summaryrefslogtreecommitdiff
path: root/sys/crypto/curve25519.c
blob: 3e3aa1b9c4ad1921ef0635ef2c2cda5ac530edfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
/*
 * Copyright (C) 2018-2020 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 * Copyright (C) 2015-2016 The fiat-crypto Authors.
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * This contains two implementation: a machine-generated formally verified
 * implementation of Curve25519 ECDH from:
 * <https://github.com/mit-plv/fiat-crypto>. Though originally machine
 * generated, it has been tweaked to be suitable for use in the kernel.  It is
 * optimized for 32-bit machines and machines that cannot work efficiently with
 * 128-bit integer types.
 */

#include <sys/types.h>
#include <sys/systm.h>
#include <crypto/curve25519.h>

#define __always_inline __inline __attribute__((__always_inline__))
static const uint8_t null_point[CURVE25519_KEY_SIZE];
static const uint8_t base_point[CURVE25519_KEY_SIZE] = { 9 };

int curve25519_generate_public(uint8_t pub[CURVE25519_KEY_SIZE],
			       const uint8_t secret[CURVE25519_KEY_SIZE])
{
	if (timingsafe_bcmp(secret, null_point, CURVE25519_KEY_SIZE) == 0)
		return 0;
	return curve25519(pub, secret, base_point);
}

static __always_inline uint32_t get_unaligned_le32(const uint8_t *a)
{
	uint32_t l;
	__builtin_memcpy(&l, a, sizeof(l));
	return letoh32(l);
}

/* fe means field element. Here the field is \Z/(2^255-19). An element t,
 * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
 * t[3]+2^102 t[4]+...+2^230 t[9].
 * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc.
 * Multiplication and carrying produce fe from fe_loose.
 */
typedef struct fe { uint32_t v[10]; } fe;

/* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc
 * Addition and subtraction produce fe_loose from (fe, fe).
 */
typedef struct fe_loose { uint32_t v[10]; } fe_loose;

static __always_inline void fe_frombytes_impl(uint32_t h[10], const uint8_t *s)
{
	/* Ignores top bit of s. */
	uint32_t a0 = get_unaligned_le32(s);
	uint32_t a1 = get_unaligned_le32(s+4);
	uint32_t a2 = get_unaligned_le32(s+8);
	uint32_t a3 = get_unaligned_le32(s+12);
	uint32_t a4 = get_unaligned_le32(s+16);
	uint32_t a5 = get_unaligned_le32(s+20);
	uint32_t a6 = get_unaligned_le32(s+24);
	uint32_t a7 = get_unaligned_le32(s+28);
	h[0] = a0&((1<<26)-1);                    /* 26 used, 32-26 left.   26 */
	h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 =  6+19 = 25 */
	h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */
	h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) +  6 = 19+ 6 = 25 */
	h[4] = (a3>> 6);                          /* (32- 6)              = 26 */
	h[5] = a4&((1<<25)-1);                    /*                        25 */
	h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 =  7+19 = 26 */
	h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */
	h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) +  6 = 20+ 6 = 26 */
	h[9] = (a7>> 6)&((1<<25)-1); /*                                     25 */
}

static __always_inline void fe_frombytes(fe *h, const uint8_t *s)
{
	fe_frombytes_impl(h->v, s);
}

static __always_inline uint8_t /*bool*/
addcarryx_u25(uint8_t /*bool*/ c, uint32_t a, uint32_t b, uint32_t *low)
{
	/* This function extracts 25 bits of result and 1 bit of carry
	 * (26 total), so a 32-bit intermediate is sufficient.
	 */
	uint32_t x = a + b + c;
	*low = x & ((1 << 25) - 1);
	return (x >> 25) & 1;
}

static __always_inline uint8_t /*bool*/
addcarryx_u26(uint8_t /*bool*/ c, uint32_t a, uint32_t b, uint32_t *low)
{
	/* This function extracts 26 bits of result and 1 bit of carry
	 * (27 total), so a 32-bit intermediate is sufficient.
	 */
	uint32_t x = a + b + c;
	*low = x & ((1 << 26) - 1);
	return (x >> 26) & 1;
}

static __always_inline uint8_t /*bool*/
subborrow_u25(uint8_t /*bool*/ c, uint32_t a, uint32_t b, uint32_t *low)
{
	/* This function extracts 25 bits of result and 1 bit of borrow
	 * (26 total), so a 32-bit intermediate is sufficient.
	 */
	uint32_t x = a - b - c;
	*low = x & ((1 << 25) - 1);
	return x >> 31;
}

static __always_inline uint8_t /*bool*/
subborrow_u26(uint8_t /*bool*/ c, uint32_t a, uint32_t b, uint32_t *low)
{
	/* This function extracts 26 bits of result and 1 bit of borrow
	 *(27 total), so a 32-bit intermediate is sufficient.
	 */
	uint32_t x = a - b - c;
	*low = x & ((1 << 26) - 1);
	return x >> 31;
}

static __always_inline uint32_t cmovznz32(uint32_t t, uint32_t z, uint32_t nz)
{
	t = -!!t; /* all set if nonzero, 0 if 0 */
	return (t&nz) | ((~t)&z);
}

static __always_inline void fe_freeze(uint32_t out[10], const uint32_t in1[10])
{
	const uint32_t x17 = in1[9];
	const uint32_t x18 = in1[8];
	const uint32_t x16 = in1[7];
	const uint32_t x14 = in1[6];
	const uint32_t x12 = in1[5];
	const uint32_t x10 = in1[4];
	const uint32_t x8 = in1[3];
	const uint32_t x6 = in1[2];
	const uint32_t x4 = in1[1];
	const uint32_t x2 = in1[0];
	uint32_t x20; uint8_t/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20);
	uint32_t x23; uint8_t/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23);
	uint32_t x26; uint8_t/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26);
	uint32_t x29; uint8_t/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29);
	uint32_t x32; uint8_t/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32);
	uint32_t x35; uint8_t/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35);
	uint32_t x38; uint8_t/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38);
	uint32_t x41; uint8_t/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41);
	uint32_t x44; uint8_t/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44);
	uint32_t x47; uint8_t/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47);
	uint32_t x49 = cmovznz32(x48, 0x0, 0xffffffff);
	uint32_t x50 = (x49 & 0x3ffffed);
	uint32_t x52; uint8_t/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52);
	uint32_t x54 = (x49 & 0x1ffffff);
	uint32_t x56; uint8_t/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56);
	uint32_t x58 = (x49 & 0x3ffffff);
	uint32_t x60; uint8_t/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60);
	uint32_t x62 = (x49 & 0x1ffffff);
	uint32_t x64; uint8_t/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64);
	uint32_t x66 = (x49 & 0x3ffffff);
	uint32_t x68; uint8_t/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68);
	uint32_t x70 = (x49 & 0x1ffffff);
	uint32_t x72; uint8_t/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72);
	uint32_t x74 = (x49 & 0x3ffffff);
	uint32_t x76; uint8_t/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76);
	uint32_t x78 = (x49 & 0x1ffffff);
	uint32_t x80; uint8_t/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80);
	uint32_t x82 = (x49 & 0x3ffffff);
	uint32_t x84; uint8_t/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84);
	uint32_t x86 = (x49 & 0x1ffffff);
	uint32_t x88; addcarryx_u25(x85, x47, x86, &x88);
	out[0] = x52;
	out[1] = x56;
	out[2] = x60;
	out[3] = x64;
	out[4] = x68;
	out[5] = x72;
	out[6] = x76;
	out[7] = x80;
	out[8] = x84;
	out[9] = x88;
}

static __always_inline void fe_tobytes(uint8_t s[32], const fe *f)
{
	uint32_t h[10];
	fe_freeze(h, f->v);
	s[0] = h[0] >> 0;
	s[1] = h[0] >> 8;
	s[2] = h[0] >> 16;
	s[3] = (h[0] >> 24) | (h[1] << 2);
	s[4] = h[1] >> 6;
	s[5] = h[1] >> 14;
	s[6] = (h[1] >> 22) | (h[2] << 3);
	s[7] = h[2] >> 5;
	s[8] = h[2] >> 13;
	s[9] = (h[2] >> 21) | (h[3] << 5);
	s[10] = h[3] >> 3;
	s[11] = h[3] >> 11;
	s[12] = (h[3] >> 19) | (h[4] << 6);
	s[13] = h[4] >> 2;
	s[14] = h[4] >> 10;
	s[15] = h[4] >> 18;
	s[16] = h[5] >> 0;
	s[17] = h[5] >> 8;
	s[18] = h[5] >> 16;
	s[19] = (h[5] >> 24) | (h[6] << 1);
	s[20] = h[6] >> 7;
	s[21] = h[6] >> 15;
	s[22] = (h[6] >> 23) | (h[7] << 3);
	s[23] = h[7] >> 5;
	s[24] = h[7] >> 13;
	s[25] = (h[7] >> 21) | (h[8] << 4);
	s[26] = h[8] >> 4;
	s[27] = h[8] >> 12;
	s[28] = (h[8] >> 20) | (h[9] << 6);
	s[29] = h[9] >> 2;
	s[30] = h[9] >> 10;
	s[31] = h[9] >> 18;
}

/* h = f */
static __always_inline void fe_copy(fe *h, const fe *f)
{
	memmove(h, f, sizeof(uint32_t) * 10);
}

static __always_inline void fe_copy_lt(fe_loose *h, const fe *f)
{
	memmove(h, f, sizeof(uint32_t) * 10);
}

/* h = 0 */
static __always_inline void fe_0(fe *h)
{
	memset(h, 0, sizeof(uint32_t) * 10);
}

/* h = 1 */
static __always_inline void fe_1(fe *h)
{
	memset(h, 0, sizeof(uint32_t) * 10);
	h->v[0] = 1;
}

static void fe_add_impl(uint32_t out[10], const uint32_t in1[10], const uint32_t in2[10])
{
	const uint32_t x20 = in1[9];
	const uint32_t x21 = in1[8];
	const uint32_t x19 = in1[7];
	const uint32_t x17 = in1[6];
	const uint32_t x15 = in1[5];
	const uint32_t x13 = in1[4];
	const uint32_t x11 = in1[3];
	const uint32_t x9 = in1[2];
	const uint32_t x7 = in1[1];
	const uint32_t x5 = in1[0];
	const uint32_t x38 = in2[9];
	const uint32_t x39 = in2[8];
	const uint32_t x37 = in2[7];
	const uint32_t x35 = in2[6];
	const uint32_t x33 = in2[5];
	const uint32_t x31 = in2[4];
	const uint32_t x29 = in2[3];
	const uint32_t x27 = in2[2];
	const uint32_t x25 = in2[1];
	const uint32_t x23 = in2[0];
	out[0] = (x5 + x23);
	out[1] = (x7 + x25);
	out[2] = (x9 + x27);
	out[3] = (x11 + x29);
	out[4] = (x13 + x31);
	out[5] = (x15 + x33);
	out[6] = (x17 + x35);
	out[7] = (x19 + x37);
	out[8] = (x21 + x39);
	out[9] = (x20 + x38);
}

/* h = f + g
 * Can overlap h with f or g.
 */
static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g)
{
	fe_add_impl(h->v, f->v, g->v);
}

static void fe_sub_impl(uint32_t out[10], const uint32_t in1[10], const uint32_t in2[10])
{
	const uint32_t x20 = in1[9];
	const uint32_t x21 = in1[8];
	const uint32_t x19 = in1[7];
	const uint32_t x17 = in1[6];
	const uint32_t x15 = in1[5];
	const uint32_t x13 = in1[4];
	const uint32_t x11 = in1[3];
	const uint32_t x9 = in1[2];
	const uint32_t x7 = in1[1];
	const uint32_t x5 = in1[0];
	const uint32_t x38 = in2[9];
	const uint32_t x39 = in2[8];
	const uint32_t x37 = in2[7];
	const uint32_t x35 = in2[6];
	const uint32_t x33 = in2[5];
	const uint32_t x31 = in2[4];
	const uint32_t x29 = in2[3];
	const uint32_t x27 = in2[2];
	const uint32_t x25 = in2[1];
	const uint32_t x23 = in2[0];
	out[0] = ((0x7ffffda + x5) - x23);
	out[1] = ((0x3fffffe + x7) - x25);
	out[2] = ((0x7fffffe + x9) - x27);
	out[3] = ((0x3fffffe + x11) - x29);
	out[4] = ((0x7fffffe + x13) - x31);
	out[5] = ((0x3fffffe + x15) - x33);
	out[6] = ((0x7fffffe + x17) - x35);
	out[7] = ((0x3fffffe + x19) - x37);
	out[8] = ((0x7fffffe + x21) - x39);
	out[9] = ((0x3fffffe + x20) - x38);
}

/* h = f - g
 * Can overlap h with f or g.
 */
static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g)
{
	fe_sub_impl(h->v, f->v, g->v);
}

static void fe_mul_impl(uint32_t out[10], const uint32_t in1[10], const uint32_t in2[10])
{
	const uint32_t x20 = in1[9];
	const uint32_t x21 = in1[8];
	const uint32_t x19 = in1[7];
	const uint32_t x17 = in1[6];
	const uint32_t x15 = in1[5];
	const uint32_t x13 = in1[4];
	const uint32_t x11 = in1[3];
	const uint32_t x9 = in1[2];
	const uint32_t x7 = in1[1];
	const uint32_t x5 = in1[0];
	const uint32_t x38 = in2[9];
	const uint32_t x39 = in2[8];
	const uint32_t x37 = in2[7];
	const uint32_t x35 = in2[6];
	const uint32_t x33 = in2[5];
	const uint32_t x31 = in2[4];
	const uint32_t x29 = in2[3];
	const uint32_t x27 = in2[2];
	const uint32_t x25 = in2[1];
	const uint32_t x23 = in2[0];
	uint64_t x40 = ((uint64_t)x23 * x5);
	uint64_t x41 = (((uint64_t)x23 * x7) + ((uint64_t)x25 * x5));
	uint64_t x42 = ((((uint64_t)(0x2 * x25) * x7) + ((uint64_t)x23 * x9)) + ((uint64_t)x27 * x5));
	uint64_t x43 = (((((uint64_t)x25 * x9) + ((uint64_t)x27 * x7)) + ((uint64_t)x23 * x11)) + ((uint64_t)x29 * x5));
	uint64_t x44 = (((((uint64_t)x27 * x9) + (0x2 * (((uint64_t)x25 * x11) + ((uint64_t)x29 * x7)))) + ((uint64_t)x23 * x13)) + ((uint64_t)x31 * x5));
	uint64_t x45 = (((((((uint64_t)x27 * x11) + ((uint64_t)x29 * x9)) + ((uint64_t)x25 * x13)) + ((uint64_t)x31 * x7)) + ((uint64_t)x23 * x15)) + ((uint64_t)x33 * x5));
	uint64_t x46 = (((((0x2 * ((((uint64_t)x29 * x11) + ((uint64_t)x25 * x15)) + ((uint64_t)x33 * x7))) + ((uint64_t)x27 * x13)) + ((uint64_t)x31 * x9)) + ((uint64_t)x23 * x17)) + ((uint64_t)x35 * x5));
	uint64_t x47 = (((((((((uint64_t)x29 * x13) + ((uint64_t)x31 * x11)) + ((uint64_t)x27 * x15)) + ((uint64_t)x33 * x9)) + ((uint64_t)x25 * x17)) + ((uint64_t)x35 * x7)) + ((uint64_t)x23 * x19)) + ((uint64_t)x37 * x5));
	uint64_t x48 = (((((((uint64_t)x31 * x13) + (0x2 * (((((uint64_t)x29 * x15) + ((uint64_t)x33 * x11)) + ((uint64_t)x25 * x19)) + ((uint64_t)x37 * x7)))) + ((uint64_t)x27 * x17)) + ((uint64_t)x35 * x9)) + ((uint64_t)x23 * x21)) + ((uint64_t)x39 * x5));
	uint64_t x49 = (((((((((((uint64_t)x31 * x15) + ((uint64_t)x33 * x13)) + ((uint64_t)x29 * x17)) + ((uint64_t)x35 * x11)) + ((uint64_t)x27 * x19)) + ((uint64_t)x37 * x9)) + ((uint64_t)x25 * x21)) + ((uint64_t)x39 * x7)) + ((uint64_t)x23 * x20)) + ((uint64_t)x38 * x5));
	uint64_t x50 = (((((0x2 * ((((((uint64_t)x33 * x15) + ((uint64_t)x29 * x19)) + ((uint64_t)x37 * x11)) + ((uint64_t)x25 * x20)) + ((uint64_t)x38 * x7))) + ((uint64_t)x31 * x17)) + ((uint64_t)x35 * x13)) + ((uint64_t)x27 * x21)) + ((uint64_t)x39 * x9));
	uint64_t x51 = (((((((((uint64_t)x33 * x17) + ((uint64_t)x35 * x15)) + ((uint64_t)x31 * x19)) + ((uint64_t)x37 * x13)) + ((uint64_t)x29 * x21)) + ((uint64_t)x39 * x11)) + ((uint64_t)x27 * x20)) + ((uint64_t)x38 * x9));
	uint64_t x52 = (((((uint64_t)x35 * x17) + (0x2 * (((((uint64_t)x33 * x19) + ((uint64_t)x37 * x15)) + ((uint64_t)x29 * x20)) + ((uint64_t)x38 * x11)))) + ((uint64_t)x31 * x21)) + ((uint64_t)x39 * x13));
	uint64_t x53 = (((((((uint64_t)x35 * x19) + ((uint64_t)x37 * x17)) + ((uint64_t)x33 * x21)) + ((uint64_t)x39 * x15)) + ((uint64_t)x31 * x20)) + ((uint64_t)x38 * x13));
	uint64_t x54 = (((0x2 * ((((uint64_t)x37 * x19) + ((uint64_t)x33 * x20)) + ((uint64_t)x38 * x15))) + ((uint64_t)x35 * x21)) + ((uint64_t)x39 * x17));
	uint64_t x55 = (((((uint64_t)x37 * x21) + ((uint64_t)x39 * x19)) + ((uint64_t)x35 * x20)) + ((uint64_t)x38 * x17));
	uint64_t x56 = (((uint64_t)x39 * x21) + (0x2 * (((uint64_t)x37 * x20) + ((uint64_t)x38 * x19))));
	uint64_t x57 = (((uint64_t)x39 * x20) + ((uint64_t)x38 * x21));
	uint64_t x58 = ((uint64_t)(0x2 * x38) * x20);
	uint64_t x59 = (x48 + (x58 << 0x4));
	uint64_t x60 = (x59 + (x58 << 0x1));
	uint64_t x61 = (x60 + x58);
	uint64_t x62 = (x47 + (x57 << 0x4));
	uint64_t x63 = (x62 + (x57 << 0x1));
	uint64_t x64 = (x63 + x57);
	uint64_t x65 = (x46 + (x56 << 0x4));
	uint64_t x66 = (x65 + (x56 << 0x1));
	uint64_t x67 = (x66 + x56);
	uint64_t x68 = (x45 + (x55 << 0x4));
	uint64_t x69 = (x68 + (x55 << 0x1));
	uint64_t x70 = (x69 + x55);
	uint64_t x71 = (x44 + (x54 << 0x4));
	uint64_t x72 = (x71 + (x54 << 0x1));
	uint64_t x73 = (x72 + x54);
	uint64_t x74 = (x43 + (x53 << 0x4));
	uint64_t x75 = (x74 + (x53 << 0x1));
	uint64_t x76 = (x75 + x53);
	uint64_t x77 = (x42 + (x52 << 0x4));
	uint64_t x78 = (x77 + (x52 << 0x1));
	uint64_t x79 = (x78 + x52);
	uint64_t x80 = (x41 + (x51 << 0x4));
	uint64_t x81 = (x80 + (x51 << 0x1));
	uint64_t x82 = (x81 + x51);
	uint64_t x83 = (x40 + (x50 << 0x4));
	uint64_t x84 = (x83 + (x50 << 0x1));
	uint64_t x85 = (x84 + x50);
	uint64_t x86 = (x85 >> 0x1a);
	uint32_t x87 = ((uint32_t)x85 & 0x3ffffff);
	uint64_t x88 = (x86 + x82);
	uint64_t x89 = (x88 >> 0x19);
	uint32_t x90 = ((uint32_t)x88 & 0x1ffffff);
	uint64_t x91 = (x89 + x79);
	uint64_t x92 = (x91 >> 0x1a);
	uint32_t x93 = ((uint32_t)x91 & 0x3ffffff);
	uint64_t x94 = (x92 + x76);
	uint64_t x95 = (x94 >> 0x19);
	uint32_t x96 = ((uint32_t)x94 & 0x1ffffff);
	uint64_t x97 = (x95 + x73);
	uint64_t x98 = (x97 >> 0x1a);
	uint32_t x99 = ((uint32_t)x97 & 0x3ffffff);
	uint64_t x100 = (x98 + x70);
	uint64_t x101 = (x100 >> 0x19);
	uint32_t x102 = ((uint32_t)x100 & 0x1ffffff);
	uint64_t x103 = (x101 + x67);
	uint64_t x104 = (x103 >> 0x1a);
	uint32_t x105 = ((uint32_t)x103 & 0x3ffffff);
	uint64_t x106 = (x104 + x64);
	uint64_t x107 = (x106 >> 0x19);
	uint32_t x108 = ((uint32_t)x106 & 0x1ffffff);
	uint64_t x109 = (x107 + x61);
	uint64_t x110 = (x109 >> 0x1a);
	uint32_t x111 = ((uint32_t)x109 & 0x3ffffff);
	uint64_t x112 = (x110 + x49);
	uint64_t x113 = (x112 >> 0x19);
	uint32_t x114 = ((uint32_t)x112 & 0x1ffffff);
	uint64_t x115 = (x87 + (0x13 * x113));
	uint32_t x116 = (uint32_t) (x115 >> 0x1a);
	uint32_t x117 = ((uint32_t)x115 & 0x3ffffff);
	uint32_t x118 = (x116 + x90);
	uint32_t x119 = (x118 >> 0x19);
	uint32_t x120 = (x118 & 0x1ffffff);
	out[0] = x117;
	out[1] = x120;
	out[2] = (x119 + x93);
	out[3] = x96;
	out[4] = x99;
	out[5] = x102;
	out[6] = x105;
	out[7] = x108;
	out[8] = x111;
	out[9] = x114;
}

static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g)
{
	fe_mul_impl(h->v, f->v, g->v);
}

static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g)
{
	fe_mul_impl(h->v, f->v, g->v);
}

static __always_inline void
fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g)
{
	fe_mul_impl(h->v, f->v, g->v);
}

static void fe_sqr_impl(uint32_t out[10], const uint32_t in1[10])
{
	const uint32_t x17 = in1[9];
	const uint32_t x18 = in1[8];
	const uint32_t x16 = in1[7];
	const uint32_t x14 = in1[6];
	const uint32_t x12 = in1[5];
	const uint32_t x10 = in1[4];
	const uint32_t x8 = in1[3];
	const uint32_t x6 = in1[2];
	const uint32_t x4 = in1[1];
	const uint32_t x2 = in1[0];
	uint64_t x19 = ((uint64_t)x2 * x2);
	uint64_t x20 = ((uint64_t)(0x2 * x2) * x4);
	uint64_t x21 = (0x2 * (((uint64_t)x4 * x4) + ((uint64_t)x2 * x6)));
	uint64_t x22 = (0x2 * (((uint64_t)x4 * x6) + ((uint64_t)x2 * x8)));
	uint64_t x23 = ((((uint64_t)x6 * x6) + ((uint64_t)(0x4 * x4) * x8)) + ((uint64_t)(0x2 * x2) * x10));
	uint64_t x24 = (0x2 * ((((uint64_t)x6 * x8) + ((uint64_t)x4 * x10)) + ((uint64_t)x2 * x12)));
	uint64_t x25 = (0x2 * (((((uint64_t)x8 * x8) + ((uint64_t)x6 * x10)) + ((uint64_t)x2 * x14)) + ((uint64_t)(0x2 * x4) * x12)));
	uint64_t x26 = (0x2 * (((((uint64_t)x8 * x10) + ((uint64_t)x6 * x12)) + ((uint64_t)x4 * x14)) + ((uint64_t)x2 * x16)));
	uint64_t x27 = (((uint64_t)x10 * x10) + (0x2 * ((((uint64_t)x6 * x14) + ((uint64_t)x2 * x18)) + (0x2 * (((uint64_t)x4 * x16) + ((uint64_t)x8 * x12))))));
	uint64_t x28 = (0x2 * ((((((uint64_t)x10 * x12) + ((uint64_t)x8 * x14)) + ((uint64_t)x6 * x16)) + ((uint64_t)x4 * x18)) + ((uint64_t)x2 * x17)));
	uint64_t x29 = (0x2 * (((((uint64_t)x12 * x12) + ((uint64_t)x10 * x14)) + ((uint64_t)x6 * x18)) + (0x2 * (((uint64_t)x8 * x16) + ((uint64_t)x4 * x17)))));
	uint64_t x30 = (0x2 * (((((uint64_t)x12 * x14) + ((uint64_t)x10 * x16)) + ((uint64_t)x8 * x18)) + ((uint64_t)x6 * x17)));
	uint64_t x31 = (((uint64_t)x14 * x14) + (0x2 * (((uint64_t)x10 * x18) + (0x2 * (((uint64_t)x12 * x16) + ((uint64_t)x8 * x17))))));
	uint64_t x32 = (0x2 * ((((uint64_t)x14 * x16) + ((uint64_t)x12 * x18)) + ((uint64_t)x10 * x17)));
	uint64_t x33 = (0x2 * ((((uint64_t)x16 * x16) + ((uint64_t)x14 * x18)) + ((uint64_t)(0x2 * x12) * x17)));
	uint64_t x34 = (0x2 * (((uint64_t)x16 * x18) + ((uint64_t)x14 * x17)));
	uint64_t x35 = (((uint64_t)x18 * x18) + ((uint64_t)(0x4 * x16) * x17));
	uint64_t x36 = ((uint64_t)(0x2 * x18) * x17);
	uint64_t x37 = ((uint64_t)(0x2 * x17) * x17);
	uint64_t x38 = (x27 + (x37 << 0x4));
	uint64_t x39 = (x38 + (x37 << 0x1));
	uint64_t x40 = (x39 + x37);
	uint64_t x41 = (x26 + (x36 << 0x4));
	uint64_t x42 = (x41 + (x36 << 0x1));
	uint64_t x43 = (x42 + x36);
	uint64_t x44 = (x25 + (x35 << 0x4));
	uint64_t x45 = (x44 + (x35 << 0x1));
	uint64_t x46 = (x45 + x35);
	uint64_t x47 = (x24 + (x34 << 0x4));
	uint64_t x48 = (x47 + (x34 << 0x1));
	uint64_t x49 = (x48 + x34);
	uint64_t x50 = (x23 + (x33 << 0x4));
	uint64_t x51 = (x50 + (x33 << 0x1));
	uint64_t x52 = (x51 + x33);
	uint64_t x53 = (x22 + (x32 << 0x4));
	uint64_t x54 = (x53 + (x32 << 0x1));
	uint64_t x55 = (x54 + x32);
	uint64_t x56 = (x21 + (x31 << 0x4));
	uint64_t x57 = (x56 + (x31 << 0x1));
	uint64_t x58 = (x57 + x31);
	uint64_t x59 = (x20 + (x30 << 0x4));
	uint64_t x60 = (x59 + (x30 << 0x1));
	uint64_t x61 = (x60 + x30);
	uint64_t x62 = (x19 + (x29 << 0x4));
	uint64_t x63 = (x62 + (x29 << 0x1));
	uint64_t x64 = (x63 + x29);
	uint64_t x65 = (x64 >> 0x1a);
	uint32_t x66 = ((uint32_t)x64 & 0x3ffffff);
	uint64_t x67 = (x65 + x61);
	uint64_t x68 = (x67 >> 0x19);
	uint32_t x69 = ((uint32_t)x67 & 0x1ffffff);
	uint64_t x70 = (x68 + x58);
	uint64_t x71 = (x70 >> 0x1a);
	uint32_t x72 = ((uint32_t)x70 & 0x3ffffff);
	uint64_t x73 = (x71 + x55);
	uint64_t x74 = (x73 >> 0x19);
	uint32_t x75 = ((uint32_t)x73 & 0x1ffffff);
	uint64_t x76 = (x74 + x52);
	uint64_t x77 = (x76 >> 0x1a);
	uint32_t x78 = ((uint32_t)x76 & 0x3ffffff);
	uint64_t x79 = (x77 + x49);
	uint64_t x80 = (x79 >> 0x19);
	uint32_t x81 = ((uint32_t)x79 & 0x1ffffff);
	uint64_t x82 = (x80 + x46);
	uint64_t x83 = (x82 >> 0x1a);
	uint32_t x84 = ((uint32_t)x82 & 0x3ffffff);
	uint64_t x85 = (x83 + x43);
	uint64_t x86 = (x85 >> 0x19);
	uint32_t x87 = ((uint32_t)x85 & 0x1ffffff);
	uint64_t x88 = (x86 + x40);
	uint64_t x89 = (x88 >> 0x1a);
	uint32_t x90 = ((uint32_t)x88 & 0x3ffffff);
	uint64_t x91 = (x89 + x28);
	uint64_t x92 = (x91 >> 0x19);
	uint32_t x93 = ((uint32_t)x91 & 0x1ffffff);
	uint64_t x94 = (x66 + (0x13 * x92));
	uint32_t x95 = (uint32_t) (x94 >> 0x1a);
	uint32_t x96 = ((uint32_t)x94 & 0x3ffffff);
	uint32_t x97 = (x95 + x69);
	uint32_t x98 = (x97 >> 0x19);
	uint32_t x99 = (x97 & 0x1ffffff);
	out[0] = x96;
	out[1] = x99;
	out[2] = (x98 + x72);
	out[3] = x75;
	out[4] = x78;
	out[5] = x81;
	out[6] = x84;
	out[7] = x87;
	out[8] = x90;
	out[9] = x93;
}

static __always_inline void fe_sq_tl(fe *h, const fe_loose *f)
{
	fe_sqr_impl(h->v, f->v);
}

static __always_inline void fe_sq_tt(fe *h, const fe *f)
{
	fe_sqr_impl(h->v, f->v);
}

static __always_inline void fe_loose_invert(fe *out, const fe_loose *z)
{
	fe t0;
	fe t1;
	fe t2;
	fe t3;
	int i;

	fe_sq_tl(&t0, z);
	fe_sq_tt(&t1, &t0);
	for (i = 1; i < 2; ++i)
		fe_sq_tt(&t1, &t1);
	fe_mul_tlt(&t1, z, &t1);
	fe_mul_ttt(&t0, &t0, &t1);
	fe_sq_tt(&t2, &t0);
	fe_mul_ttt(&t1, &t1, &t2);
	fe_sq_tt(&t2, &t1);
	for (i = 1; i < 5; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t1, &t2, &t1);
	fe_sq_tt(&t2, &t1);
	for (i = 1; i < 10; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t2, &t2, &t1);
	fe_sq_tt(&t3, &t2);
	for (i = 1; i < 20; ++i)
		fe_sq_tt(&t3, &t3);
	fe_mul_ttt(&t2, &t3, &t2);
	fe_sq_tt(&t2, &t2);
	for (i = 1; i < 10; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t1, &t2, &t1);
	fe_sq_tt(&t2, &t1);
	for (i = 1; i < 50; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t2, &t2, &t1);
	fe_sq_tt(&t3, &t2);
	for (i = 1; i < 100; ++i)
		fe_sq_tt(&t3, &t3);
	fe_mul_ttt(&t2, &t3, &t2);
	fe_sq_tt(&t2, &t2);
	for (i = 1; i < 50; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t1, &t2, &t1);
	fe_sq_tt(&t1, &t1);
	for (i = 1; i < 5; ++i)
		fe_sq_tt(&t1, &t1);
	fe_mul_ttt(out, &t1, &t0);
}

static __always_inline void fe_invert(fe *out, const fe *z)
{
	fe_loose l;
	fe_copy_lt(&l, z);
	fe_loose_invert(out, &l);
}

/* Replace (f,g) with (g,f) if b == 1;
 * replace (f,g) with (f,g) if b == 0.
 *
 * Preconditions: b in {0,1}
 */
static __always_inline void fe_cswap(fe *f, fe *g, unsigned int b)
{
	unsigned i;
	b = 0 - b;
	for (i = 0; i < 10; i++) {
		uint32_t x = f->v[i] ^ g->v[i];
		x &= b;
		f->v[i] ^= x;
		g->v[i] ^= x;
	}
}

/* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/
static __always_inline void fe_mul_121666_impl(uint32_t out[10], const uint32_t in1[10])
{
	const uint32_t x20 = in1[9];
	const uint32_t x21 = in1[8];
	const uint32_t x19 = in1[7];
	const uint32_t x17 = in1[6];
	const uint32_t x15 = in1[5];
	const uint32_t x13 = in1[4];
	const uint32_t x11 = in1[3];
	const uint32_t x9 = in1[2];
	const uint32_t x7 = in1[1];
	const uint32_t x5 = in1[0];
	const uint32_t x38 = 0;
	const uint32_t x39 = 0;
	const uint32_t x37 = 0;
	const uint32_t x35 = 0;
	const uint32_t x33 = 0;
	const uint32_t x31 = 0;
	const uint32_t x29 = 0;
	const uint32_t x27 = 0;
	const uint32_t x25 = 0;
	const uint32_t x23 = 121666;
	uint64_t x40 = ((uint64_t)x23 * x5);
	uint64_t x41 = (((uint64_t)x23 * x7) + ((uint64_t)x25 * x5));
	uint64_t x42 = ((((uint64_t)(0x2 * x25) * x7) + ((uint64_t)x23 * x9)) + ((uint64_t)x27 * x5));
	uint64_t x43 = (((((uint64_t)x25 * x9) + ((uint64_t)x27 * x7)) + ((uint64_t)x23 * x11)) + ((uint64_t)x29 * x5));
	uint64_t x44 = (((((uint64_t)x27 * x9) + (0x2 * (((uint64_t)x25 * x11) + ((uint64_t)x29 * x7)))) + ((uint64_t)x23 * x13)) + ((uint64_t)x31 * x5));
	uint64_t x45 = (((((((uint64_t)x27 * x11) + ((uint64_t)x29 * x9)) + ((uint64_t)x25 * x13)) + ((uint64_t)x31 * x7)) + ((uint64_t)x23 * x15)) + ((uint64_t)x33 * x5));
	uint64_t x46 = (((((0x2 * ((((uint64_t)x29 * x11) + ((uint64_t)x25 * x15)) + ((uint64_t)x33 * x7))) + ((uint64_t)x27 * x13)) + ((uint64_t)x31 * x9)) + ((uint64_t)x23 * x17)) + ((uint64_t)x35 * x5));
	uint64_t x47 = (((((((((uint64_t)x29 * x13) + ((uint64_t)x31 * x11)) + ((uint64_t)x27 * x15)) + ((uint64_t)x33 * x9)) + ((uint64_t)x25 * x17)) + ((uint64_t)x35 * x7)) + ((uint64_t)x23 * x19)) + ((uint64_t)x37 * x5));
	uint64_t x48 = (((((((uint64_t)x31 * x13) + (0x2 * (((((uint64_t)x29 * x15) + ((uint64_t)x33 * x11)) + ((uint64_t)x25 * x19)) + ((uint64_t)x37 * x7)))) + ((uint64_t)x27 * x17)) + ((uint64_t)x35 * x9)) + ((uint64_t)x23 * x21)) + ((uint64_t)x39 * x5));
	uint64_t x49 = (((((((((((uint64_t)x31 * x15) + ((uint64_t)x33 * x13)) + ((uint64_t)x29 * x17)) + ((uint64_t)x35 * x11)) + ((uint64_t)x27 * x19)) + ((uint64_t)x37 * x9)) + ((uint64_t)x25 * x21)) + ((uint64_t)x39 * x7)) + ((uint64_t)x23 * x20)) + ((uint64_t)x38 * x5));
	uint64_t x50 = (((((0x2 * ((((((uint64_t)x33 * x15) + ((uint64_t)x29 * x19)) + ((uint64_t)x37 * x11)) + ((uint64_t)x25 * x20)) + ((uint64_t)x38 * x7))) + ((uint64_t)x31 * x17)) + ((uint64_t)x35 * x13)) + ((uint64_t)x27 * x21)) + ((uint64_t)x39 * x9));
	uint64_t x51 = (((((((((uint64_t)x33 * x17) + ((uint64_t)x35 * x15)) + ((uint64_t)x31 * x19)) + ((uint64_t)x37 * x13)) + ((uint64_t)x29 * x21)) + ((uint64_t)x39 * x11)) + ((uint64_t)x27 * x20)) + ((uint64_t)x38 * x9));
	uint64_t x52 = (((((uint64_t)x35 * x17) + (0x2 * (((((uint64_t)x33 * x19) + ((uint64_t)x37 * x15)) + ((uint64_t)x29 * x20)) + ((uint64_t)x38 * x11)))) + ((uint64_t)x31 * x21)) + ((uint64_t)x39 * x13));
	uint64_t x53 = (((((((uint64_t)x35 * x19) + ((uint64_t)x37 * x17)) + ((uint64_t)x33 * x21)) + ((uint64_t)x39 * x15)) + ((uint64_t)x31 * x20)) + ((uint64_t)x38 * x13));
	uint64_t x54 = (((0x2 * ((((uint64_t)x37 * x19) + ((uint64_t)x33 * x20)) + ((uint64_t)x38 * x15))) + ((uint64_t)x35 * x21)) + ((uint64_t)x39 * x17));
	uint64_t x55 = (((((uint64_t)x37 * x21) + ((uint64_t)x39 * x19)) + ((uint64_t)x35 * x20)) + ((uint64_t)x38 * x17));
	uint64_t x56 = (((uint64_t)x39 * x21) + (0x2 * (((uint64_t)x37 * x20) + ((uint64_t)x38 * x19))));
	uint64_t x57 = (((uint64_t)x39 * x20) + ((uint64_t)x38 * x21));
	uint64_t x58 = ((uint64_t)(0x2 * x38) * x20);
	uint64_t x59 = (x48 + (x58 << 0x4));
	uint64_t x60 = (x59 + (x58 << 0x1));
	uint64_t x61 = (x60 + x58);
	uint64_t x62 = (x47 + (x57 << 0x4));
	uint64_t x63 = (x62 + (x57 << 0x1));
	uint64_t x64 = (x63 + x57);
	uint64_t x65 = (x46 + (x56 << 0x4));
	uint64_t x66 = (x65 + (x56 << 0x1));
	uint64_t x67 = (x66 + x56);
	uint64_t x68 = (x45 + (x55 << 0x4));
	uint64_t x69 = (x68 + (x55 << 0x1));
	uint64_t x70 = (x69 + x55);
	uint64_t x71 = (x44 + (x54 << 0x4));
	uint64_t x72 = (x71 + (x54 << 0x1));
	uint64_t x73 = (x72 + x54);
	uint64_t x74 = (x43 + (x53 << 0x4));
	uint64_t x75 = (x74 + (x53 << 0x1));
	uint64_t x76 = (x75 + x53);
	uint64_t x77 = (x42 + (x52 << 0x4));
	uint64_t x78 = (x77 + (x52 << 0x1));
	uint64_t x79 = (x78 + x52);
	uint64_t x80 = (x41 + (x51 << 0x4));
	uint64_t x81 = (x80 + (x51 << 0x1));
	uint64_t x82 = (x81 + x51);
	uint64_t x83 = (x40 + (x50 << 0x4));
	uint64_t x84 = (x83 + (x50 << 0x1));
	uint64_t x85 = (x84 + x50);
	uint64_t x86 = (x85 >> 0x1a);
	uint32_t x87 = ((uint32_t)x85 & 0x3ffffff);
	uint64_t x88 = (x86 + x82);
	uint64_t x89 = (x88 >> 0x19);
	uint32_t x90 = ((uint32_t)x88 & 0x1ffffff);
	uint64_t x91 = (x89 + x79);
	uint64_t x92 = (x91 >> 0x1a);
	uint32_t x93 = ((uint32_t)x91 & 0x3ffffff);
	uint64_t x94 = (x92 + x76);
	uint64_t x95 = (x94 >> 0x19);
	uint32_t x96 = ((uint32_t)x94 & 0x1ffffff);
	uint64_t x97 = (x95 + x73);
	uint64_t x98 = (x97 >> 0x1a);
	uint32_t x99 = ((uint32_t)x97 & 0x3ffffff);
	uint64_t x100 = (x98 + x70);
	uint64_t x101 = (x100 >> 0x19);
	uint32_t x102 = ((uint32_t)x100 & 0x1ffffff);
	uint64_t x103 = (x101 + x67);
	uint64_t x104 = (x103 >> 0x1a);
	uint32_t x105 = ((uint32_t)x103 & 0x3ffffff);
	uint64_t x106 = (x104 + x64);
	uint64_t x107 = (x106 >> 0x19);
	uint32_t x108 = ((uint32_t)x106 & 0x1ffffff);
	uint64_t x109 = (x107 + x61);
	uint64_t x110 = (x109 >> 0x1a);
	uint32_t x111 = ((uint32_t)x109 & 0x3ffffff);
	uint64_t x112 = (x110 + x49);
	uint64_t x113 = (x112 >> 0x19);
	uint32_t x114 = ((uint32_t)x112 & 0x1ffffff);
	uint64_t x115 = (x87 + (0x13 * x113));
	uint32_t x116 = (uint32_t) (x115 >> 0x1a);
	uint32_t x117 = ((uint32_t)x115 & 0x3ffffff);
	uint32_t x118 = (x116 + x90);
	uint32_t x119 = (x118 >> 0x19);
	uint32_t x120 = (x118 & 0x1ffffff);
	out[0] = x117;
	out[1] = x120;
	out[2] = (x119 + x93);
	out[3] = x96;
	out[4] = x99;
	out[5] = x102;
	out[6] = x105;
	out[7] = x108;
	out[8] = x111;
	out[9] = x114;
}

static __always_inline void fe_mul121666(fe *h, const fe_loose *f)
{
	fe_mul_121666_impl(h->v, f->v);
}

int curve25519(uint8_t out[CURVE25519_KEY_SIZE],
	       const uint8_t scalar[CURVE25519_KEY_SIZE],
	       const uint8_t point[CURVE25519_KEY_SIZE])
{
	fe x1, x2, z2, x3, z3;
	fe_loose x2l, z2l, x3l;
	unsigned swap = 0;
	int pos;
	uint8_t e[32];

	memcpy(e, scalar, 32);
	curve25519_clamp_secret(e);

	/* The following implementation was transcribed to Coq and proven to
	 * correspond to unary scalar multiplication in affine coordinates given
	 * that x1 != 0 is the x coordinate of some point on the curve. It was
	 * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives
	 * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was
	 * quantified over the underlying field, so it applies to Curve25519
	 * itself and the quadratic twist of Curve25519. It was not proven in
	 * Coq that prime-field arithmetic correctly simulates extension-field
	 * arithmetic on prime-field values. The decoding of the byte array
	 * representation of e was not considered.
	 *
	 * Specification of Montgomery curves in affine coordinates:
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
	 *
	 * Proof that these form a group that is isomorphic to a Weierstrass
	 * curve:
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
	 *
	 * Coq transcription and correctness proof of the loop
	 * (where scalarbits=255):
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
	 * preconditions: 0 <= e < 2^255 (not necessarily e < order),
	 * fe_invert(0) = 0
	 */
	fe_frombytes(&x1, point);
	fe_1(&x2);
	fe_0(&z2);
	fe_copy(&x3, &x1);
	fe_1(&z3);

	for (pos = 254; pos >= 0; --pos) {
		fe tmp0, tmp1;
		fe_loose tmp0l, tmp1l;
		/* loop invariant as of right before the test, for the case
		 * where x1 != 0:
		 *   pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3
		 *   is nonzero
		 *   let r := e >> (pos+1) in the following equalities of
		 *   projective points:
		 *   to_xz (r*P)     === if swap then (x3, z3) else (x2, z2)
		 *   to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
		 *   x1 is the nonzero x coordinate of the nonzero
		 *   point (r*P-(r+1)*P)
		 */
		unsigned b = 1 & (e[pos / 8] >> (pos & 7));
		swap ^= b;
		fe_cswap(&x2, &x3, swap);
		fe_cswap(&z2, &z3, swap);
		swap = b;
		/* Coq transcription of ladderstep formula (called from
		 * transcribed loop):
		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
		 * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
		 * x1  = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
		 */
		fe_sub(&tmp0l, &x3, &z3);
		fe_sub(&tmp1l, &x2, &z2);
		fe_add(&x2l, &x2, &z2);
		fe_add(&z2l, &x3, &z3);
		fe_mul_tll(&z3, &tmp0l, &x2l);
		fe_mul_tll(&z2, &z2l, &tmp1l);
		fe_sq_tl(&tmp0, &tmp1l);
		fe_sq_tl(&tmp1, &x2l);
		fe_add(&x3l, &z3, &z2);
		fe_sub(&z2l, &z3, &z2);
		fe_mul_ttt(&x2, &tmp1, &tmp0);
		fe_sub(&tmp1l, &tmp1, &tmp0);
		fe_sq_tl(&z2, &z2l);
		fe_mul121666(&z3, &tmp1l);
		fe_sq_tl(&x3, &x3l);
		fe_add(&tmp0l, &tmp0, &z3);
		fe_mul_ttt(&z3, &x1, &z2);
		fe_mul_tll(&z2, &tmp1l, &tmp0l);
	}
	/* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3)
	 * else (x2, z2)
	 */
	fe_cswap(&x2, &x3, swap);
	fe_cswap(&z2, &z3, swap);

	fe_invert(&z2, &z2);
	fe_mul_ttt(&x2, &x2, &z2);
	fe_tobytes(out, &x2);

	explicit_bzero(&x1, sizeof(x1));
	explicit_bzero(&x2, sizeof(x2));
	explicit_bzero(&z2, sizeof(z2));
	explicit_bzero(&x3, sizeof(x3));
	explicit_bzero(&z3, sizeof(z3));
	explicit_bzero(&x2l, sizeof(x2l));
	explicit_bzero(&z2l, sizeof(z2l));
	explicit_bzero(&x3l, sizeof(x3l));
	explicit_bzero(&e, sizeof(e));
	return timingsafe_bcmp(out, null_point, CURVE25519_KEY_SIZE);
}