summaryrefslogtreecommitdiff
path: root/sys/dev/fdt/amlmmc.c
blob: d00699c13ae4553a0b4c27819aca5dc090fd2350 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
/*	$OpenBSD: amlmmc.c,v 1.9 2020/08/24 15:15:08 kettenis Exp $	*/
/*
 * Copyright (c) 2019 Mark Kettenis <kettenis@openbsd.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>

#include <machine/intr.h>
#include <machine/bus.h>
#include <machine/fdt.h>

#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_clock.h>
#include <dev/ofw/ofw_gpio.h>
#include <dev/ofw/ofw_pinctrl.h>
#include <dev/ofw/ofw_regulator.h>
#include <dev/ofw/fdt.h>

#include <dev/sdmmc/sdmmcvar.h>

#define SD_EMMC_CLOCK		0x0000
#define  SD_EMMC_CLOCK_ALWAYS_ON	(1 << 28)
#define  SD_EMMC_CLOCK_RX_PHASE_0	(0 << 12)
#define  SD_EMMC_CLOCK_RX_PHASE_90	(1 << 12)
#define  SD_EMMC_CLOCK_RX_PHASE_180	(2 << 12)
#define  SD_EMMC_CLOCK_RX_PHASE_270	(3 << 12)
#define  SD_EMMC_CLOCK_TX_PHASE_0	(0 << 10)
#define  SD_EMMC_CLOCK_TX_PHASE_90	(1 << 10)
#define  SD_EMMC_CLOCK_TX_PHASE_180	(2 << 10)
#define  SD_EMMC_CLOCK_TX_PHASE_270	(3 << 10)
#define  SD_EMMC_CLOCK_CO_PHASE_0	(0 << 8)
#define  SD_EMMC_CLOCK_CO_PHASE_90	(1 << 8)
#define  SD_EMMC_CLOCK_CO_PHASE_180	(2 << 8)
#define  SD_EMMC_CLOCK_CO_PHASE_270	(3 << 8)
#define  SD_EMMC_CLOCK_CLK_SRC_24M	(0 << 6)
#define  SD_EMMC_CLOCK_CLK_SRC_FCLK	(1 << 6)
#define  SD_EMMC_CLOCK_DIV_MAX		63
#define SD_EMMC_DELAY1		0x0004
#define SD_EMMC_DELAY2		0x0008
#define SD_EMMC_ADJUST		0x000c
#define  SD_EMMC_ADJUST_ADJ_FIXED	(1 << 13)
#define  SD_EMMC_ADJUST_ADJ_DELAY_MASK	(0x3f << 16)
#define  SD_EMMC_ADJUST_ADJ_DELAY_SHIFT	16
#define SD_EMMC_START		0x0040
#define  SD_EMMC_START_START		(1 << 1)
#define  SD_EMMC_START_STOP		(0 << 1)
#define SD_EMMC_CFG		0x0044
#define  SD_EMMC_CFG_ERR_ABORT		(1 << 27)
#define  SD_EMMC_CFG_AUTO_CLK		(1 << 23)
#define  SD_EMMC_CFG_STOP_CLOCK		(1 << 22)
#define  SD_EMMC_CFG_SDCLK_ALWAYS_ON	(1 << 18)
#define  SD_EMMC_CFG_RC_CC_MASK		(0xf << 12)
#define  SD_EMMC_CFG_RC_CC_16		(0x4 << 12)
#define  SD_EMMC_CFG_RESP_TIMEOUT_MASK	(0xf << 8)
#define  SD_EMMC_CFG_RESP_TIMEOUT_256	(0x8 << 8)
#define  SD_EMMC_CFG_BL_LEN_MASK	(0xf << 4)
#define  SD_EMMC_CFG_BL_LEN_SHIFT	4
#define  SD_EMMC_CFG_BL_LEN_512		(0x9 << 4)
#define  SD_EMMC_CFG_DDR		(1 << 2)
#define  SD_EMMC_CFG_BUS_WIDTH_MASK	(0x3 << 0)
#define  SD_EMMC_CFG_BUS_WIDTH_1	(0x0 << 0)
#define  SD_EMMC_CFG_BUS_WIDTH_4	(0x1 << 0)
#define  SD_EMMC_CFG_BUS_WIDTH_8	(0x2 << 0)
#define SD_EMMC_STATUS		0x0048
#define  SD_EMMC_STATUS_END_OF_CHAIN	(1 << 13)
#define  SD_EMMC_STATUS_DESC_TIMEOUT	(1 << 12)
#define  SD_EMMC_STATUS_RESP_TIMEOUT	(1 << 11)
#define  SD_EMMC_STATUS_MASK		0x00003fff
#define  SD_EMMC_STATUS_ERR_MASK	0x000007ff
#define SD_EMMC_IRQ_EN		0x004c
#define  SD_EMMC_IRQ_EN_MASK		SD_EMMC_STATUS_MASK
#define SD_EMMC_CMD_CFG		0x0050
#define  SD_EMMC_CMD_CFG_BLOCK_MODE	(1 << 9)
#define  SD_EMMC_CMD_CFG_R1B		(1 << 10)
#define  SD_EMMC_CMD_CFG_END_OF_CHAIN	(1 << 11)
#define  SD_EMMC_CMD_CFG_TIMEOUT_1024	(10 << 12)
#define  SD_EMMC_CMD_CFG_TIMEOUT_4096	(12 << 12)
#define  SD_EMMC_CMD_CFG_NO_RESP	(1 << 16)
#define  SD_EMMC_CMD_CFG_NO_CMD		(1 << 17)
#define  SD_EMMC_CMD_CFG_DATA_IO	(1 << 18)
#define  SD_EMMC_CMD_CFG_DATA_WR	(1 << 19)
#define  SD_EMMC_CMD_CFG_RESP_NOCRC	(1 << 20)
#define  SD_EMMC_CMD_CFG_RESP_128	(1 << 21)
#define  SD_EMMC_CMD_CFG_CMD_INDEX_SHIFT 24
#define  SD_EMMC_CMD_CFG_OWNER		(1U << 31)
#define SD_EMMC_CMD_ARG		0x0054
#define SD_EMMC_CMD_DAT		0x0058
#define SD_EMMC_CMD_RSP		0x005c
#define SD_EMMC_CMD_RSP1	0x0060
#define SD_EMMC_CMD_RSP2	0x0064
#define SD_EMMC_CMD_RSP3	0x0068

#define HREAD4(sc, reg)							\
	(bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)))
#define HWRITE4(sc, reg, val)						\
	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
#define HSET4(sc, reg, bits)						\
	HWRITE4((sc), (reg), HREAD4((sc), (reg)) | (bits))
#define HCLR4(sc, reg, bits)						\
	HWRITE4((sc), (reg), HREAD4((sc), (reg)) & ~(bits))

struct amlmmc_desc {
	uint32_t cmd_cfg;
	uint32_t cmd_arg;
	uint32_t data_addr;
	uint32_t resp_addr;
};

#define AMLMMC_NDESC		(PAGE_SIZE / sizeof(struct amlmmc_desc))
#define AMLMMC_MAXSEGSZ		0x20000

struct amlmmc_softc {
	struct device		sc_dev;
	bus_space_tag_t		sc_iot;
	bus_space_handle_t	sc_ioh;
	bus_dma_tag_t		sc_dmat;
	bus_dmamap_t		sc_dmap;

	void			*sc_ih;
	uint32_t		sc_status;

	bus_dmamap_t		sc_desc_map;
	bus_dma_segment_t	sc_desc_segs[1];
	int			sc_desc_nsegs;
	caddr_t			sc_desc;

	int			sc_node;
	uint32_t		sc_clkin0;
	uint32_t		sc_clkin1;
	uint32_t		sc_gpio[4];
	uint32_t		sc_vmmc;
	uint32_t		sc_vqmmc;
	uint32_t		sc_pwrseq;
	uint32_t		sc_vdd;
	uint32_t		sc_ocr;

	int			sc_blklen;
	struct device		*sc_sdmmc;
};

int amlmmc_match(struct device *, void *, void *);
void amlmmc_attach(struct device *, struct device *, void *);

struct cfattach	amlmmc_ca = {
	sizeof (struct amlmmc_softc), amlmmc_match, amlmmc_attach
};

struct cfdriver amlmmc_cd = {
	NULL, "amlmmc", DV_DULL
};

int	amlmmc_alloc_descriptors(struct amlmmc_softc *);
void	amlmmc_free_descriptors(struct amlmmc_softc *);
int	amlmmc_intr(void *);

void	amlmmc_pwrseq_reset(uint32_t);

int	amlmmc_host_reset(sdmmc_chipset_handle_t);
uint32_t amlmmc_host_ocr(sdmmc_chipset_handle_t);
int	amlmmc_host_maxblklen(sdmmc_chipset_handle_t);
int	amlmmc_card_detect(sdmmc_chipset_handle_t);
int	amlmmc_bus_power(sdmmc_chipset_handle_t, uint32_t);
int	amlmmc_bus_clock(sdmmc_chipset_handle_t, int, int);
int	amlmmc_bus_width(sdmmc_chipset_handle_t, int);
void	amlmmc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *);
int	amlmmc_signal_voltage(sdmmc_chipset_handle_t, int);
int	amlmmc_execute_tuning(sdmmc_chipset_handle_t, int);

struct sdmmc_chip_functions amlmmc_chip_functions = {
	.host_reset = amlmmc_host_reset,
	.host_ocr = amlmmc_host_ocr,
	.host_maxblklen = amlmmc_host_maxblklen,
	.card_detect = amlmmc_card_detect,
	.bus_power = amlmmc_bus_power,
	.bus_clock = amlmmc_bus_clock,
	.bus_width = amlmmc_bus_width,
	.exec_command = amlmmc_exec_command,
	.signal_voltage = amlmmc_signal_voltage,
	.execute_tuning = amlmmc_execute_tuning,
};

int
amlmmc_match(struct device *parent, void *match, void *aux)
{
	struct fdt_attach_args *faa = aux;

	return OF_is_compatible(faa->fa_node, "amlogic,meson-axg-mmc");
}

void
amlmmc_attach(struct device *parent, struct device *self, void *aux)
{
	struct amlmmc_softc *sc = (struct amlmmc_softc *)self;
	struct fdt_attach_args *faa = aux;
	struct sdmmcbus_attach_args saa;
	uint32_t cfg, width;
	int error;

	if (faa->fa_nreg < 1) {
		printf(": no registers\n");
		return;
	}

	sc->sc_iot = faa->fa_iot;
	if (bus_space_map(sc->sc_iot, faa->fa_reg[0].addr,
	    faa->fa_reg[0].size, 0, &sc->sc_ioh)) {
		printf(": can't map registers\n");
		return;
	}

	sc->sc_dmat = faa->fa_dmat;
	error = amlmmc_alloc_descriptors(sc);
	if (error) {
		printf(": can't allocate desctiptors\n");
		goto unmap;
	}
	error = bus_dmamap_create(sc->sc_dmat, MAXPHYS, AMLMMC_NDESC,
	    AMLMMC_MAXSEGSZ, 0, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &sc->sc_dmap);
	if (error) {
		printf(": can't create DMA map\n");
		goto free;
	}

	sc->sc_ih = fdt_intr_establish(faa->fa_node, IPL_BIO,
	    amlmmc_intr, sc, sc->sc_dev.dv_xname);
	if (sc->sc_ih == NULL) {
		printf(": can't establish interrupt\n");
		goto destroy;
	}

	sc->sc_node = faa->fa_node;
	printf("\n");

	pinctrl_byname(faa->fa_node, "default");

	clock_enable_all(faa->fa_node);
	reset_deassert_all(faa->fa_node);

	sc->sc_clkin0 = clock_get_frequency(faa->fa_node, "clkin0");
	sc->sc_clkin1 = clock_get_frequency(faa->fa_node, "clkin1");

	OF_getpropintarray(faa->fa_node, "cd-gpios", sc->sc_gpio,
	    sizeof(sc->sc_gpio));
	if (sc->sc_gpio[0])
		gpio_controller_config_pin(sc->sc_gpio, GPIO_CONFIG_INPUT);

	sc->sc_vmmc = OF_getpropint(sc->sc_node, "vmmc-supply", 0);
	sc->sc_vqmmc = OF_getpropint(sc->sc_node, "vqmmc-supply", 0);
	sc->sc_pwrseq = OF_getpropint(sc->sc_node, "mmc-pwrseq", 0);

	/* XXX Pretend we only support 3.3V for now. */
	sc->sc_ocr = MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V;

	/* Initialize timings and block size. */
	cfg = SD_EMMC_CFG_ERR_ABORT;
	cfg |= SD_EMMC_CFG_RC_CC_16;
	cfg |= SD_EMMC_CFG_RESP_TIMEOUT_256;
	cfg |= SD_EMMC_CFG_BL_LEN_512;
	HWRITE4(sc, SD_EMMC_CFG, cfg);

	/* Clear status bits & enable interrupts. */
	HWRITE4(sc, SD_EMMC_STATUS, SD_EMMC_STATUS_MASK);
	HWRITE4(sc, SD_EMMC_IRQ_EN, SD_EMMC_IRQ_EN_MASK);

	/* Reset eMMC. */
	if (sc->sc_pwrseq)
		amlmmc_pwrseq_reset(sc->sc_pwrseq);

	memset(&saa, 0, sizeof(saa));
	saa.saa_busname = "sdmmc";
	saa.sct = &amlmmc_chip_functions;
	saa.sch = sc;
	saa.dmat = sc->sc_dmat;
	saa.dmap = sc->sc_dmap;
	saa.caps = SMC_CAPS_DMA;
	saa.flags = SMF_STOP_AFTER_MULTIPLE;

	if (OF_getproplen(sc->sc_node, "cap-mmc-highspeed") == 0)
		saa.caps |= SMC_CAPS_MMC_HIGHSPEED;
	if (OF_getproplen(sc->sc_node, "cap-sd-highspeed") == 0)
		saa.caps |= SMC_CAPS_SD_HIGHSPEED;
	if (OF_getproplen(sc->sc_node, "mmc-ddr-1_8v") == 0)
		saa.caps |= SMC_CAPS_MMC_DDR52;
	if (OF_getproplen(sc->sc_node, "mmc-hs200-1_8v") == 0)
		saa.caps |= SMC_CAPS_MMC_HS200;
	if (OF_getproplen(sc->sc_node, "sd-uhs-sdr50") == 0)
		saa.caps |= SMC_CAPS_UHS_SDR50;
#ifdef notyet
	if (OF_getproplen(sc->sc_node, "sd-uhs-sdr104") == 0)
		saa.caps |= SMC_CAPS_UHS_SDR104;
#endif

	if (saa.caps & SMC_CAPS_UHS_MASK)
		sc->sc_ocr |= MMC_OCR_S18A;

	width = OF_getpropint(faa->fa_node, "bus-width", 1);
	if (width >= 8)
		saa.caps |= SMC_CAPS_8BIT_MODE;
	if (width >= 4)
		saa.caps |= SMC_CAPS_4BIT_MODE;

	sc->sc_sdmmc = config_found(self, &saa, NULL);
	return;

destroy:
	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmap);
free:
	amlmmc_free_descriptors(sc);
unmap:
	bus_space_unmap(sc->sc_iot, sc->sc_ioh, faa->fa_reg[0].size);
}

int
amlmmc_alloc_descriptors(struct amlmmc_softc *sc)
{
	int error, rseg;

	/* Allocate descriptor memory */
	error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
	    PAGE_SIZE, sc->sc_desc_segs, 1, &rseg,
	    BUS_DMA_WAITOK | BUS_DMA_ZERO);
	if (error)
		return error;
	error = bus_dmamem_map(sc->sc_dmat, sc->sc_desc_segs, rseg,
	    PAGE_SIZE, &sc->sc_desc, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
	if (error) {
		bus_dmamem_free(sc->sc_dmat, sc->sc_desc_segs, rseg);
		return error;
	}
	error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
	    0, BUS_DMA_WAITOK, &sc->sc_desc_map);
	if (error) {
		bus_dmamem_unmap(sc->sc_dmat, sc->sc_desc, PAGE_SIZE);
		bus_dmamem_free(sc->sc_dmat, sc->sc_desc_segs, rseg);
		return error;
	}
	error = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_map,
	    sc->sc_desc, PAGE_SIZE, NULL, BUS_DMA_WAITOK | BUS_DMA_WRITE);
	if (error) {
		bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_map);
		bus_dmamem_unmap(sc->sc_dmat, sc->sc_desc, PAGE_SIZE);
		bus_dmamem_free(sc->sc_dmat, sc->sc_desc_segs, rseg);
		return error;
	}

	sc->sc_desc_nsegs = rseg;
	return 0;
}

void
amlmmc_free_descriptors(struct amlmmc_softc *sc)
{
	bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_map);
	bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_map);
	bus_dmamem_unmap(sc->sc_dmat, sc->sc_desc, PAGE_SIZE);
	bus_dmamem_free(sc->sc_dmat, sc->sc_desc_segs, sc->sc_desc_nsegs);
}

int
amlmmc_intr(void *arg)
{
	struct amlmmc_softc *sc = arg;
	uint32_t status;

	status = HREAD4(sc, SD_EMMC_STATUS);
	if ((status & SD_EMMC_STATUS_MASK) == 0)
		return 0;

	HWRITE4(sc, SD_EMMC_STATUS, status);
	sc->sc_status = status & SD_EMMC_STATUS_MASK;
	wakeup(sc);
	return 1;
}

void
amlmmc_set_blklen(struct amlmmc_softc *sc, int blklen)
{
	uint32_t cfg;

	if (blklen == sc->sc_blklen)
		return;

	cfg = HREAD4(sc, SD_EMMC_CFG);
	cfg &= ~SD_EMMC_CFG_BL_LEN_MASK;
	cfg |= (fls(blklen) - 1) << SD_EMMC_CFG_BL_LEN_SHIFT;
	HWRITE4(sc, SD_EMMC_CFG, cfg);
	sc->sc_blklen = blklen;
}

void
amlmmc_pwrseq_reset(uint32_t phandle)
{
	uint32_t *gpios, *gpio;
	int node;
	int len;

	node = OF_getnodebyphandle(phandle);
	if (node == 0)
		return;

	if (!OF_is_compatible(node, "mmc-pwrseq-emmc"))
		return;

	len = OF_getproplen(node, "reset-gpios");
	if (len <= 0)
		return;

	gpios = malloc(len, M_TEMP, M_WAITOK);
	OF_getpropintarray(node, "reset-gpios", gpios, len);

	gpio = gpios;
	while (gpio && gpio < gpios + (len / sizeof(uint32_t))) {
		gpio_controller_config_pin(gpio, GPIO_CONFIG_OUTPUT);
		gpio_controller_set_pin(gpio, 1);
		delay(1);
		gpio_controller_set_pin(gpio, 0);
		delay(200);
		gpio = gpio_controller_next_pin(gpio);
	}

	free(gpios, M_TEMP, len);
}

int
amlmmc_host_reset(sdmmc_chipset_handle_t sch)
{
	printf("%s\n", __func__);
	return 0;
}

uint32_t
amlmmc_host_ocr(sdmmc_chipset_handle_t sch)
{
	struct amlmmc_softc *sc = sch;
	return sc->sc_ocr;
}

int
amlmmc_host_maxblklen(sdmmc_chipset_handle_t sch)
{
	return 512;
}

int
amlmmc_card_detect(sdmmc_chipset_handle_t sch)
{
	struct amlmmc_softc *sc = sch;

	if (OF_getproplen(sc->sc_node, "non-removable") == 0)
		return 1;

	if (sc->sc_gpio[0]) {
		int inverted, val;

		val = gpio_controller_get_pin(sc->sc_gpio);

		inverted = (OF_getproplen(sc->sc_node, "cd-inverted") == 0);
		return inverted ? !val : val;
	}

	return 1;
}

int
amlmmc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
{
	struct amlmmc_softc *sc = sch;
	uint32_t vdd = 0;

	if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
		vdd = 3300000;

	/* enable mmc power */
	if (sc->sc_vmmc && vdd > 0)
		regulator_enable(sc->sc_vmmc);

	if (sc->sc_vqmmc && vdd > 0)
		regulator_enable(sc->sc_vqmmc);

	delay(10000);

	sc->sc_vdd = vdd;
	return 0;
}

int
amlmmc_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing)
{
	struct amlmmc_softc *sc = sch;
	uint32_t div, clock;

	/* XXX The ODROID-N2 eMMC doesn't work properly above 150 MHz. */
	if (freq > 150000)
		freq = 150000;

	pinctrl_byname(sc->sc_node, "clk-gate");
	
	if (freq == 0)
		return 0;

	/* Convert clock frequency from kHz to Hz. */
	freq = freq * 1000;

	/* Double the clock rate for DDR modes. */
	if (timing == SDMMC_TIMING_MMC_DDR52)
		freq = freq * 2;

	if (freq < (sc->sc_clkin1 / SD_EMMC_CLOCK_DIV_MAX)) {
		div = (sc->sc_clkin0 + freq - 1) / freq;
		clock = SD_EMMC_CLOCK_CLK_SRC_24M | div;
	} else {
		div = (sc->sc_clkin1 + freq - 1) / freq;
		clock = SD_EMMC_CLOCK_CLK_SRC_FCLK | div;
	}
	if (div > SD_EMMC_CLOCK_DIV_MAX)
		return EINVAL;

	HSET4(sc, SD_EMMC_CFG, SD_EMMC_CFG_STOP_CLOCK);

	if (timing == SDMMC_TIMING_MMC_DDR52)
		HSET4(sc, SD_EMMC_CFG, SD_EMMC_CFG_DDR);
	else
		HCLR4(sc, SD_EMMC_CFG, SD_EMMC_CFG_DDR);

	clock |= SD_EMMC_CLOCK_ALWAYS_ON;
	clock |= SD_EMMC_CLOCK_CO_PHASE_180;
	clock |= SD_EMMC_CLOCK_TX_PHASE_0;
	clock |= SD_EMMC_CLOCK_RX_PHASE_0;
	HWRITE4(sc, SD_EMMC_CLOCK, clock);

	HCLR4(sc, SD_EMMC_CFG, SD_EMMC_CFG_STOP_CLOCK);

	pinctrl_byname(sc->sc_node, "default");
	
	return 0;
}

int
amlmmc_bus_width(sdmmc_chipset_handle_t sch, int width)
{
	struct amlmmc_softc *sc = sch;
	uint32_t cfg;

	cfg = HREAD4(sc, SD_EMMC_CFG);
	cfg &= ~SD_EMMC_CFG_BUS_WIDTH_MASK;
	switch (width) {
	case 1:
		cfg |= SD_EMMC_CFG_BUS_WIDTH_1;
		break;
	case 4:
		cfg |= SD_EMMC_CFG_BUS_WIDTH_4;
		break;
	case 8:
		cfg |= SD_EMMC_CFG_BUS_WIDTH_8;
		break;
	default:
		return EINVAL;
	}
	HWRITE4(sc, SD_EMMC_CFG, cfg);

	return 0;
}

void
amlmmc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
	struct amlmmc_softc *sc = sch;
	uint32_t cmd_cfg, status;
	uint32_t data_addr = 0;
	int s;

	KASSERT(sc->sc_status == 0);

	/* Setup descriptor flags. */
	cmd_cfg = cmd->c_opcode << SD_EMMC_CMD_CFG_CMD_INDEX_SHIFT;
	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
		cmd_cfg |= SD_EMMC_CMD_CFG_NO_RESP;
	if (ISSET(cmd->c_flags, SCF_RSP_136))
		cmd_cfg |= SD_EMMC_CMD_CFG_RESP_128;
	if (ISSET(cmd->c_flags, SCF_RSP_BSY))
		cmd_cfg |= SD_EMMC_CMD_CFG_R1B;
	if (!ISSET(cmd->c_flags, SCF_RSP_CRC))
		cmd_cfg |= SD_EMMC_CMD_CFG_RESP_NOCRC;
	if (cmd->c_datalen > 0) {
		cmd_cfg |= SD_EMMC_CMD_CFG_DATA_IO;
		if (cmd->c_datalen >= cmd->c_blklen)
			cmd_cfg |= SD_EMMC_CMD_CFG_BLOCK_MODE;
		if (!ISSET(cmd->c_flags, SCF_CMD_READ))
			cmd_cfg |= SD_EMMC_CMD_CFG_DATA_WR;
		cmd_cfg |= SD_EMMC_CMD_CFG_TIMEOUT_4096;
	} else {
		cmd_cfg |= SD_EMMC_CMD_CFG_TIMEOUT_1024;
	}
	cmd_cfg |= SD_EMMC_CMD_CFG_OWNER;

	/* If we have multiple DMA segments we need to use descriptors. */
	if (cmd->c_datalen > 0 &&
	    cmd->c_dmamap && cmd->c_dmamap->dm_nsegs > 1) {
		struct amlmmc_desc *desc = (struct amlmmc_desc *)sc->sc_desc;
		int seg;

		for (seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
			bus_addr_t addr = cmd->c_dmamap->dm_segs[seg].ds_addr;
			bus_size_t len = cmd->c_dmamap->dm_segs[seg].ds_len;

			if (seg == cmd->c_dmamap->dm_nsegs - 1)
				cmd_cfg |= SD_EMMC_CMD_CFG_END_OF_CHAIN;

			KASSERT((addr & 0x7) == 0);
			desc[seg].cmd_cfg = cmd_cfg | (len / cmd->c_blklen);
			desc[seg].cmd_arg = cmd->c_arg;
			desc[seg].data_addr = addr;
			desc[seg].resp_addr = 0;
			cmd_cfg |= SD_EMMC_CMD_CFG_NO_CMD;
		}

		bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0,
		    cmd->c_dmamap->dm_nsegs * sizeof(struct amlmmc_desc),
		    BUS_DMASYNC_PREWRITE);
		HWRITE4(sc, SD_EMMC_START, SD_EMMC_START_START |
		    sc->sc_desc_map->dm_segs[0].ds_addr);
		goto wait;
	}

	/* Bounce if we don't have a DMA map. */
	if (cmd->c_datalen > 0 && !cmd->c_dmamap) {
		/* Abuse DMA descriptor memory as bounce buffer. */
		KASSERT(cmd->c_datalen <= PAGE_SIZE);
		if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
			bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0,
			    cmd->c_datalen, BUS_DMASYNC_PREREAD);
		} else {
			memcpy(sc->sc_desc, cmd->c_data, cmd->c_datalen);
			bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0,
			    cmd->c_datalen, BUS_DMASYNC_PREWRITE);
		}
	}

	if (cmd->c_datalen > 0) {
		if (cmd->c_datalen >= cmd->c_blklen) {
			amlmmc_set_blklen(sc, cmd->c_blklen);
			cmd_cfg |= cmd->c_datalen / cmd->c_blklen;
		} else {
			cmd_cfg |= cmd->c_datalen;
		}

		if (cmd->c_dmamap)
			data_addr = cmd->c_dmamap->dm_segs[0].ds_addr;
		else
			data_addr = sc->sc_desc_map->dm_segs[0].ds_addr;
	}

	cmd_cfg |= SD_EMMC_CMD_CFG_END_OF_CHAIN;

	KASSERT((data_addr & 0x7) == 0);
	HWRITE4(sc, SD_EMMC_CMD_CFG, cmd_cfg);
	HWRITE4(sc, SD_EMMC_CMD_DAT, data_addr);
	HWRITE4(sc, SD_EMMC_CMD_RSP, 0);
	bus_space_barrier(sc->sc_iot, sc->sc_ioh, SD_EMMC_CMD_CFG,
	    SD_EMMC_CMD_RSP1 - SD_EMMC_CMD_CFG, BUS_SPACE_BARRIER_WRITE);
	HWRITE4(sc, SD_EMMC_CMD_ARG, cmd->c_arg);

wait:
	s = splbio();
	while (sc->sc_status == 0) {
		if (tsleep_nsec(sc, PWAIT, "amlmmc", 10000000000))
			break;
	}
	status = sc->sc_status;
	sc->sc_status = 0;
	splx(s);

	if (!ISSET(status, SD_EMMC_STATUS_END_OF_CHAIN))
		cmd->c_error = ETIMEDOUT;
	else if (ISSET(status, SD_EMMC_STATUS_DESC_TIMEOUT))
		cmd->c_error = ETIMEDOUT;
	else if (ISSET(status, SD_EMMC_STATUS_RESP_TIMEOUT))
		cmd->c_error = ETIMEDOUT;
	else if (ISSET(status, SD_EMMC_STATUS_ERR_MASK))
		cmd->c_error = EIO;

	if (ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
			cmd->c_resp[0] = HREAD4(sc, SD_EMMC_CMD_RSP);
			cmd->c_resp[1] = HREAD4(sc, SD_EMMC_CMD_RSP1);
			cmd->c_resp[2] = HREAD4(sc, SD_EMMC_CMD_RSP2);
			cmd->c_resp[3] = HREAD4(sc, SD_EMMC_CMD_RSP3);
			if (ISSET(cmd->c_flags, SCF_RSP_CRC)) {
				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
				    (cmd->c_resp[1] << 24);
				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
				    (cmd->c_resp[2] << 24);
				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
				    (cmd->c_resp[3] << 24);
				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
			}
		} else {
			cmd->c_resp[0] = HREAD4(sc, SD_EMMC_CMD_RSP);
		}
	}

	/* Unbounce if we don't have a DMA map. */
	if (cmd->c_datalen > 0 && !cmd->c_dmamap) {
		if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
			bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0,
			    cmd->c_datalen, BUS_DMASYNC_POSTREAD);
			memcpy(cmd->c_data, sc->sc_desc, cmd->c_datalen);
		} else {
			bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0,
			    cmd->c_datalen, BUS_DMASYNC_POSTWRITE);
		}
	}

	/* Cleanup descriptors. */
	if (cmd->c_datalen > 0 &&
	    cmd->c_dmamap && cmd->c_dmamap->dm_nsegs > 1) {
		HWRITE4(sc, SD_EMMC_START, SD_EMMC_START_STOP);
		bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0,
		    cmd->c_dmamap->dm_nsegs * sizeof(struct amlmmc_desc),
		    BUS_DMASYNC_POSTWRITE);
	}

	SET(cmd->c_flags, SCF_ITSDONE);
}

int
amlmmc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
{
	struct amlmmc_softc *sc = sch;
	uint32_t vccq;

	if (sc->sc_vqmmc == 0)
		return ENODEV;

	switch (signal_voltage) {
	case SDMMC_SIGNAL_VOLTAGE_180:
		vccq = 1800000;
		break;
	case SDMMC_SIGNAL_VOLTAGE_330:
		vccq = 3300000;
		break;
	default:
		return EINVAL;
	}

	if (regulator_get_voltage(sc->sc_vqmmc) == vccq)
		return 0;

	return regulator_set_voltage(sc->sc_vqmmc, vccq);
}

int
amlmmc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
{
	struct amlmmc_softc *sc = sch;
	struct sdmmc_command cmd;
	uint32_t adjust, cfg, div;
	int opcode, delay;
	char data[128];

	switch (timing) {
	case SDMMC_TIMING_MMC_HS200:
		opcode = MMC_SEND_TUNING_BLOCK_HS200;
		break;
	case SDMMC_TIMING_UHS_SDR50:
	case SDMMC_TIMING_UHS_SDR104:
		opcode = MMC_SEND_TUNING_BLOCK;
		break;
	default:
		return EINVAL;
	}

	cfg = HREAD4(sc, SD_EMMC_CFG);
	div = HREAD4(sc, SD_EMMC_CLOCK) & SD_EMMC_CLOCK_DIV_MAX;

	adjust = HREAD4(sc, SD_EMMC_ADJUST);
	adjust |= SD_EMMC_ADJUST_ADJ_FIXED;
	HWRITE4(sc, SD_EMMC_ADJUST, adjust);

	for (delay = 0; delay < div; delay++) {
		adjust &= ~SD_EMMC_ADJUST_ADJ_DELAY_MASK;
		adjust |= (delay << SD_EMMC_ADJUST_ADJ_DELAY_SHIFT);
		HWRITE4(sc, SD_EMMC_ADJUST, adjust);

		memset(&cmd, 0, sizeof(cmd));
		cmd.c_opcode = opcode;
		cmd.c_arg = 0;
		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
		if (cfg & SD_EMMC_CFG_BUS_WIDTH_8) {
			cmd.c_blklen = cmd.c_datalen = 128;
		} else {
			cmd.c_blklen = cmd.c_datalen = 64;
		}
		cmd.c_data = data;

		amlmmc_exec_command(sch, &cmd);
		if (cmd.c_error == 0)
			return 0;
	}

	adjust = HREAD4(sc, SD_EMMC_ADJUST);
	adjust &= ~SD_EMMC_ADJUST_ADJ_FIXED;
	HWRITE4(sc, SD_EMMC_ADJUST, adjust);

	return EIO;
}