
};
volatile u_char *tod_regs;
u_char msm_read(u_int);
void msm_write(u_int, u_char);
int
todmatch(parent, vcf, aux)
struct device *parent;
void *vcf, *aux;
{
struct confargs *ca = aux;
return (strcmp(tod_cd.cd_name, ca->ca_ra.ra_name) == 0);
}
void
todattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
printf(": OKI MSM62X42BRS\n");
/* the register are already mapped 1:1 by pmap_bootstrap() */
tod_regs = (volatile u_char *)TODCLOCK_BASE;
}
/*
* Read or write a register of the Oki clock.
*
* The clock registers are not directly accessible (while control registers
* are). We need to freeze them first. To do so, we set the hold bit in
* D, and if the busy bit clears, we are free to proceed. If the busy bit
* is still set, we need to clear the hold bit and retry.
*/
u_char
msm_read(u_int regno)
{
u_char d, r;
/* no need to do the hold dance for control registers */
if (regno >= MSM_D)
return (tod_regs[regno] & 0x0f);
d = tod_regs[MSM_D] & 0x0f & ~MSM_D_HOLD;
for (;;) {
tod_regs[MSM_D] = d | MSM_D_HOLD;
if (!ISSET(tod_regs[MSM_D], MSM_D_BUSY))
break;
tod_regs[MSM_D] = d;
}
r = tod_regs[regno] & 0x0f;
tod_regs[MSM_D] = d;
return (r);
}
void
msm_write(u_int regno, u_char value)
{
u_char d;
/* no need to do the hold dance for control registers */
if (regno >= MSM_D) {
tod_regs[regno] = value;
return;
}
d = tod_regs[MSM_D] & 0x0f & ~MSM_D_HOLD;
for (;;) {
tod_regs[MSM_D] = d | MSM_D_HOLD;
if (!ISSET(tod_regs[MSM_D], MSM_D_BUSY))
break;
tod_regs[MSM_D] = d;
}
tod_regs[regno] = value;
tod_regs[MSM_D] = d;
}
void
inittodr(base)
time_t base;
{
struct clock_ymdhms dt;
dt.dt_sec = msm_read(MSM_SEC_UNITS) + 10 * msm_read(MSM_SEC_TENS);
dt.dt_min = msm_read(MSM_MIN_UNITS) + 10 * msm_read(MSM_MIN_TENS);
#if 0
dt.dt_hour = msm_read(MSM_HOUR_UNITS) + 10 * msm_read(MSM_HOUR_TENS);
#else
dt.dt_hour = msm_read(MSM_HOUR_TENS);
if (dt.dt_hour & MSM_HOUR_PM)
dt.dt_hour = 12 + 10 * (dt.dt_hour & ~MSM_HOUR_TENS);
else
dt.dt_hour *= 10;
dt.dt_hour += msm_read(MSM_HOUR_UNITS);
#endif
dt.dt_day = msm_read(MSM_DAY_UNITS) + 10 * msm_read(MSM_DAY_TENS);
dt.dt_mon = msm_read(MSM_MONTH_UNITS) + 10 * msm_read(MSM_MONTH_TENS);
dt.dt_year = msm_read(MSM_YEAR_UNITS) + 10 * msm_read(MSM_YEAR_TENS);
dt.dt_year += CLOCK_YEAR_BASE;
/* dt_wday left uninitialized */
time.tv_sec = clock_ymdhms_to_secs(&dt);
if (time.tv_sec == 0) {
/*
* Believe the time in the file system for lack of
* anything better, resetting the clock.
*/
if (base < 35 * SECYR) {/* this port did not exist until 2005 */
/*
* If base is 0, assume filesystem time is just unknown
* in stead of preposterous. Don't bark.
*/
if (base != 0)
printf("WARNING: preposterous time in file system\n");
/* not going to use it anyway, if the chip is readable */
time.tv_sec = 35 * SECYR + 90 * SECDAY + SECDAY / 2;
} else {
printf("WARNING: bad date in battery clock");
time.tv_sec = base;
resettodr();
}
} else {
int deltat = time.tv_sec - base;
if (deltat < 0)
deltat = -deltat;
if (deltat < 2 * SECDAY)
return;
#ifndef SMALL_KERNEL
printf("WARNING: clock %s %d days",
time.tv_sec < base ? "lost" : "gained", deltat / SECDAY);
#endif
}
printf(" -- CHECK AND RESET THE DATE!\n");
}
void
resettodr()
{
struct clock_ymdhms dt;
if (time.tv_sec == 0 || tod_regs == NULL)
return;
clock_secs_to_ymdhms(time.tv_sec, &dt);
/*
* Since we don't know if the clock is in AM/PM or 24 hour mode,
* we need to reset it and force one mode. Being an evil european
* person, I'll force 24 hour mode, of course.
*/
msm_write(MSM_F, MSM_F_RESET | MSM_F_24HR);
msm_write(MSM_F, MSM_F_STOP); /* leave reset mode, but stop clock */
dt.dt_year -= CLOCK_YEAR_BASE;
msm_write(MSM_YEAR_TENS, dt.dt_year / 10);
msm_write(MSM_YEAR_UNITS, dt.dt_year % 10);
msm_write(MSM_MONTH_TENS, dt.dt_mon / 10);
msm_write(MSM_MONTH_UNITS, dt.dt_mon % 10);
msm_write(MSM_DAY_TENS, dt.dt_day / 10);
msm_write(MSM_DAY_UNITS, dt.dt_day % 10);
msm_write(MSM_HOUR_TENS, dt.dt_hour / 10);
msm_write(MSM_HOUR_UNITS, dt.dt_hour % 10);
msm_write(MSM_MIN_TENS, dt.dt_min / 10);
msm_write(MSM_MIN_UNITS, dt.dt_min % 10);
msm_write(MSM_SEC_TENS, dt.dt_sec / 10);
msm_write(MSM_SEC_UNITS, dt.dt_sec % 10);
msm_write(MSM_F, 0); /* restart clock */
}
|