1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
/* $OpenBSD: xform.c,v 1.55 2016/09/19 18:09:40 tedu Exp $ */
/*
* The authors of this code are John Ioannidis (ji@tla.org),
* Angelos D. Keromytis (kermit@csd.uch.gr),
* Niels Provos (provos@physnet.uni-hamburg.de),
* Damien Miller (djm@mindrot.org) and
* Mike Belopuhov (mikeb@openbsd.org).
*
* This code was written by John Ioannidis for BSD/OS in Athens, Greece,
* in November 1995.
*
* Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
* by Angelos D. Keromytis.
*
* Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
* and Niels Provos.
*
* Additional features in 1999 by Angelos D. Keromytis.
*
* AES XTS implementation in 2008 by Damien Miller
*
* AES-GCM-16 and Chacha20-Poly1305 AEAD modes by Mike Belopuhov.
*
* Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
* Angelos D. Keromytis and Niels Provos.
*
* Copyright (C) 2001, Angelos D. Keromytis.
*
* Copyright (C) 2008, Damien Miller
*
* Copyright (C) 2010, 2015, Mike Belopuhov
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all copies of any software which is or includes a copy or
* modification of this software.
* You may use this code under the GNU public license if you so wish. Please
* contribute changes back to the authors under this freer than GPL license
* so that we may further the use of strong encryption without limitations to
* all.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <machine/cpu.h>
#include <crypto/md5.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/rmd160.h>
#include <crypto/blf.h>
#include <crypto/cast.h>
#include <crypto/rijndael.h>
#include <crypto/cryptodev.h>
#include <crypto/xform.h>
#include <crypto/gmac.h>
#include <crypto/chachapoly.h>
extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t, caddr_t, caddr_t, int);
int des_set_key(void *, caddr_t);
int des3_setkey(void *, u_int8_t *, int);
int blf_setkey(void *, u_int8_t *, int);
int cast5_setkey(void *, u_int8_t *, int);
int rijndael128_setkey(void *, u_int8_t *, int);
int aes_ctr_setkey(void *, u_int8_t *, int);
int aes_xts_setkey(void *, u_int8_t *, int);
int null_setkey(void *, u_int8_t *, int);
void des3_encrypt(caddr_t, u_int8_t *);
void blf_encrypt(caddr_t, u_int8_t *);
void cast5_encrypt(caddr_t, u_int8_t *);
void rijndael128_encrypt(caddr_t, u_int8_t *);
void null_encrypt(caddr_t, u_int8_t *);
void aes_xts_encrypt(caddr_t, u_int8_t *);
void des3_decrypt(caddr_t, u_int8_t *);
void blf_decrypt(caddr_t, u_int8_t *);
void cast5_decrypt(caddr_t, u_int8_t *);
void rijndael128_decrypt(caddr_t, u_int8_t *);
void null_decrypt(caddr_t, u_int8_t *);
void aes_xts_decrypt(caddr_t, u_int8_t *);
void aes_ctr_crypt(caddr_t, u_int8_t *);
void aes_ctr_reinit(caddr_t, u_int8_t *);
void aes_xts_reinit(caddr_t, u_int8_t *);
void aes_gcm_reinit(caddr_t, u_int8_t *);
int MD5Update_int(void *, const u_int8_t *, u_int16_t);
int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
u_int32_t lzs_dummy(u_int8_t *, u_int32_t, u_int8_t **);
#define AESCTR_NONCESIZE 4
#define AESCTR_IVSIZE 8
#define AESCTR_BLOCKSIZE 16
struct aes_ctr_ctx {
u_int32_t ac_ek[4*(AES_MAXROUNDS + 1)];
u_int8_t ac_block[AESCTR_BLOCKSIZE];
int ac_nr;
};
#define AES_XTS_BLOCKSIZE 16
#define AES_XTS_IVSIZE 8
#define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
struct aes_xts_ctx {
rijndael_ctx key1;
rijndael_ctx key2;
u_int8_t tweak[AES_XTS_BLOCKSIZE];
};
/* Helper */
void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int);
/* Encryption instances */
struct enc_xform enc_xform_3des = {
CRYPTO_3DES_CBC, "3DES",
8, 8, 24, 24, 384,
des3_encrypt,
des3_decrypt,
des3_setkey,
NULL
};
struct enc_xform enc_xform_blf = {
CRYPTO_BLF_CBC, "Blowfish",
8, 8, 5, 56 /* 448 bits, max key */,
sizeof(blf_ctx),
blf_encrypt,
blf_decrypt,
blf_setkey,
NULL
};
struct enc_xform enc_xform_cast5 = {
CRYPTO_CAST_CBC, "CAST-128",
8, 8, 5, 16,
sizeof(cast_key),
cast5_encrypt,
cast5_decrypt,
cast5_setkey,
NULL
};
struct enc_xform enc_xform_rijndael128 = {
CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
16, 16, 16, 32,
sizeof(rijndael_ctx),
rijndael128_encrypt,
rijndael128_decrypt,
rijndael128_setkey,
NULL
};
struct enc_xform enc_xform_aes_ctr = {
CRYPTO_AES_CTR, "AES-CTR",
16, 8, 16+4, 32+4,
sizeof(struct aes_ctr_ctx),
aes_ctr_crypt,
aes_ctr_crypt,
aes_ctr_setkey,
aes_ctr_reinit
};
struct enc_xform enc_xform_aes_gcm = {
CRYPTO_AES_GCM_16, "AES-GCM",
1, 8, 16+4, 32+4,
sizeof(struct aes_ctr_ctx),
aes_ctr_crypt,
aes_ctr_crypt,
aes_ctr_setkey,
aes_gcm_reinit
};
struct enc_xform enc_xform_aes_gmac = {
CRYPTO_AES_GMAC, "AES-GMAC",
1, 8, 16+4, 32+4, 0,
NULL,
NULL,
NULL,
NULL
};
struct enc_xform enc_xform_aes_xts = {
CRYPTO_AES_XTS, "AES-XTS",
16, 8, 32, 64,
sizeof(struct aes_xts_ctx),
aes_xts_encrypt,
aes_xts_decrypt,
aes_xts_setkey,
aes_xts_reinit
};
struct enc_xform enc_xform_chacha20_poly1305 = {
CRYPTO_CHACHA20_POLY1305, "CHACHA20-POLY1305",
1, 8, 32+4, 32+4,
sizeof(struct chacha20_ctx),
chacha20_crypt,
chacha20_crypt,
chacha20_setkey,
chacha20_reinit
};
struct enc_xform enc_xform_null = {
CRYPTO_NULL, "NULL",
4, 0, 0, 256, 0,
null_encrypt,
null_decrypt,
null_setkey,
NULL
};
/* Authentication instances */
struct auth_hash auth_hash_hmac_md5_96 = {
CRYPTO_MD5_HMAC, "HMAC-MD5",
16, 16, 12, sizeof(MD5_CTX), HMAC_MD5_BLOCK_LEN,
(void (*) (void *)) MD5Init, NULL, NULL,
MD5Update_int,
(void (*) (u_int8_t *, void *)) MD5Final
};
struct auth_hash auth_hash_hmac_sha1_96 = {
CRYPTO_SHA1_HMAC, "HMAC-SHA1",
20, 20, 12, sizeof(SHA1_CTX), HMAC_SHA1_BLOCK_LEN,
(void (*) (void *)) SHA1Init, NULL, NULL,
SHA1Update_int,
(void (*) (u_int8_t *, void *)) SHA1Final
};
struct auth_hash auth_hash_hmac_ripemd_160_96 = {
CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
20, 20, 12, sizeof(RMD160_CTX), HMAC_RIPEMD160_BLOCK_LEN,
(void (*)(void *)) RMD160Init, NULL, NULL,
RMD160Update_int,
(void (*)(u_int8_t *, void *)) RMD160Final
};
struct auth_hash auth_hash_hmac_sha2_256_128 = {
CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
32, 32, 16, sizeof(SHA2_CTX), HMAC_SHA2_256_BLOCK_LEN,
(void (*)(void *)) SHA256Init, NULL, NULL,
SHA256Update_int,
(void (*)(u_int8_t *, void *)) SHA256Final
};
struct auth_hash auth_hash_hmac_sha2_384_192 = {
CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
48, 48, 24, sizeof(SHA2_CTX), HMAC_SHA2_384_BLOCK_LEN,
(void (*)(void *)) SHA384Init, NULL, NULL,
SHA384Update_int,
(void (*)(u_int8_t *, void *)) SHA384Final
};
struct auth_hash auth_hash_hmac_sha2_512_256 = {
CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
64, 64, 32, sizeof(SHA2_CTX), HMAC_SHA2_512_BLOCK_LEN,
(void (*)(void *)) SHA512Init, NULL, NULL,
SHA512Update_int,
(void (*)(u_int8_t *, void *)) SHA512Final
};
struct auth_hash auth_hash_gmac_aes_128 = {
CRYPTO_AES_128_GMAC, "GMAC-AES-128",
16+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
AES_GMAC_Update, AES_GMAC_Final
};
struct auth_hash auth_hash_gmac_aes_192 = {
CRYPTO_AES_192_GMAC, "GMAC-AES-192",
24+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
AES_GMAC_Update, AES_GMAC_Final
};
struct auth_hash auth_hash_gmac_aes_256 = {
CRYPTO_AES_256_GMAC, "GMAC-AES-256",
32+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
AES_GMAC_Update, AES_GMAC_Final
};
struct auth_hash auth_hash_chacha20_poly1305 = {
CRYPTO_CHACHA20_POLY1305_MAC, "CHACHA20-POLY1305",
CHACHA20_KEYSIZE+CHACHA20_SALT, POLY1305_BLOCK_LEN, POLY1305_TAGLEN,
sizeof(CHACHA20_POLY1305_CTX), CHACHA20_BLOCK_LEN,
Chacha20_Poly1305_Init, Chacha20_Poly1305_Setkey,
Chacha20_Poly1305_Reinit, Chacha20_Poly1305_Update,
Chacha20_Poly1305_Final
};
/* Compression instance */
struct comp_algo comp_algo_deflate = {
CRYPTO_DEFLATE_COMP, "Deflate",
90, deflate_compress,
deflate_decompress
};
struct comp_algo comp_algo_lzs = {
CRYPTO_LZS_COMP, "LZS",
90, lzs_dummy,
lzs_dummy
};
/*
* Encryption wrapper routines.
*/
void
des3_encrypt(caddr_t key, u_int8_t *blk)
{
des_ecb3_encrypt(blk, blk, key, key + 128, key + 256, 1);
}
void
des3_decrypt(caddr_t key, u_int8_t *blk)
{
des_ecb3_encrypt(blk, blk, key + 256, key + 128, key, 0);
}
int
des3_setkey(void *sched, u_int8_t *key, int len)
{
if (des_set_key(key, sched) < 0 || des_set_key(key + 8, sched + 128)
< 0 || des_set_key(key + 16, sched + 256) < 0)
return -1;
return 0;
}
void
blf_encrypt(caddr_t key, u_int8_t *blk)
{
blf_ecb_encrypt((blf_ctx *) key, blk, 8);
}
void
blf_decrypt(caddr_t key, u_int8_t *blk)
{
blf_ecb_decrypt((blf_ctx *) key, blk, 8);
}
int
blf_setkey(void *sched, u_int8_t *key, int len)
{
blf_key((blf_ctx *)sched, key, len);
return 0;
}
int
null_setkey(void *sched, u_int8_t *key, int len)
{
return 0;
}
void
null_encrypt(caddr_t key, u_int8_t *blk)
{
}
void
null_decrypt(caddr_t key, u_int8_t *blk)
{
}
void
cast5_encrypt(caddr_t key, u_int8_t *blk)
{
cast_encrypt((cast_key *) key, blk, blk);
}
void
cast5_decrypt(caddr_t key, u_int8_t *blk)
{
cast_decrypt((cast_key *) key, blk, blk);
}
int
cast5_setkey(void *sched, u_int8_t *key, int len)
{
cast_setkey((cast_key *)sched, key, len);
return 0;
}
void
rijndael128_encrypt(caddr_t key, u_int8_t *blk)
{
rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
}
void
rijndael128_decrypt(caddr_t key, u_int8_t *blk)
{
rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
}
int
rijndael128_setkey(void *sched, u_int8_t *key, int len)
{
return rijndael_set_key((rijndael_ctx *)sched, (u_char *)key, len * 8);
}
void
aes_ctr_reinit(caddr_t key, u_int8_t *iv)
{
struct aes_ctr_ctx *ctx;
ctx = (struct aes_ctr_ctx *)key;
bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
/* reset counter */
bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
}
void
aes_gcm_reinit(caddr_t key, u_int8_t *iv)
{
struct aes_ctr_ctx *ctx;
ctx = (struct aes_ctr_ctx *)key;
bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
/* reset counter */
bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
ctx->ac_block[AESCTR_BLOCKSIZE - 1] = 1; /* GCM starts with 1 */
}
void
aes_ctr_crypt(caddr_t key, u_int8_t *data)
{
struct aes_ctr_ctx *ctx;
u_int8_t keystream[AESCTR_BLOCKSIZE];
int i;
ctx = (struct aes_ctr_ctx *)key;
/* increment counter */
for (i = AESCTR_BLOCKSIZE - 1;
i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--)
if (++ctx->ac_block[i]) /* continue on overflow */
break;
rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream);
for (i = 0; i < AESCTR_BLOCKSIZE; i++)
data[i] ^= keystream[i];
explicit_bzero(keystream, sizeof(keystream));
}
int
aes_ctr_setkey(void *sched, u_int8_t *key, int len)
{
struct aes_ctr_ctx *ctx;
if (len < AESCTR_NONCESIZE)
return -1;
ctx = (struct aes_ctr_ctx *)sched;
ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key,
(len - AESCTR_NONCESIZE) * 8);
if (ctx->ac_nr == 0)
return -1;
bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE);
return 0;
}
void
aes_xts_reinit(caddr_t key, u_int8_t *iv)
{
struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
u_int64_t blocknum;
u_int i;
/*
* Prepare tweak as E_k2(IV). IV is specified as LE representation
* of a 64-bit block number which we allow to be passed in directly.
*/
memcpy(&blocknum, iv, AES_XTS_IVSIZE);
for (i = 0; i < AES_XTS_IVSIZE; i++) {
ctx->tweak[i] = blocknum & 0xff;
blocknum >>= 8;
}
/* Last 64 bits of IV are always zero */
bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
}
void
aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
{
u_int8_t block[AES_XTS_BLOCKSIZE];
u_int i, carry_in, carry_out;
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
block[i] = data[i] ^ ctx->tweak[i];
if (do_encrypt)
rijndael_encrypt(&ctx->key1, block, data);
else
rijndael_decrypt(&ctx->key1, block, data);
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
data[i] ^= ctx->tweak[i];
/* Exponentiate tweak */
carry_in = 0;
for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
carry_out = ctx->tweak[i] & 0x80;
ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0);
carry_in = carry_out;
}
if (carry_in)
ctx->tweak[0] ^= AES_XTS_ALPHA;
explicit_bzero(block, sizeof(block));
}
void
aes_xts_encrypt(caddr_t key, u_int8_t *data)
{
aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
}
void
aes_xts_decrypt(caddr_t key, u_int8_t *data)
{
aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
}
int
aes_xts_setkey(void *sched, u_int8_t *key, int len)
{
struct aes_xts_ctx *ctx;
if (len != 32 && len != 64)
return -1;
ctx = (struct aes_xts_ctx *)sched;
rijndael_set_key(&ctx->key1, key, len * 4);
rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
return 0;
}
/*
* And now for auth.
*/
int
RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
RMD160Update(ctx, buf, len);
return 0;
}
int
MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
MD5Update(ctx, buf, len);
return 0;
}
int
SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA1Update(ctx, buf, len);
return 0;
}
int
SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA256Update(ctx, buf, len);
return 0;
}
int
SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA384Update(ctx, buf, len);
return 0;
}
int
SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA512Update(ctx, buf, len);
return 0;
}
u_int32_t deflate_global(u_int8_t *, u_int32_t, int, u_int8_t **);
struct deflate_buf {
u_int8_t *out;
u_int32_t size;
int flag;
};
/*
* And compression
*/
u_int32_t
deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
{
return deflate_global(data, size, 0, out);
}
u_int32_t
deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
{
return deflate_global(data, size, 1, out);
}
u_int32_t
lzs_dummy(u_int8_t *data, u_int32_t size, u_int8_t **out)
{
*out = NULL;
return (0);
}
|