summaryrefslogtreecommitdiff
path: root/sys/dev/fdt/if_fec.c
blob: f6ca5a9706ce7e47e44261ecb7cb1d136c7b935a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
/* $OpenBSD: if_fec.c,v 1.6 2018/08/06 10:52:30 patrick Exp $ */
/*
 * Copyright (c) 2012-2013 Patrick Wildt <patrick@blueri.se>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/queue.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/evcount.h>
#include <sys/socket.h>
#include <sys/timeout.h>
#include <sys/mbuf.h>
#include <machine/intr.h>
#include <machine/bus.h>
#include <machine/fdt.h>

#include "bpfilter.h"

#include <net/if.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif

#include <netinet/in.h>
#include <netinet/if_ether.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/miidevs.h>

#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_clock.h>
#include <dev/ofw/ofw_gpio.h>
#include <dev/ofw/ofw_pinctrl.h>
#include <dev/ofw/fdt.h>

/* configuration registers */
#define ENET_EIR		0x004
#define ENET_EIMR		0x008
#define ENET_RDAR		0x010
#define ENET_TDAR		0x014
#define ENET_ECR		0x024
#define ENET_MMFR		0x040
#define ENET_MSCR		0x044
#define ENET_MIBC		0x064
#define ENET_RCR		0x084
#define ENET_TCR		0x0C4
#define ENET_PALR		0x0E4
#define ENET_PAUR		0x0E8
#define ENET_OPD		0x0EC
#define ENET_IAUR		0x118
#define ENET_IALR		0x11C
#define ENET_GAUR		0x120
#define ENET_GALR		0x124
#define ENET_TFWR		0x144
#define ENET_RDSR		0x180
#define ENET_TDSR		0x184
#define ENET_MRBR		0x188
#define ENET_RSFL		0x190
#define ENET_RSEM		0x194
#define ENET_RAEM		0x198
#define ENET_RAFL		0x19C
#define ENET_TSEM		0x1A0
#define ENET_TAEM		0x1A4
#define ENET_TAFL		0x1A8
#define ENET_TIPG		0x1AC
#define ENET_FTRL		0x1B0
#define ENET_TACC		0x1C0
#define ENET_RACC		0x1C4

#define ENET_RDAR_RDAR		(1 << 24)
#define ENET_TDAR_TDAR		(1 << 24)
#define ENET_ECR_RESET		(1 << 0)
#define ENET_ECR_ETHEREN	(1 << 1)
#define ENET_ECR_EN1588		(1 << 4)
#define ENET_ECR_SPEED		(1 << 5)
#define ENET_ECR_DBSWP		(1 << 8)
#define ENET_MMFR_TA		(2 << 16)
#define ENET_MMFR_RA_SHIFT	18
#define ENET_MMFR_PA_SHIFT	23
#define ENET_MMFR_OP_WR		(1 << 28)
#define ENET_MMFR_OP_RD		(2 << 28)
#define ENET_MMFR_ST		(1 << 30)
#define ENET_RCR_MII_MODE	(1 << 2)
#define ENET_RCR_PROM		(1 << 3)
#define ENET_RCR_FCE		(1 << 5)
#define ENET_RCR_RGMII_MODE	(1 << 6)
#define ENET_RCR_RMII_10T	(1 << 9)
#define ENET_RCR_MAX_FL(x)	(((x) & 0x3fff) << 16)
#define ENET_TCR_FDEN		(1 << 2)
#define ENET_EIR_MII		(1 << 23)
#define ENET_EIR_RXF		(1 << 25)
#define ENET_EIR_TXF		(1 << 27)
#define ENET_TFWR_STRFWD	(1 << 8)

/* statistics counters */

/* 1588 control */
#define ENET_ATCR		0x400
#define ENET_ATVR		0x404
#define ENET_ATOFF		0x408
#define ENET_ATPER		0x40C
#define ENET_ATCOR		0x410
#define ENET_ATINC		0x414
#define ENET_ATSTMP		0x418

/* capture / compare block */
#define ENET_TGSR		0x604
#define ENET_TCSR0		0x608
#define ENET_TCCR0		0x60C
#define ENET_TCSR1		0x610
#define ENET_TCCR1		0x614
#define ENET_TCSR2		0x618
#define ENET_TCCR2		0x61C
#define ENET_TCSR3		0x620
#define ENET_TCCR3		0x624

#define ENET_MII_CLK		2500000
#define ENET_ALIGNMENT		16

#define HREAD4(sc, reg)							\
	(bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)))
#define HWRITE4(sc, reg, val)						\
	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
#define HSET4(sc, reg, bits)						\
	HWRITE4((sc), (reg), HREAD4((sc), (reg)) | (bits))
#define HCLR4(sc, reg, bits)						\
	HWRITE4((sc), (reg), HREAD4((sc), (reg)) & ~(bits))

/* what should we use? */
#define ENET_MAX_TXD		32
#define ENET_MAX_RXD		32

#define ENET_MAX_PKT_SIZE	1536

#define ENET_ROUNDUP(size, unit) (((size) + (unit) - 1) & ~((unit) - 1))

/* buffer descriptor status bits */
#define ENET_RXD_EMPTY		(1 << 15)
#define ENET_RXD_WRAP		(1 << 13)
#define ENET_RXD_LAST		(1 << 11)
#define ENET_RXD_MISS		(1 << 8)
#define ENET_RXD_BC		(1 << 7)
#define ENET_RXD_MC		(1 << 6)
#define ENET_RXD_LG		(1 << 5)
#define ENET_RXD_NO		(1 << 4)
#define ENET_RXD_CR		(1 << 2)
#define ENET_RXD_OV		(1 << 1)
#define ENET_RXD_TR		(1 << 0)

#define ENET_TXD_READY		(1 << 15)
#define ENET_TXD_WRAP		(1 << 13)
#define ENET_TXD_LAST		(1 << 11)
#define ENET_TXD_TC		(1 << 10)
#define ENET_TXD_ABC		(1 << 9)
#define ENET_TXD_STATUS_MASK	0x3ff

#ifdef ENET_ENHANCED_BD
/* enhanced */
#define ENET_RXD_INT		(1 << 23)

#define ENET_TXD_INT		(1 << 30)
#endif

/*
 * Bus dma allocation structure used by
 * fec_dma_malloc and fec_dma_free.
 */
struct fec_dma_alloc {
	bus_addr_t		dma_paddr;
	caddr_t			dma_vaddr;
	bus_dma_tag_t		dma_tag;
	bus_dmamap_t		dma_map;
	bus_dma_segment_t	dma_seg;
	bus_size_t		dma_size;
	int			dma_nseg;
};

struct fec_buf_desc {
	uint16_t data_length;		/* payload's length in bytes */
	uint16_t status;		/* BD's status (see datasheet) */
	uint32_t data_pointer;		/* payload's buffer address */
#ifdef ENET_ENHANCED_BD
	uint32_t enhanced_status;	/* enhanced status with IEEE 1588 */
	uint32_t reserved0;		/* reserved */
	uint32_t update_done;		/* buffer descriptor update done */
	uint32_t timestamp;		/* IEEE 1588 timestamp */
	uint32_t reserved1[2];		/* reserved */
#endif
};

struct fec_buffer {
	uint8_t data[ENET_MAX_PKT_SIZE];
};

struct fec_softc {
	struct device		sc_dev;
	struct arpcom		sc_ac;
	struct mii_data		sc_mii;
	int			sc_node;
	bus_space_tag_t		sc_iot;
	bus_space_handle_t	sc_ioh;
	void			*sc_ih[3]; /* Interrupt handler */
	bus_dma_tag_t		sc_dma_tag;
	struct fec_dma_alloc	txdma;		/* bus_dma glue for tx desc */
	struct fec_buf_desc	*tx_desc_base;
	struct fec_dma_alloc	rxdma;		/* bus_dma glue for rx desc */
	struct fec_buf_desc	*rx_desc_base;
	struct fec_dma_alloc	tbdma;		/* bus_dma glue for packets */
	struct fec_buffer	*tx_buffer_base;
	struct fec_dma_alloc	rbdma;		/* bus_dma glue for packets */
	struct fec_buffer	*rx_buffer_base;
	int			cur_tx;
	int			cur_rx;
	struct timeout		sc_tick;
	uint32_t		sc_phy_speed;
};

struct fec_softc *fec_sc;

int fec_match(struct device *, void *, void *);
void fec_attach(struct device *, struct device *, void *);
void fec_phy_init(struct fec_softc *, struct mii_softc *);
int fec_ioctl(struct ifnet *, u_long, caddr_t);
void fec_start(struct ifnet *);
int fec_encap(struct fec_softc *, struct mbuf *);
void fec_init_txd(struct fec_softc *);
void fec_init_rxd(struct fec_softc *);
void fec_init(struct fec_softc *);
void fec_stop(struct fec_softc *);
void fec_iff(struct fec_softc *);
struct mbuf * fec_newbuf(void);
int fec_intr(void *);
void fec_recv(struct fec_softc *);
void fec_tick(void *);
int fec_miibus_readreg(struct device *, int, int);
void fec_miibus_writereg(struct device *, int, int, int);
void fec_miibus_statchg(struct device *);
int fec_ifmedia_upd(struct ifnet *);
void fec_ifmedia_sts(struct ifnet *, struct ifmediareq *);
int fec_dma_malloc(struct fec_softc *, bus_size_t, struct fec_dma_alloc *);
void fec_dma_free(struct fec_softc *, struct fec_dma_alloc *);

struct cfattach fec_ca = {
	sizeof (struct fec_softc), fec_match, fec_attach
};

struct cfdriver fec_cd = {
	NULL, "fec", DV_IFNET
};

int
fec_match(struct device *parent, void *match, void *aux)
{
	struct fdt_attach_args *faa = aux;

	return (OF_is_compatible(faa->fa_node, "fsl,imx6q-fec") ||
	    OF_is_compatible(faa->fa_node, "fsl,imx6sx-fec") ||
	    OF_is_compatible(faa->fa_node, "fsl,imx8mq-fec"));
}

void
fec_attach(struct device *parent, struct device *self, void *aux)
{
	struct fec_softc *sc = (struct fec_softc *) self;
	struct fdt_attach_args *faa = aux;
	struct mii_data *mii;
	struct mii_softc *child;
	struct ifnet *ifp;
	int tsize, rsize, tbsize, rbsize, s;
	uint32_t phy_reset_gpio[3];
	uint32_t phy_reset_duration;

	if (faa->fa_nreg < 1)
		return;

	sc->sc_node = faa->fa_node;
	sc->sc_iot = faa->fa_iot;
	if (bus_space_map(sc->sc_iot, faa->fa_reg[0].addr,
	    faa->fa_reg[0].size, 0, &sc->sc_ioh))
		panic("fec_attach: bus_space_map failed!");

	sc->sc_dma_tag = faa->fa_dmat;

	pinctrl_byname(faa->fa_node, "default");

	/* power it up */
	clock_enable_all(faa->fa_node);

	/* reset PHY */
	if (OF_getpropintarray(faa->fa_node, "phy-reset-gpios", phy_reset_gpio,
	    sizeof(phy_reset_gpio)) == sizeof(phy_reset_gpio)) {
		phy_reset_duration = OF_getpropint(faa->fa_node,
		    "phy-reset-duration", 1);
		if (phy_reset_duration > 1000)
			phy_reset_duration = 1;

		/*
		 * The Linux people really screwed the pooch here.
		 * The Linux kernel always treats the gpio as
		 * active-low, even if it is marked as active-high in
		 * the device tree.  As a result the device tree for
		 * many boards incorrectly marks the gpio as
		 * active-high.  
		 */
		phy_reset_gpio[2] = GPIO_ACTIVE_LOW;
		gpio_controller_config_pin(phy_reset_gpio, GPIO_CONFIG_OUTPUT);

		/*
		 * On some Cubox-i machines we need to hold the PHY in
		 * reset a little bit longer than specified.
		 */
		gpio_controller_set_pin(phy_reset_gpio, 1);
		delay((phy_reset_duration + 1) * 1000);
		gpio_controller_set_pin(phy_reset_gpio, 0);
		delay(1000);
	}
	printf("\n");

	/* Figure out the hardware address. Must happen before reset. */
	OF_getprop(faa->fa_node, "local-mac-address", sc->sc_ac.ac_enaddr,
	    sizeof(sc->sc_ac.ac_enaddr));

	/* reset the controller */
	HSET4(sc, ENET_ECR, ENET_ECR_RESET);
	while (HREAD4(sc, ENET_ECR) & ENET_ECR_ETHEREN)
		continue;

	HWRITE4(sc, ENET_EIMR, 0);
	HWRITE4(sc, ENET_EIR, 0xffffffff);

	sc->sc_ih[0] = fdt_intr_establish_idx(faa->fa_node, 0, IPL_NET,
	    fec_intr, sc, sc->sc_dev.dv_xname);
	sc->sc_ih[1] = fdt_intr_establish_idx(faa->fa_node, 1, IPL_NET,
	    fec_intr, sc, sc->sc_dev.dv_xname);
	sc->sc_ih[2] = fdt_intr_establish_idx(faa->fa_node, 2, IPL_NET,
	    fec_intr, sc, sc->sc_dev.dv_xname);

	tsize = ENET_MAX_TXD * sizeof(struct fec_buf_desc);
	tsize = ENET_ROUNDUP(tsize, PAGE_SIZE);

	if (fec_dma_malloc(sc, tsize, &sc->txdma)) {
		printf("%s: Unable to allocate tx_desc memory\n",
		    sc->sc_dev.dv_xname);
		goto bad;
	}
	sc->tx_desc_base = (struct fec_buf_desc *)sc->txdma.dma_vaddr;

	rsize = ENET_MAX_RXD * sizeof(struct fec_buf_desc);
	rsize = ENET_ROUNDUP(rsize, PAGE_SIZE);

	if (fec_dma_malloc(sc, rsize, &sc->rxdma)) {
		printf("%s: Unable to allocate rx_desc memory\n",
		    sc->sc_dev.dv_xname);
		goto txdma;
	}
	sc->rx_desc_base = (struct fec_buf_desc *)sc->rxdma.dma_vaddr;

	tbsize = ENET_MAX_TXD * ENET_MAX_PKT_SIZE;
	tbsize = ENET_ROUNDUP(tbsize, PAGE_SIZE);

	if (fec_dma_malloc(sc, tbsize, &sc->tbdma)) {
		printf("%s: Unable to allocate tx_buffer memory\n",
		    sc->sc_dev.dv_xname);
		goto rxdma;
	}
	sc->tx_buffer_base = (struct fec_buffer *)sc->tbdma.dma_vaddr;

	rbsize = ENET_MAX_RXD * ENET_MAX_PKT_SIZE;
	rbsize = ENET_ROUNDUP(rbsize, PAGE_SIZE);

	if (fec_dma_malloc(sc, rbsize, &sc->rbdma)) {
		printf("%s: Unable to allocate rx_buffer memory\n",
		    sc->sc_dev.dv_xname);
		goto tbdma;
	}
	sc->rx_buffer_base = (struct fec_buffer *)sc->rbdma.dma_vaddr;

	sc->cur_tx = 0;
	sc->cur_rx = 0;

	s = splnet();

	ifp = &sc->sc_ac.ac_if;
	ifp->if_softc = sc;
	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl = fec_ioctl;
	ifp->if_start = fec_start;
	ifp->if_capabilities = IFCAP_VLAN_MTU;

	printf("%s: address %s\n", sc->sc_dev.dv_xname,
	    ether_sprintf(sc->sc_ac.ac_enaddr));

	/*
	 * Initialize the MII clock.  The formula is:
	 *
	 * ENET_MII_CLK = ref_freq / ((phy_speed + 1) x 2)
	 * phy_speed = (((ref_freq / ENET_MII_CLK) / 2) - 1)
	 */
	sc->sc_phy_speed = clock_get_frequency(sc->sc_node, "ipg");
	sc->sc_phy_speed = (sc->sc_phy_speed + (ENET_MII_CLK - 1)) / ENET_MII_CLK;
	sc->sc_phy_speed = (sc->sc_phy_speed / 2) - 1;
	HWRITE4(sc, ENET_MSCR, (sc->sc_phy_speed << 1) | 0x100);

	/* Initialize MII/media info. */
	mii = &sc->sc_mii;
	mii->mii_ifp = ifp;
	mii->mii_readreg = fec_miibus_readreg;
	mii->mii_writereg = fec_miibus_writereg;
	mii->mii_statchg = fec_miibus_statchg;

	ifmedia_init(&mii->mii_media, 0, fec_ifmedia_upd, fec_ifmedia_sts);
	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);

	child = LIST_FIRST(&mii->mii_phys);
	if (child)
		fec_phy_init(sc, child);

	if (LIST_FIRST(&mii->mii_phys) == NULL) {
		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
	} else
		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);

	if_attach(ifp);
	ether_ifattach(ifp);
	splx(s);

	timeout_set(&sc->sc_tick, fec_tick, sc);

	fec_sc = sc;
	return;

tbdma:
	fec_dma_free(sc, &sc->tbdma);
rxdma:
	fec_dma_free(sc, &sc->rxdma);
txdma:
	fec_dma_free(sc, &sc->txdma);
bad:
	bus_space_unmap(sc->sc_iot, sc->sc_ioh, faa->fa_reg[0].size);
}

void
fec_phy_init(struct fec_softc *sc, struct mii_softc *child)
{
	struct device *dev = (struct device *)sc;
	int phy = child->mii_phy;
	uint32_t reg;

	if (child->mii_oui == MII_OUI_ATHEROS &&
	    child->mii_model == MII_MODEL_ATHEROS_AR8035) {
		/* disable SmartEEE */
		fec_miibus_writereg(dev, phy, 0x0d, 0x0003);
		fec_miibus_writereg(dev, phy, 0x0e, 0x805d);
		fec_miibus_writereg(dev, phy, 0x0d, 0x4003);
		reg = fec_miibus_readreg(dev, phy, 0x0e);
		fec_miibus_writereg(dev, phy, 0x0e, reg & ~0x0100);

		/* enable 125MHz clk output */
		fec_miibus_writereg(dev, phy, 0x0d, 0x0007);
		fec_miibus_writereg(dev, phy, 0x0e, 0x8016);
		fec_miibus_writereg(dev, phy, 0x0d, 0x4007);

		reg = fec_miibus_readreg(dev, phy, 0x0e) & 0xffe3;
		fec_miibus_writereg(dev, phy, 0x0e, reg | 0x18);

		/* tx clock delay */
		fec_miibus_writereg(dev, phy, 0x1d, 0x0005);
		reg = fec_miibus_readreg(dev, phy, 0x1e);
		fec_miibus_writereg(dev, phy, 0x1e, reg | 0x0100);

		PHY_RESET(child);
	}

	if (child->mii_oui == MII_OUI_MICREL &&
	    child->mii_model == MII_MODEL_MICREL_KSZ9021) {
		uint32_t rxc, rxdv, txc, txen;
		uint32_t rxd0, rxd1, rxd2, rxd3;
		uint32_t txd0, txd1, txd2, txd3;
		uint32_t val;

		rxc = OF_getpropint(sc->sc_node, "rxc-skew-ps", 1400) / 200;
		rxdv = OF_getpropint(sc->sc_node, "rxdv-skew-ps", 1400) / 200;
		txc = OF_getpropint(sc->sc_node, "txc-skew-ps", 1400) / 200;
		txen = OF_getpropint(sc->sc_node, "txen-skew-ps", 1400) / 200;
		rxd0 = OF_getpropint(sc->sc_node, "rxd0-skew-ps", 1400) / 200;
		rxd1 = OF_getpropint(sc->sc_node, "rxd1-skew-ps", 1400) / 200;
		rxd2 = OF_getpropint(sc->sc_node, "rxd2-skew-ps", 1400) / 200;
		rxd3 = OF_getpropint(sc->sc_node, "rxd3-skew-ps", 1400) / 200;
		txd0 = OF_getpropint(sc->sc_node, "txd0-skew-ps", 1400) / 200;
		txd1 = OF_getpropint(sc->sc_node, "txd1-skew-ps", 1400) / 200;
		txd2 = OF_getpropint(sc->sc_node, "txd2-skew-ps", 1400) / 200;
		txd3 = OF_getpropint(sc->sc_node, "txd3-skew-ps", 1400) / 200;

		val = ((rxc & 0xf) << 12) | ((rxdv & 0xf) << 8) |
		    ((txc & 0xf) << 4) | ((txen & 0xf) << 0);
		fec_miibus_writereg(dev, phy, 0x0b, 0x8104);
		fec_miibus_writereg(dev, phy, 0x0c, val);

		val = ((rxd3 & 0xf) << 12) | ((rxd2 & 0xf) << 8) |
		    ((rxd1 & 0xf) << 4) | ((rxd0 & 0xf) << 0);
		fec_miibus_writereg(dev, phy, 0x0b, 0x8105);
		fec_miibus_writereg(dev, phy, 0x0c, val);

		val = ((txd3 & 0xf) << 12) | ((txd2 & 0xf) << 8) |
		    ((txd1 & 0xf) << 4) | ((txd0 & 0xf) << 0);
		fec_miibus_writereg(dev, phy, 0x0b, 0x8106);
		fec_miibus_writereg(dev, phy, 0x0c, val);
	}

	if (child->mii_oui == MII_OUI_MICREL &&
	    child->mii_model == MII_MODEL_MICREL_KSZ9031) {
		uint32_t rxc, rxdv, txc, txen;
		uint32_t rxd0, rxd1, rxd2, rxd3;
		uint32_t txd0, txd1, txd2, txd3;
		uint32_t val;

		rxc = OF_getpropint(sc->sc_node, "rxc-skew-ps", 900) / 60;
		rxdv = OF_getpropint(sc->sc_node, "rxdv-skew-ps", 420) / 60;
		txc = OF_getpropint(sc->sc_node, "txc-skew-ps", 900) / 60;
		txen = OF_getpropint(sc->sc_node, "txen-skew-ps", 420) / 60;
		rxd0 = OF_getpropint(sc->sc_node, "rxd0-skew-ps", 420) / 60;
		rxd1 = OF_getpropint(sc->sc_node, "rxd1-skew-ps", 420) / 60;
		rxd2 = OF_getpropint(sc->sc_node, "rxd2-skew-ps", 420) / 60;
		rxd3 = OF_getpropint(sc->sc_node, "rxd3-skew-ps", 420) / 60;
		txd0 = OF_getpropint(sc->sc_node, "txd0-skew-ps", 420) / 60;
		txd1 = OF_getpropint(sc->sc_node, "txd1-skew-ps", 420) / 60;
		txd2 = OF_getpropint(sc->sc_node, "txd2-skew-ps", 420) / 60;
		txd3 = OF_getpropint(sc->sc_node, "txd3-skew-ps", 420) / 60;

		val = ((rxdv & 0xf) << 4) || ((txen & 0xf) << 0);
		fec_miibus_writereg(dev, phy, 0x0d, 0x0002);
		fec_miibus_writereg(dev, phy, 0x0e, 0x0004);
		fec_miibus_writereg(dev, phy, 0x0d, 0x4002);
		fec_miibus_writereg(dev, phy, 0x0e, val);

		val = ((rxd3 & 0xf) << 12) | ((rxd2 & 0xf) << 8) |
		    ((rxd1 & 0xf) << 4) | ((rxd0 & 0xf) << 0);
		fec_miibus_writereg(dev, phy, 0x0d, 0x0002);
		fec_miibus_writereg(dev, phy, 0x0e, 0x0005);
		fec_miibus_writereg(dev, phy, 0x0d, 0x4002);
		fec_miibus_writereg(dev, phy, 0x0e, val);

		val = ((txd3 & 0xf) << 12) | ((txd2 & 0xf) << 8) |
		    ((txd1 & 0xf) << 4) | ((txd0 & 0xf) << 0);
		fec_miibus_writereg(dev, phy, 0x0d, 0x0002);
		fec_miibus_writereg(dev, phy, 0x0e, 0x0006);
		fec_miibus_writereg(dev, phy, 0x0d, 0x4002);
		fec_miibus_writereg(dev, phy, 0x0e, val);

		val = ((txc & 0x1f) << 5) || ((rxc & 0x1f) << 0);
		fec_miibus_writereg(dev, phy, 0x0d, 0x0002);
		fec_miibus_writereg(dev, phy, 0x0e, 0x0008);
		fec_miibus_writereg(dev, phy, 0x0d, 0x4002);
		fec_miibus_writereg(dev, phy, 0x0e, val);
	}
}

void
fec_init_rxd(struct fec_softc *sc)
{
	int i;

	memset(sc->rx_desc_base, 0, ENET_MAX_RXD * sizeof(struct fec_buf_desc));

	for (i = 0; i < ENET_MAX_RXD; i++)
	{
		sc->rx_desc_base[i].status = ENET_RXD_EMPTY;
		sc->rx_desc_base[i].data_pointer = sc->rbdma.dma_paddr + i * ENET_MAX_PKT_SIZE;
#ifdef ENET_ENHANCED_BD
		sc->rx_desc_base[i].enhanced_status = ENET_RXD_INT;
#endif
	}

	sc->rx_desc_base[i - 1].status |= ENET_RXD_WRAP;
}

void
fec_init_txd(struct fec_softc *sc)
{
	int i;

	memset(sc->tx_desc_base, 0, ENET_MAX_TXD * sizeof(struct fec_buf_desc));

	for (i = 0; i < ENET_MAX_TXD; i++)
	{
		sc->tx_desc_base[i].data_pointer = sc->tbdma.dma_paddr + i * ENET_MAX_PKT_SIZE;
	}

	sc->tx_desc_base[i - 1].status |= ENET_TXD_WRAP;
}

void
fec_init(struct fec_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	int speed = 0;

	/* reset the controller */
	HSET4(sc, ENET_ECR, ENET_ECR_RESET);
	while (HREAD4(sc, ENET_ECR) & ENET_ECR_ETHEREN)
		continue;

	/* set hw address */
	HWRITE4(sc, ENET_PALR,
	    (sc->sc_ac.ac_enaddr[0] << 24) |
	    (sc->sc_ac.ac_enaddr[1] << 16) |
	    (sc->sc_ac.ac_enaddr[2] << 8) |
	     sc->sc_ac.ac_enaddr[3]);
	HWRITE4(sc, ENET_PAUR,
	    (sc->sc_ac.ac_enaddr[4] << 24) |
	    (sc->sc_ac.ac_enaddr[5] << 16));

	/* clear outstanding interrupts */
	HWRITE4(sc, ENET_EIR, 0xffffffff);

	/* set max receive buffer size, 3-0 bits always zero for alignment */
	HWRITE4(sc, ENET_MRBR, ENET_MAX_PKT_SIZE);

	/* set descriptor */
	HWRITE4(sc, ENET_TDSR, sc->txdma.dma_paddr);
	HWRITE4(sc, ENET_RDSR, sc->rxdma.dma_paddr);

	/* init descriptor */
	fec_init_txd(sc);
	fec_init_rxd(sc);

	/* set it to full-duplex */
	HWRITE4(sc, ENET_TCR, ENET_TCR_FDEN);

	/*
	 * Set max frame length to 1518 or 1522 with VLANs,
	 * pause frames and promisc mode.
	 * XXX: RGMII mode - phy dependant
	 */
	HWRITE4(sc, ENET_RCR,
	    ENET_RCR_MAX_FL(1522) | ENET_RCR_RGMII_MODE | ENET_RCR_MII_MODE |
	    ENET_RCR_FCE);

	HWRITE4(sc, ENET_MSCR, (sc->sc_phy_speed << 1) | 0x100);

	/* RX FIFO treshold and pause */
	HWRITE4(sc, ENET_RSEM, 0x84);
	HWRITE4(sc, ENET_RSFL, 16);
	HWRITE4(sc, ENET_RAEM, 8);
	HWRITE4(sc, ENET_RAFL, 8);
	HWRITE4(sc, ENET_OPD, 0xFFF0);

	/* do store and forward, only i.MX6, needs to be set correctly else */
	HWRITE4(sc, ENET_TFWR, ENET_TFWR_STRFWD);

	/* enable gigabit-ethernet and set it to support little-endian */
	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
	case IFM_1000_T:  /* Gigabit */
		speed |= ENET_ECR_SPEED;
		break;
	default:
		speed &= ~ENET_ECR_SPEED;
	}
	HWRITE4(sc, ENET_ECR, ENET_ECR_ETHEREN | speed | ENET_ECR_DBSWP);

#ifdef ENET_ENHANCED_BD
	HSET4(sc, ENET_ECR, ENET_ECR_EN1588);
#endif

	/* rx descriptors are ready */
	HWRITE4(sc, ENET_RDAR, ENET_RDAR_RDAR);

	/* program promiscuous mode and multicast filters */
	fec_iff(sc);

	timeout_add_sec(&sc->sc_tick, 1);

	/* Indicate we are up and running. */
	ifp->if_flags |= IFF_RUNNING;
	ifq_clr_oactive(&ifp->if_snd);

	/* enable interrupts for tx/rx */
	HWRITE4(sc, ENET_EIMR, ENET_EIR_TXF | ENET_EIR_RXF);

	fec_start(ifp);
}

void
fec_stop(struct fec_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ac.ac_if;

	/*
	 * Mark the interface down and cancel the watchdog timer.
	 */
	ifp->if_flags &= ~IFF_RUNNING;
	ifp->if_timer = 0;
	ifq_clr_oactive(&ifp->if_snd);

	timeout_del(&sc->sc_tick);

	/* reset the controller */
	HSET4(sc, ENET_ECR, ENET_ECR_RESET);
	while (HREAD4(sc, ENET_ECR) & ENET_ECR_ETHEREN)
		continue;

	HWRITE4(sc, ENET_MSCR, (sc->sc_phy_speed << 1) | 0x100);
}

void
fec_iff(struct fec_softc *sc)
{
	struct arpcom *ac = &sc->sc_ac;
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	struct ether_multi *enm;
	struct ether_multistep step;
	uint64_t ghash = 0, ihash = 0;
	uint32_t h;

	ifp->if_flags &= ~IFF_ALLMULTI;

	if (ifp->if_flags & IFF_PROMISC) {
		ifp->if_flags |= IFF_ALLMULTI;
		ihash = 0xffffffffffffffffLLU;
	} else if (ac->ac_multirangecnt > 0) {
		ifp->if_flags |= IFF_ALLMULTI;
		ghash = 0xffffffffffffffffLLU;
	} else {
		ETHER_FIRST_MULTI(step, ac, enm);
		while (enm != NULL) {
			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);

			ghash |= 1LLU << (((uint8_t *)&h)[3] >> 2);

			ETHER_NEXT_MULTI(step, enm);
		}
	}

	HWRITE4(sc, ENET_GAUR, (uint32_t)(ghash >> 32));
	HWRITE4(sc, ENET_GALR, (uint32_t)ghash);

	HWRITE4(sc, ENET_IAUR, (uint32_t)(ihash >> 32));
	HWRITE4(sc, ENET_IALR, (uint32_t)ihash);
}

int
fec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
	struct fec_softc *sc = ifp->if_softc;
	struct ifreq *ifr = (struct ifreq *)data;
	int s, error = 0;

	s = splnet();

	switch (cmd) {
	case SIOCSIFADDR:
		ifp->if_flags |= IFF_UP;
		if (!(ifp->if_flags & IFF_RUNNING))
			fec_init(sc);
		break;

	case SIOCSIFFLAGS:
		if (ifp->if_flags & IFF_UP) {
			if (ifp->if_flags & IFF_RUNNING)
				error = ENETRESET;
			else
				fec_init(sc);
		} else {
			if (ifp->if_flags & IFF_RUNNING)
				fec_stop(sc);
		}
		break;

	case SIOCGIFMEDIA:
	case SIOCSIFMEDIA:
		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
		break;

	default:
		error = ether_ioctl(ifp, &sc->sc_ac, cmd, data);
	}

	if (error == ENETRESET) {
		if (ifp->if_flags & IFF_RUNNING)
			fec_iff(sc);
		error = 0;
	}

	splx(s);
	return(error);
}

void
fec_start(struct ifnet *ifp)
{
	struct fec_softc *sc = ifp->if_softc;
	struct mbuf *m_head = NULL;

	if (ifq_is_oactive(&ifp->if_snd) || !(ifp->if_flags & IFF_RUNNING))
		return;

	for (;;) {
		m_head = ifq_deq_begin(&ifp->if_snd);
		if (m_head == NULL)
			break;

		if (fec_encap(sc, m_head)) {
			ifq_deq_rollback(&ifp->if_snd, m_head);
			ifq_set_oactive(&ifp->if_snd);
			break;
		}

		ifq_deq_commit(&ifp->if_snd, m_head);

#if NBPFILTER > 0
		if (ifp->if_bpf)
			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
#endif

		m_freem(m_head);
	}
}

int
fec_encap(struct fec_softc *sc, struct mbuf *m)
{
	if (sc->tx_desc_base[sc->cur_tx].status & ENET_TXD_READY) {
		printf("fec: tx queue full!\n");
		return EIO;
	}

	if (m->m_pkthdr.len > ENET_MAX_PKT_SIZE) {
		printf("fec: packet too big\n");
		return EIO;
	}

	/* copy in the actual packet */
	m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)sc->tx_buffer_base[sc->cur_tx].data);

	sc->tx_desc_base[sc->cur_tx].data_length = m->m_pkthdr.len;

	sc->tx_desc_base[sc->cur_tx].status &= ~ENET_TXD_STATUS_MASK;
	sc->tx_desc_base[sc->cur_tx].status |= (ENET_TXD_READY | ENET_TXD_LAST | ENET_TXD_TC);

#ifdef ENET_ENHANCED_BD
	sc->tx_desc_base[sc->cur_tx].enhanced_status = ENET_TXD_INT;
	sc->tx_desc_base[sc->cur_tx].update_done = 0;
#endif

	bus_dmamap_sync(sc->tbdma.dma_tag, sc->tbdma.dma_map,
	    ENET_MAX_PKT_SIZE * sc->cur_tx, ENET_MAX_PKT_SIZE,
	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

	bus_dmamap_sync(sc->txdma.dma_tag, sc->txdma.dma_map,
	    sizeof(struct fec_buf_desc) * sc->cur_tx,
	    sizeof(struct fec_buf_desc),
	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);


	/* tx descriptors are ready */
	HWRITE4(sc, ENET_TDAR, ENET_TDAR_TDAR);

	if (sc->tx_desc_base[sc->cur_tx].status & ENET_TXD_WRAP)
		sc->cur_tx = 0;
	else
		sc->cur_tx++;

	return 0;
}

struct mbuf *
fec_newbuf(void)
{
	struct mbuf *m;

	MGETHDR(m, M_DONTWAIT, MT_DATA);
	if (m == NULL)
		return (NULL);

	MCLGET(m, M_DONTWAIT);
	if (!(m->m_flags & M_EXT)) {
		m_freem(m);
		return (NULL);
	}

	return (m);
}

/*
 * Established by attachment driver at interrupt priority IPL_NET.
 */
int
fec_intr(void *arg)
{
	struct fec_softc *sc = arg;
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	u_int32_t status;

	/* Find out which interrupts are pending. */
	status = HREAD4(sc, ENET_EIR);

	/* Acknowledge the interrupts we are about to handle. */
	HWRITE4(sc, ENET_EIR, status);

	/*
	 * Handle incoming packets.
	 */
	if (ISSET(status, ENET_EIR_RXF)) {
		if (ifp->if_flags & IFF_RUNNING)
			fec_recv(sc);
	}

	/* Try to transmit. */
	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
		fec_start(ifp);

	return 1;
}

void
fec_recv(struct fec_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	struct mbuf_list ml = MBUF_LIST_INITIALIZER();

	bus_dmamap_sync(sc->rbdma.dma_tag, sc->rbdma.dma_map,
	    0, sc->rbdma.dma_size,
	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

	bus_dmamap_sync(sc->rxdma.dma_tag, sc->rxdma.dma_map,
	    0, sc->rxdma.dma_size,
	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

	while (!(sc->rx_desc_base[sc->cur_rx].status & ENET_RXD_EMPTY))
	{
		struct mbuf *m;
		m = fec_newbuf();

		if (m == NULL) {
			ifp->if_ierrors++;
			goto done;
		}

		m->m_pkthdr.len = m->m_len = sc->rx_desc_base[sc->cur_rx].data_length;
		m_adj(m, ETHER_ALIGN);

		memcpy(mtod(m, char *), sc->rx_buffer_base[sc->cur_rx].data,
		    sc->rx_desc_base[sc->cur_rx].data_length);

		sc->rx_desc_base[sc->cur_rx].status |= ENET_RXD_EMPTY;
		sc->rx_desc_base[sc->cur_rx].data_length = 0;

		bus_dmamap_sync(sc->rbdma.dma_tag, sc->rbdma.dma_map,
		    ENET_MAX_PKT_SIZE * sc->cur_rx, ENET_MAX_PKT_SIZE,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

		bus_dmamap_sync(sc->rxdma.dma_tag, sc->rxdma.dma_map,
		    sizeof(struct fec_buf_desc) * sc->cur_rx,
		    sizeof(struct fec_buf_desc),
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

		if (sc->rx_desc_base[sc->cur_rx].status & ENET_RXD_WRAP)
			sc->cur_rx = 0;
		else
			sc->cur_rx++;

		ml_enqueue(&ml, m);
	}

done:
	/* rx descriptors are ready */
	HWRITE4(sc, ENET_RDAR, ENET_RDAR_RDAR);

	if_input(ifp, &ml);
}

void
fec_tick(void *arg)
{
	struct fec_softc *sc = arg;
	int s;

	s = splnet();
	mii_tick(&sc->sc_mii);
	splx(s);

	timeout_add_sec(&sc->sc_tick, 1);
}

/*
 * MII
 * Interrupts need ENET_ECR_ETHEREN to be set,
 * so we just read the interrupt status registers.
 */
int
fec_miibus_readreg(struct device *dev, int phy, int reg)
{
	int r = 0;
	struct fec_softc *sc = (struct fec_softc *)dev;

	HSET4(sc, ENET_EIR, ENET_EIR_MII);

	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ENET_MMFR,
	    ENET_MMFR_ST | ENET_MMFR_OP_RD | ENET_MMFR_TA |
	    phy << ENET_MMFR_PA_SHIFT | reg << ENET_MMFR_RA_SHIFT);

	while(!(HREAD4(sc, ENET_EIR) & ENET_EIR_MII));

	r = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ENET_MMFR);

	return (r & 0xffff);
}

void
fec_miibus_writereg(struct device *dev, int phy, int reg, int val)
{
	struct fec_softc *sc = (struct fec_softc *)dev;

	HSET4(sc, ENET_EIR, ENET_EIR_MII);

	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ENET_MMFR,
	    ENET_MMFR_ST | ENET_MMFR_OP_WR | ENET_MMFR_TA |
	    phy << ENET_MMFR_PA_SHIFT | reg << ENET_MMFR_RA_SHIFT |
	    (val & 0xffff));

	while(!(HREAD4(sc, ENET_EIR) & ENET_EIR_MII));

	return;
}

void
fec_miibus_statchg(struct device *dev)
{
	struct fec_softc *sc = (struct fec_softc *)dev;
	uint32_t ecr, rcr;

	ecr = HREAD4(sc, ENET_ECR) & ~ENET_ECR_SPEED;
	rcr = HREAD4(sc, ENET_RCR) & ~ENET_RCR_RMII_10T;
	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
	case IFM_1000_T:  /* Gigabit */
		ecr |= ENET_ECR_SPEED;
		break;
	case IFM_100_TX:
		break;
	case IFM_10_T:
		rcr |= ENET_RCR_RMII_10T;
		break;
	}
	HWRITE4(sc, ENET_ECR, ecr);
	HWRITE4(sc, ENET_RCR, rcr);

	return;
}

int
fec_ifmedia_upd(struct ifnet *ifp)
{
	struct fec_softc *sc = ifp->if_softc;
	struct mii_data *mii = &sc->sc_mii;
	int err;
	if (mii->mii_instance) {
		struct mii_softc *miisc;

		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
			mii_phy_reset(miisc);
	}
	err = mii_mediachg(mii);
	return (err);
}

void
fec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
	struct fec_softc *sc = ifp->if_softc;
	struct mii_data *mii = &sc->sc_mii;

	mii_pollstat(mii);

	ifmr->ifm_active = mii->mii_media_active;
	ifmr->ifm_status = mii->mii_media_status;
}

/*
 * Manage DMA'able memory.
 */
int
fec_dma_malloc(struct fec_softc *sc, bus_size_t size,
    struct fec_dma_alloc *dma)
{
	int r;

	dma->dma_tag = sc->sc_dma_tag;
	r = bus_dmamem_alloc(dma->dma_tag, size, ENET_ALIGNMENT, 0, &dma->dma_seg,
	    1, &dma->dma_nseg, BUS_DMA_NOWAIT);
	if (r != 0) {
		printf("%s: fec_dma_malloc: bus_dmammem_alloc failed; "
			"size %lu, error %d\n", sc->sc_dev.dv_xname,
			(unsigned long)size, r);
		goto fail_0;
	}

	r = bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
	    &dma->dma_vaddr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
	if (r != 0) {
		printf("%s: fec_dma_malloc: bus_dmammem_map failed; "
			"size %lu, error %d\n", sc->sc_dev.dv_xname,
			(unsigned long)size, r);
		goto fail_1;
	}

	r = bus_dmamap_create(dma->dma_tag, size, 1,
	    size, 0, BUS_DMA_NOWAIT, &dma->dma_map);
	if (r != 0) {
		printf("%s: fec_dma_malloc: bus_dmamap_create failed; "
			"error %u\n", sc->sc_dev.dv_xname, r);
		goto fail_2;
	}

	r = bus_dmamap_load(dma->dma_tag, dma->dma_map,
			    dma->dma_vaddr, size, NULL,
			    BUS_DMA_NOWAIT);
	if (r != 0) {
		printf("%s: fec_dma_malloc: bus_dmamap_load failed; "
			"error %u\n", sc->sc_dev.dv_xname, r);
		goto fail_3;
	}

	dma->dma_size = size;
	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
	return (0);

fail_3:
	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
fail_2:
	bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
fail_1:
	bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
fail_0:
	dma->dma_map = NULL;
	dma->dma_tag = NULL;

	return (r);
}

void
fec_dma_free(struct fec_softc *sc, struct fec_dma_alloc *dma)
{
	if (dma->dma_tag == NULL)
		return;

	if (dma->dma_map != NULL) {
		bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
		    dma->dma_map->dm_mapsize,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
		bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
		bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
		bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
	}
	dma->dma_tag = NULL;
}